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Abstract

We investigate the generation and propagation of solitary waves in the context of the Hertz chain and Toda

lattice, with the aim to highlight the similarities, as well as differences between these systems. We begin by

discussing the kinetic and potential energy of a solitary wave in these systems, and show that under certain

circumstances the kinetic and potential energy profiles in these systems (i.e., their spatial distribution) look

reasonably close to each other. While this and other features, such as the connection between the amplitude

and the total energy of the wave bear similarities between the two models, there are also notable differences,

such as the width of the wave. We then study the dynamical behavior of these systems in response to an

initial velocity impulse. For the Toda lattice, we do so by employing the inverse scattering transform, and

we obtain analytically the ratio between the energy of the resulting solitary wave and the energy of the

impulse, as a function of the impulse velocity; we then compare the dynamics of the Toda system to that of

the Hertz system, for which the corresponding quantities are obtained through numerical simulations. In the

latter system, we obtain a universality in the fraction of the energy stored in the resulting solitary traveling

wave irrespectively of the size of the impulse. This fraction turns out to only depend on the nonlinear

exponent. Finally, we investigate the relation between the velocity of the resulting solitary wave and the

velocity of the impulse. In particular, we provide an alternative proof for the numerical scaling rule of Hertz

type systems.

1 Introduction

The existence of traveling solitary waves (SWs) — namely, localized energy pulses that travel without dispers-

ing — is a common property of many nonlinear systems, which goes all the way back to the seminal work of

Kortweg and de Vries [1] on the equation that now bears their name. In the past three decades, a significant

focus of interest on such structures and their connections to numerous physical and engineering applications

has emerged in the context of nonlinear dynamical lattices, i.e., in spatially discrete settings. This can be to a

significant degree attributed to the emergence of the notion of “granular crystals”, through the experimental as

well as theoretical work of Nesterenko and collaborators [2, 3] that was subsequently expanded by numerous

other groups, as summarized, e.g., in [4]. Importantly, developments have also continued along other veins,

including the systematic study of heterogeneous lattice settings [5] and the consideration of various other

structures including shock waves and discrete breathers [6, 7]. It is thus clear that this remains a booming field.

In the present work we build on this line of ongoing efforts. More concretely, we explore the one-

dimensional lattices of particles with nearest-neighbor interactions. We consider lattices in which each particle

has equal mass (i.e., homogeneous ones), denoted by m. We denote by yn the displacement of the n-th particle

with respect to its equilibrium, and by φ(r) the interaction potential between adjacent particles. The equation

of motion for the n-th particle is then given in this general formulation by

mÿn = φ′(yn+1 − yn)− φ′(yn − yn−1), (1.1)
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where n ∈ Z, the dot denotes temporal derivative and φ′ is the derivative of φ. For such discrete lattices — also

referred to as semi-discrete systems, or coupled oscillator chains — it is well-known that SWs exist in lattices

with superquadratic potentials [8, 9]. Among lattices with superquadratic potentials, the Toda lattice [10, 11,

12, 13, 14] and Hertz chain [2, 3, 4, 5, 6, 7] have been the subject of intense research over the past several

decades, each for different reasons. The Toda model corresponds to (1.1) with

φ(rn) =
a

b
(e−brn − 1) + arn, (1.2)

where a and b are constants, rn = yn+1 − yn is the relative displacement, and the additive constant was chosen

so that φ(0) = 0. In this case, (1.1) yields

mÿn = a e−b(yn−yn−1) − a e−b(yn+1−yn). (1.3)

The Hertz model [15], on the other hand, corresponds to (1.1) with

φ(rn) =

{

c(∆ − rn)α, rn ≤ ∆ ,

0, rn > ∆ ,
(1.4)

where c is a constant, ∆ is the so-called precompression displacement, corresponding to the case where the

chain may be compressed at its ends, inducing a displacement prior to the initiation of the nonlinear wave

patterns. In this case, (1.1) yields

mÿn = α c[(∆ − (yn − yn−1))
α−1 − (∆ − (yn+1 − yn))

α−1]. (1.5)

It is also important to note in the latter case the dual nature of the nonlinearity stemming from the geometric

exponent α of the elastic contact (Hertzian) interaction, as well as the piecewise definition of the relevant force

reflecting the absence of force in the absence of contact [2].

The Hertz chain is important from a practical point of view [16, 17, 18, 19, 20], since it serves as a model

to characterize how the repelling force in the contact area of two bodies is effected by the compression be-

tween them. For much of what will be considered below, we will limit consideration to the case of spherical

contacts associated with α = 5/2 in our above notation, although some of our results will use α as a param-

eter motivated by a number of recent experimental developments enabling a certain tunability of the value of

the relevant exponent [6, 7]. Analytical studies of Hertz systems are necessarily limited due to the lack of

complete integrability. This Hertzian system is rendered more difficult to tackle in a way in the case where

the precompression displacement is absent ∆ = 0, since in that case the system becomes “highly nonlinear”

and has no linear limit from which to obtain perturbative results, e.g., in the spirit of [21]. I.e., in the case

with precompression, one can envision a potential Taylor expansion when ∆ ≫ (yn − yn±1) and the usage

of KdV or Toda results as a guiding principle for single solitary wave dynamics or multiple solitary wave

interactions [22]. In the case of ∆ = 0, this is no longer the case and to avoid resorting to quasi-continuum

approximations [2, 3, 23], entirely different suites of mathematical techniques based on Fourier iterative [24]

and variational methods [9] have been developed recently.

It should be clear from the above discussion that on the one hand, this class of systems is of wide recent

physical and engineering interest [2, 5, 6, 7], yet at the same time there is a limited set of mathematical tools

and techniques in order to address such settings. It is the aim of the present work to enhance this toolbox

by exploring similarities and differences to one of the most prototypical analytically tractable models in the

mathematical physics of nonlinear discrete systems, namely the Toda lattice. The Toda lattice, as a completely

integrable Hamiltonian system, possesses a rich mathematical structure which enables one to develop powerful

analytical tools to obtain explicit solutions and study their behavior [25, 26, 27, 28, 29].
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As mentioned above, both of these systems support the propagation of SWs. This paper is devoted to

characterizing in a systematic fashion the similarities and differences of the dynamics of SWs in these two

models. On one hand, because of the universal characters of SWs on nonlinear lattices, the explicit one-soliton

solution of the Toda lattice can help to shed light on some of the properties of SWs in the Hertz chain. On

the other hand, these two models are intrinsically different from each other; therefore, studying the differences

among them can help us to better understand the dynamics in each of these models.

The structure of this paper is the following. In section 2 we begin by discussing the kinetic energy (KE)

and potential energy (PE) of a SW in these two models. We show how the oscillatory behavior of the KE and

PE of a SW arises due to the discrete nature of the lattices and we show such behavior can be characterized

by elliptic functions. We also show that the PE and KE profiles of a SW in these systems look reasonably

close to each other under certain circumstances. In section 3 we then discuss the dynamics of these systems

under a velocity impulse, for the Toda system by employing the inverse scattering transform (IST) we obtain

an analytical expression of the ratio, between the energy of the resulting SW and the energy of the impulse,

as a function of the impulse velocity, and we compare such ratio in the Toda system to numerical results in

the Hertz system. Finally, in section Appendix C we study the relation between the velocity of the impulse

and that of the resulting SW in these systems, in particular we provide an alternative proof of a scaling rule in

Hertz-type system by using the Virial theorem. We end this work with some final remarks in section 4.

2 Kinetic and potential energy of a SW

Recall that the KE and PE associated with any given system configuration are given by

KE =
1

2 ∑
n∈Z

mẏ2
n , PE = ∑

n∈Z

φ(yn+1 − yn) . (2.1)

In both the Hertz system and the Toda lattices, the total KE and PE of the system oscillate in time as the SW

propagates through the lattice. This naturally reflects the shift translational invariance of the lattice and how

the traveling wave “reshuffles” itself from a configuration centered on a lattice site to one centered between

two lattice sites and back to the one centered on the next site, as it traverses the discrete substrate. We next

show this oscillatory behavio due to the discrete nature of the lattice in a quantitative fashion.

2.1 SWs in the Toda lattice

Recall that, in both systems, the displacement profile of a SW has a kink shape. In this work, we use the term

“profile” to refer to the spatial distribution of certain physical quantity at fixed time t. In the Toda lattice,

SWs correspond to the pure one-soliton solutions of the system, for which the displacement is explicitly given

by [10]

yn(t) = log
1 + e2κ(n−1−vswt)

1 + e2κ(n−vswt)
+ const, (2.2)

where the soliton parameter κ > 0 parametrizes the family of one-soliton solutions and for simplicity, a, b and

m were set to 1. The velocity of the SW is

vsw = −σ(sinh κ)/κ . (2.3)

The sign σ = ±1 determines the direction of propagation. A plot of the displacement profile at t = 0 is shown

in Fig. 1. The plot also shows the relative displacement of the pulse, defined as rn = yn − yn−1, which has the

form of a pulse. The KE and PE carried by the above SW of the Toda lattice are given by

KE =
sinh2 κ

2 ∑
n∈Z

[tanh(κ(n − 1) + σ sinh κ t)− tanh(κn + σ sinh κ t)]2, (2.4a)

3
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Figure 1: Left: The displacement profile yn(t = 0) for a SW of the Toda lattice with κ = 1.3606. Right: The

relative displacement profile rn = yn+1 − yn for the SW in the left panel.
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Figure 2: Left panel: the function p(n, t) for the Toda lattice as a function of n at t = 0. Right panel: p(n, t)
as a function of n at t = 1/(2T). Note that the peak of p(n, 0) is at n = 0, and PE goes to maximum; right

panel: at t = 1/(2T), the peak of p(n, t) is between n = 0 and n = 1, and PE goes to minimum.

PE = ∑
n∈Z

[sinh2 κ sech2(κn + σ sinh κ t)] + ∑
n∈Z

(yn+1 − yn), (2.4b)

respectively. The total energy, i.e., the sum of the KE and PE, is a constant, namely

Etot = 2(sinh κ cosh κ − κ). (2.5)

(To see this, note that the sum of the two infinite series in (2.4) can be written as a telescoping series.)

The discrete nature of lattice induces an oscillatory behavior in the KE and PE. First off, notice how the

pulse in the relative displacement alternates between an onsite and an intersite spatial structure in Fig. 2, as

discussed above. Figure 3 shows the temporal oscillations of the PE for a few different values of the soliton

parameter κ. At t = 0, the peak of p(n, t) as a function of n overlaps with the particle placed at n = 0, as

shown in the left panel of Fig. 2. Moreover, the sum in (2.6) reaches its maximum value as function of time

at t = 0. Conversely, at t = 1/(2vsw) the peak of p(n, t) lies at the midpoint between the particles located
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Figure 3: The PE for a SW in the Toda lattice as a function of time (red solid line) for a few values of the

soliton parameter κ, together with the cnoidal fitting function (2.8) (blue dotted line). One can clearly observe

the exact nature of the analytical result which is perfectly overlapping with the numerical one. Left: κ = 0.6.

Right: κ = 5.
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Figure 4: Left: Same as Fig. 3, but for κ = 10. Right: The elliptic parameter m in (2.7) as a function of the

soliton parameter κ.

at n = 0 and n = 1, as shown in the right panel of Fig. 2. At this point in time, the sum in (2.6) reaches its

minimum value. Finally, at t = 1/vsw, the peak of p(n, t) overlaps with the particle at n = 1 and the sum

goes back to its maximum value. Therefore PE and KE oscillate periodically in time, with period given by

T = 1/|vsw|.
Note that the first term in (2.4b) depends on time, while the second term is constant and equals −2κ.

Therefore, it is convenient to express the PE as

PE(t) = −2κ + sinh2 κ ∑
n∈Z

p(n, t), p(n, t) = sech2(κn + σ sinh κ t). (2.6)

We now make use of the identity [30]

∞

∑
n=−∞

[

sech2

(

π

2K′
m

(z − 2Kmn)

)]

=

(

2K′
m

π

)2[(
E′

m

K′
m

− m

)

+ m cn2(z; m)

]

, (2.7)
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where cn(·) is one of the Jacobian elliptic functions, m is the elliptic parameter (i.e., the square of the elliptic

modulus), Km = K(m) and Em = E(m) are the complete elliptic integral of the first and second kind respec-

tively, K′
m = K(

√
1 − m) and E′

m = E(
√

1 − m). Thus, the oscillatory behavior of the PE is characterized by

elliptic oscillations. Indeed, comparing (2.6) and (2.7), we obtain the PE as a function of t is given by

PE(t) = PEmin + ∆PE cn2(Ωt; m), (2.8)

where

PEmax = sinh2 κ

(

2K′
m

π

)2
E′

m

K′
m

− 2κ , PEmin = sinh2 κ

(

2K′
m

π

)2(
E′

m

K′
m

− m

)

− 2κ , (2.9a)

the oscillation amplitude is

∆PE = PEmax − PEmin = sinh2 κ

(

2K′
m

π

)2

m , (2.9b)

and the elliptic parameter m is implicitly determined by the relation

κ = πKm/K′
m. (2.10)

The value of m as a function of κ is shown in Fig. 4, The oscillation frequency is Ω = 2Km/(κ/ sinh κ), and

the oscillation period is therefore given by T = κ/ sinh κ ≡ 1/vsw. Note that the PE attain the maximum

at t = 0, T, 2T . . . , and attain the minimum at t = T/2, 3T/2 . . . . It is worthwhile to note here that similar

calculations have been previously performed in the context of theories bearing SWs (including integrable ones,

such as the so-called Ablowitz-Ladik lattice) in the work of [31]. There, the principal technique used involves

the Poisson summation formula. Yet, given the above mentioned identity of Eq. (2.7), we do not follow such a

methodology here.

2.2 SWs in the Hertz system and comparison

No analytical expression is known for the shape of SWs in the Hertz system. Here, we therefore discuss the

similarities and differences between SWs in the Toda system and the Hertz system.

The displacement profile of SWs in the Hertz system is also kink-shaped, like that in the Toda system. An

expression for the SWs in the Hertz system without precompression (i.e., with ∆ = 0) was given in [32] as

yn(t) = Y(n − vswt) , Y(z) =
A

2

{

1 − tanh

[

f (z)

2

]}

, f (z) =
∞

∑
q=0

C2q+1z2q+1, (2.11)

where A denotes the SW amplitude, and the constants Cm are obtained numerically via an iterative algorithm.

For α = 2.5, one finds C1 = 2.39536, C3 = 0.268529, C5 = 0.0061347 [32]. It should be noted that this

is not the only representation of this approximate kind of the SW. An alternative one has been offered on the

basis of Padé approximations, e.g., in [33]. On the other hand, the exact numerical form (up to a controllable

numerical tolerance) of the SW on the basis of an iterative Fourier technique was identified in [24].

The overall shape of SWs in the two systems is qualitatively very similar, as shown in Fig. 5. Nonetheless,

there are important differences. In the Toda system, SWs with higher energy are narrower. In contrast, the

width of SWs in the Hertz system is independent of the energy of the SW, as shown in Fig. 6. This is because

the coefficients Cm — and therefore f (z) — are independent of the SW energy. Thus, in this sense, in the

Hertz system the shape of SWs is universal and only the amplitude (and speed) scales, while the width remain

unchanged. Moreover, Fig. 6 also shows that the amplitude of the PE profile is linearly proportional to energy.
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Figure 5: Left: Red line represents the displacement profile for a SW of the Toda lattice with κ = 1.3606 at

t = 0 and the blue dotted line represents the displacement profile for a SW of the Hertz chain with the same

amplitude when α = 2.5. Right: Difference between the two curves in the left panel.
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Figure 6: Left: Amplitude of the PE profile for a SW in the Toda system (blue line) and the Hertz system with

α = 2.5 (red line) as a function of energy. Right: Width of the PE profile for a SW in the Toda system (blue

line) and the Hertz system (red line) as a function of energy.

A direct consequence of (2.11) is that the PE of SWs in the Hertz system scales like Aα. Thus, we immediately

obtain that the total energy of a SW in the Hertz system also scales like Aα.

Because of the kink-shaped displacement profile, the KE and PE profiles in the Hertz system are also bell-

shaped, like those in the Toda system. The amplitude and the full width at half maximum of the PE profile as a

function of E for both systems is shown in Fig. 6. Therefore, just like in the Toda system, the PE and KE of a

SW in the Hertz system also demonstrate oscillatory behavior. In fact, as shown in Fig. 7, such behavior is well

characterized by sinusoidal functions at all values of energy. (The relative difference between the PE and the

fitting function is given in the right panel of Fig. 7.) Recall that, in the Toda system, the oscillatory behavior

of the PE is instead characterized by an elliptic cn, and the elliptic modulus k is determined by the soliton

parameter κ which is in one-to-one correspondence with the width of the SW. Also recall that the elliptic cn

reduces to a sinusoidal function when k → 0. Thus, one way to interpret the difference between the oscillatory

behavior in the Toda system and in the Hertz system is to recall that the width of the SW in the Hertz system

7
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Figure 7: Left panel and middle panel: The PE (red curve) of a SW for the Hertz chain with α = 2.5 as a

function of time at E = 4.83 and E = 9.66 respectively. The blue dotted line represents the sinusoidal fitting

function. It can be clearly seen that the relevant fit is excellent. Right panel: The relative difference between

the PE and the sinusoidal fitting function at E = 4.83 (blue line) and E = 4.96 (black line) respectively.

is independent of energy, and therefore so is the shape of the temporal oscillations of the PE.

There is also a significant deviation in the nature of the tails of the different waves which is partially

reflected in the Fig. 5. The Toda soliton is exponential in its decay reflecting the linear “component” of the

exponential interaction force between adjacent beads. On the other hand, the highly nonlinear (for ∆ = 0)

Hertzian model and hence the associated SW possess no linear component. Thus the decay of the wave is

doubly exponential and generally considerably faster in a semilog plot than its Toda counterpart [24, 9].

Since the properties of SWs in the Toda system and the Hertz system have a different dependence on

energy, there are several different ways to compare the two systems. So far, we have identified three possible

criteria: matching the SW energy, matching its amplitude, and matching its width. A fourth criterion, however,

is related to how a SW in each of these systems distributes the total energy Etot between the kinetic and

potential energy. For this purpose, it it useful to look at the value of PE/Etot, where

PE =
1

T

∫ T

0
PE(t)dt, (2.12)

denotes the temporal average of the potential energy over a period.

For the Hertz chain we simply have PE = PEmean, where PEmean = 1
2 (PEmax + PEmin). This is because

the temporal oscillations of the PE in the Hertz chain are sinusoidal. For the Toda lattice, however, PE only

equals PEmean in the limit κ → 0, because the temporal oscillations only become sinusoidal in that limit. On

the other hand, the integral in (2.12) can be computed explicitly using (2.8), to obtain

PE = PEmin +
4 sinh2 κ

π2
K′2

m

(

Em

Km
− 1 + m

)

(2.13)

for the Toda lattice.

The virial theorem [34] states that any bounded system with interaction potential φ(r) = rα satisfies the

relation 2KE − αPE = 0. As a result, for the Hertz system without precompression (i.e., with ∆ = 0), one

has PE/Etot = 4/9 for all SWs. The virial theorem does not apply to the Toda lattice, because the interaction

potential is not simply a power law. In that case, instead, PE/Etot decreases monotonically as the soliton

parameter κ increases as shown in Fig. 8. In particular, in Appendix B we show that the limiting values of the

ratio are

lim
κ→0

PE

Etot
=

1

2
, lim

κ→∞

PE

Etot
= 0. (2.14)
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and solid blue curve, respectively) and the total energy of a SW in the Toda system as a function of the soliton

parameter κ. Right panel: The ratio between KEmin, KEmax and KE and the total energy of a SW in the Toda

system as a function of the soliton parameter κ.
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systems. Right panel: The PE profile for the same SW. The red line represents the Hertz system with α = 2.5;

the blue line represents the Toda system, and the black line represents the difference between them.

In particular, at κ = 1.3603, one has PE/Etot = 4/9. For this value of κ, a SW in the Toda system distributes

its energy in the same ratio as a SW in the Hertz system. This suggests that one could use this value of

κ to compare SWs in the two systems. A SW in the Toda lattice with κ = 1.3603 has a total energy of

Etot = 4.8412. We thus compare it to the SW in the Hertz system that has the same value of total energy.

The KE and PE profiles for the SW in the two systems are shown in Fig. 9. Beyond this point, the profiles of

the SWs in the Toda system vary, while those of the SWs in the Hertz system remain the same, except for a

scaling of the SW energy. Therefore, capturing the profiles of the SWs in the Hertz system at a specific energy

is equivalent to capturing its profiles at an arbitrary energy.
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3 Response to a velocity impulse

After having discussed and compared the properties of SWs in the Toda lattice and the Hertz system in the

previous section, we now discuss how these SWs can be excited from suitable initial conditions. We first

consider the response of an infinite chain to an initial velocity impulse. That is, we consider the following

initial condition (ICs):

yn = 0 , ẏn = v δk,n, ∀n ∈ Z , (3.1)

where δk,n is the Kronecker delta. Without loss of generality, we take k = 0 (i.e., we apply the impulse at the

origin). The corresponding kinetic energy is Eimp = v2/2. Part of the reason for considering such a scenario is

the experimental ability to produce such conditions via a boundary excitation in the granular crystals [2, 4, 7].

While the controlled distributed initialization of such a system is not yet within reach, the ability to drive one

of the boundaries/walls of the granular chain to induce an initial velocity has been since early on one of the

most canonical ways for exciting the SWs.

Since the Toda potential is superquadratic, it is reasonable to expect that, under suitable conditions, the

initial velocity impulse generates one or more SWs. On the other hand, for small deviations, the Toda potential

is approximately quadratic. Since no SWs are possible in this limit, one could expect that the SWs generated

by (3.1) disappear in the limit of weak impulses. Conversely, as the velocity impulse increases, one can expect

the Toda system deviates from linear limit, and the SW to become more pronounced. These predictions are

borne out by numerical simulations. Figure 10 shows the response of the Toda system (1.3) under different

velocity impules. The left panel shows the dynamics produced by v = 0.01, while the right panel corresponds

to v = 10. From these figures, it is clear that, with a weak impulse, most of the energy is dispersed, while with

a stronger impulse the majority of the energy stays localized. Below we show how one can make the above

claims more precise. To do so, we will use the IST to compute the portion of the impulse energy that goes into

the SW, i.e., the quantity Esw/Eimp, as a function of an arbitrary impulse velocity v. We will then compare

these findings to the non-integrable Hertzian case.
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Figure 10: The KE of Toda lattice with perturbation v = 0.01 (left) and v = 10 (right) respectively. (To make
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3.1 Toda lattice: Integrability and scattering problem

Using the IST for the Toda lattice, we can compute the soliton parameter κ of the SW generated by an arbi-

trary velocity impulse v. This will allow us to obtain a quantitative characterization of the relation between

Esw/Eimp and v.

Recall that one can formulate the IST for the Toda lattice using the Flaschka variables [10]

an =
1

2
e−(yn+1+yn)/2, bn =

1

2
ẏn. (3.2)

In terms of an and bn, the system (1.3) is written as

ȧn = an(bn − bn+1), (3.3a)

ḃn = 2(a2
n−1 − a2

n). (3.3b)

In turn, (3.3) can be written in matrix form as the Lax equation

dL

dt
= BL − LB, (3.4)

where

L =



















. . .
. . .

. . . bn−1 an−1

an−1 bn an

an bn+1
. . .

. . .
. . .



















, B =



















. . .
. . .

. . . 0 −an−1

an−1 0 −an

an 0
. . .

. . .
. . .



















. (3.5)

The Lax equation (3.4) is the compatibility condition of the Lax pair

Lφn = λφn, (3.6a)

dφn

dt
= Bφn, (3.6b)

or equivalently, in component form,

an−1φn−1 + bnφn + anφn+1 = λφn, (3.7a)

dφn

dt
= an−1φn−1 − anφn+1. (3.7b)

Equation (3.6a) is known as the scattering problem, and (3.6b) is known as the time evolution equation. The

eigenvalue λ is called the scattering parameter, and φn = φ(n, t, λ) is the corresponding eigenfunction.

3.2 Infinite Toda lattice response to a velocity impulse

As usual in the inverse scattering transform, the solitons of the Toda lattice are associated with the discrete

eigenvalues of the scattering problem [25, 26], while the continuous spectrum is associated with the radiative

(dispersive) portion of the solution. To characterize the fraction of the energy of the initial impulse that goes
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into the SW, we need to compute the discrete eigenvalues λ of (3.6a), with an and bn determined by the IC (3.1),

which in terms of the Flaschka variables become

an =
1

2
bn =

1

2
v δ0,n, ∀n ∈ Z . (3.8)

It is convenient to express the scattering problem in terms of a modified eigenvalue z given by

λ =
z + 1/z

2
. (3.9)

In terms of z, the continuous spectrum of (3.6a) is the unit circle |z| = 1. Inserting (3.8) and (3.9) into (3.6a),

one can write two sets of linearly independent solutions of the scattering problem as

φn = zn, φ̄n = z−n, n ≥ 0 , (3.10a)

and

ψn = z−n, ψ̄n = zn, n ≤ 0 . (3.10b)

The symmetries of the scattering problem then imply

φ̄(n, t, z) = φ(n, t, 1/z) , ψ̄(n, t, z) = ψ(n, t, 1/z) . (3.11)

Importantly, φn and ψn are analytic in |z| < 1; while φ̄n and ψ̄n are analytic in |z| > 1. These two sets of

fundamental solutions are related to each other by the scattering relation,
(

ψn

ψ̄n

)

= S

(

φ̄n

φn

)

, n ∈ Z , |z| = 1 , (3.12)

where the n-independent matrix S(t, z) is is known as the scattering matrix. Using the symmetries of the

problem, one can express S as

S(t, z) =

(

α(z) β(z)
β(1/z) α(1/z)

)

. (3.13)

The discrete eigenvalues of the scattering problem correspond to the bound states, and are associated to the

zeros of α(z) in |z| < 1, at which ψn and φn are proportional to each other.

Evaluating the scattering relation (3.12) at n = 0 and at n = 1, we can express the scattering matrix as

S =

(

ψ0 ψ1

ψ̄0 ψ̄1

)(

φ̄0 φ̄1

φ0 φ1

)−1

. (3.14)

Using (3.7a) and (3.10b) we have

ψ1 = 1/z − v, ψ̄1 = z − v. (3.15)

Combining (3.10a), (3.10b), (3.15) and (3.11), we then obtain

S =
1

1 − z2

(

1 − z(v + z) vz
−vz 1 + z(v − z)

)

. (3.16)

Looking for α(z) = 0 and solving the resulting quadratic equation, we then obtain

z± =
1

2

(

− v ±
√

v2 + 4
)

. (3.17)
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Figure 11: Left panel: Discrete eigenvalue z of the scattering problem (3.6a) as a function of the impulse

velocity v for the Toda lattice. Right panel: the ratio Esw/Eimp as a function of the impulse velocity v. In

both cases, the solid red lines and dashed black lines represent respectively the analytical results for an infinite

chain and a semi-infinite chain case with Dirichlet BC. The blue circles and magenta stars in the right panel

represent respectively numerical results for the infinite chain and for a semi-infinite chain with Dirichlet BC;

the black circles represent numerical results for a semi-infinite chain with open BCs (for which no analytical

results are available).

Since we need |z| < 1, the root z− is inadmissible. We therefore have a single discrete eigenvalue z = z+.

The dependence of z on v is shown in the left panel of Fig. 11. The soliton parameter κ relates to z by [10]

κ = − log |z|. (3.18)

Recall (2.5), we obtain
Esw

Eimp
=

2(sinh κ cosh κ − κ)
1
2 v2

, (3.19)

with κ given by (3.18). A comparison between (3.19) and numerical results is shown in the right panel of

Fig. 11. We can show that

lim
v→0

Esw

Eimp
=

1

3
v + O(v3), lim

v→∞

Esw

Eimp
= 1 − O(v−2 log v), (3.20)

i.e., for small perturbations, only negligible amount of the initial energy goes to the soliton, while for large

perturbations, almost all the initial energy goes to the soliton; this is in line with the above reported numerical

observations. Importantly, however, it is relevant to note that a (single) solitary wave is always excited even if

bearing an very small fraction of the original kinetic energy; i.e., there is no threshold for the excitation of the

solitary wave in this setting.

3.3 Semi-infinite Toda lattice

Next we consider a semi-infinite Toda lattice, and we apply a perturbation to the particle at the end of the chain

with a velocity impulse. Since we are now dealing with an initial-boundary value problem, we need to specify

appropriate boundary conditions (BCs) for the problem. There are two cases of particular physical interest: the

one in which the first particle is confined by a wall and that of an open boundary.

We first discuss the case where a wall is placed next to the first particle. This is equivalent to having

a particle with infinite mass before the first particle. This imaginary particle is subjected to Dirichlet BC,
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therefore the semi-infinite chain can be oddly extended to an infinite chain with IC given by

yn = 0 , ẏn = vδ1,n − vδ−1,n , ∀n ∈ Z . (3.21)

Or, in terms of Flaschka variables,

an =
1

2
, bn =

1

2
vδ1,n −

1

2
vδ−1,n , ∀n ∈ Z . (3.22)

The ability to perform these extensions to a doubly infinite Toda chain amounts to the fact that the pure Dirichlet

BCs is integrable. We can now perform a similar analysis as in 3.2 to compute the discrete eigenvalue of (3.6a),

obtaining

z±+ = ±

√

−(1 + v2) +
√

(1 + v2)2 + 4v2

2v2
, z±− = ±

√

−(1 + v2)−
√

(1 + v2)2 + 4v2

2v2
. (3.23)

Since we need |z| < 1, only z±+ are admissible. By (3.18), we see that the soliton parameters correspond to

z±+ are the same. Further analysis suggests that z±+ correspond to solitons moving with opposite velocity. This

should not be surprising, since (3.21) implies that we initialize the chain with two equal and opposite velocity

impulses. The value of z = z++ as a function of v is shown in the left panel of Fig. 11. As before, from z one

obtains κ and therefore Esw/Eimp.

No analytical results are available in the case of open BCs, because the first particle obeys a different

equation of motion, which breaks the integrability of the system. However, a comparison between the analytical

values of Esw/Eimp and results of numerical simulations is shown in the right panel of Fig. 11. As illustrated

in the right panel of Fig. 11, as v increases, Esw/Eimp in the open BC case approaches the limiting value 1

much faster than in the other two cases.

3.4 Comparison with the Hertz system

In the previous section we have seen that how, using the IST, for the Toda lattice one can obtain the resulting

soliton parameter κ (and therefore the soliton velocity) produced by an initial impulse. No such tool is available

for the Hertzian system, however. We now therefore investigate whether the response of the Hertz system to

an initial velocity impulse results in similar dynamics as in the Toda lattice. Notice that this problem is one

closely related to case examples that have been studied computationally [35] and even experimentally [36]

previously where a bead at the edge of the chain is impacted by a striker of different masses; see also [20].

The Hertz system without precompression (i.e., with ∆ = 0) is fundamentally different from the Toda lat-

tice in this respect, since it is intrinsically nonlinear, i.e., it does not admit a linear limit, as we discussed above.

In that light, the energy cannot be distributed to both linear and nonlinear waves, but rather is immediately

“quantized” in nonlinear wavepackets, i.e., in SWs. Indeed, as shown in numerical simulations, the leading

SW in the Hertz chain takes more than 99% of the impulse energy; see also [37]. In fact, our computations

indicate that for the Hertz-type system (i.e., α in (1.4) is greater than 2) without precompression, the leading

SW acquires a constant portion of the impulse energy under arbitrary impulse. The value of Esw/Eimp with

different values of α is given in Table 1. The dependence on the interaction exponent α of this universal (among

impulses) feature has not been reported previously to the best of our knowledge.

On the other hand, as discussed above, it is possible to consider the Hertz and the Toda systems on more

proximal footing, when considering in the former the case with precompression. The Hertz system with pre-

compression does admit a linear limit, like the Toda system. Therefore, in this case we expect that Esw/Eimp

14



Table 1: Esw/Eimp with different values of α for the Hertz system (1.5).

α 2.1 2.2 2.3 2.4 2.5 3 4

Esw/Eimp % 97.60 98.35 98.82 99.14 99.37 99.85 99.99

increases as v increases. However, no satisfactory analytical tools are available to characterize such a system

beyond the linear limit. So in this case we will obtain Esw/Eimp as a function of v numerically.

For the purpose of comparing the Hertz system to the Toda system, it is useful to rescale y and t in (1.5)

so that the equations of motion in these two systems agree up to the square order as was suggested in the work

of [22]. To do so, we introduce dimensionless variables ξn and τ such that yn = ξny0 and t = τt0 with y0 and

t0 arbitrary for now. Then (1.5) becomes (taking α = 2.5 for definitiness)

d2ξn

dτ2
=

4

15
c∆1/2t2

0[(ξn+1 − ξn)− (ξn − ξn−1)]

− 15

16
c∆−1/2y0t2

0[(ξn+1 − ξn)− (ξn − ξn−1)
2] + . . .

(3.24)

Setting t0 =
√

4/(15c∆1/2) and y0 = 2∆, we then obtain a system that agrees with the Toda system (1.3) up

to second order in the displacement difference. The IC corresponding to (3.1) is given by

ξn = 0 ,
dξn

dτ
=

t0

y0
vδk,n , ∀n ∈ Z . (3.25)

Note that the coefficients of (3.24) do not depend on ∆, but the rescaled IC (3.25) depends on ∆. Specifi-

cally the rescaled velocity dξn/dτ scales like ∆−5/4. Therefore the results are independent of precompression

as long as one rescales the IC accordingly.

For the Hertz system with precompression, one does not have φ(0) = 0, unlike what happens in the

Toda lattice. So, if one used the potential φ(r) to compute energies, the energy corresponding to the velocity

impulse (3.1) would not simply be v2/2. Therefore, for the precompressed Hertz system, one must replace

φ(r) with

φ̃(r) =φ(r) + αc∆α−1 r − c∆α, (3.26)

where c and α are the constants appearing in (1.5). for an infinite lattice, the potential φ̃(r) yields the same

equation of motion (1.1) as φ(r) However, unlike φ(r), φ̃(r) satisfies the constraints φ̃′(0) = φ̃(0) = 0 as

required in [8]. The energy of a SW in a precompressed Hertz system is then [38]

Esw = ∑
n

(

1

2
mẏ2

n +
1

2
(φ̃(yn − yn−1) + φ̃(yn+1 − yn))

)

, (3.27)

where the summation runs over all the particles involved in the SW.

Figure 12 shows the dependence of the ratio Esw/Eimp on the impulse velocity v in both the precompressed

Hertz system and the Toda system. As can be seen from the figure, the behavior of both systems is qualitatively

the same, both in the case of an infinite chain and in the case of a semi-infinite chain. Therefore we can conclude

that the precompressed Hertz system, which admits a linear limit, demonstrates similar dynamics in response

to a velocity impulse as the Toda system.

We should point out that numerical measurements with small impulse velocity v are difficult in both the

Toda and Hertz systems, because small SWs take a long time to separate from the radiation. Nonetheless,

in such a regime, the two systems behave similarly, as the displacement of particles is relatively small and
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Figure 12: A comparison of Esw/Eimp vs v between the precompressed Hertz (blue dots) and the Toda systems

(red line). For the Hertz system, v is the rescaled velocity dξn/dτ in (3.25). The left panel represents the case

of an infinite chain, while the right panel represents the case of a semi-infinite chain with fixed BC.

hence the contributions of higher orders in (3.24) are negligible. For the Toda system, we have an analytical

prediction, which is valid for all values of impulse velocity v. Hence one can use the analytical predictions in

the Toda lattice to characterize the behavior of the Hertz system in this regime.

4 Summary and discussion

In conclusion, we have shown that the behavior of the KE and the PE carried by a SW in both Toda and Hertz

systems is oscillatory in time, and that this oscillatory behavior is due to the lattice shift invariance as the

solitary wave travels from site to site. Importantly, we obtained analytical closed form expressions for these

dependencies, showcasing that these oscillations can be captured by cnoidal functions in the Toda system; a

corresponding sinusoidal functional form was numerically illustrated in the Hertz system. We also showed that

the shape of the KE and PE of these systems as a function of n are similar to each other at Etot = 4.84, and

that beyond this point the profiles in the Hertz system remain the same except for the overall scaling of the SW

energy. More generally, we compared the solitary waves of the Toda and the Hertz system. In the presence of

precompression and in the vicinity of the linear limit, the two can be seen to be rather proximal. In the highly

nonlinear cases, while similarities exist (e.g. in comparable dependencies of the amplitude vs. energy of the

solitary wave), there also exist significant differences, including the width of the waves and the nature of the

decay tails in the different cases.

We then studied the response of the infinite Toda lattice to an initial velocity impulse. By employing

the IST we showed how one can obtain the ratio between the energy of the resulting SW and the energy

of the impulse, and how this ratio depends on the impulse velocity. We corroborated these exact analytical

results with numerical simulations. We then studied the response of a semi-infinite Toda lattice in which the

first particle is perturbed with a velocity impulse. In this case, the results depend on the specific boundary

conditions (BCs) considered. For fixed BCs we introduced an odd extension of the semi-infinite chain and we

obtained an analytical expression of the above ratio by employing the IST. For “free” BCs, however, no such

approach was available, and we resorted to numerical simulations.

For the Hertzian chain with zero precompression, following up on earlier work, we confirmed that more

than 99% of the energy in an arbitrary initial impulse goes to the resulting SW and discussed the independence

of this finding from the size of the impulse. Moreover, we explored how this fraction is modified for different

nonlinear force exponents α indicating a weak monotonically increasing dependence (once again independent
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of the impulse size v) on α. We then extended the relevant comparison to the Hertz chain with precompression;

there, the percentage of energy that goes to solitary wave exhibits a similar behavior as in the Toda system. We

then performed a quantitative comparison of the values of this ratio in the Toda and precompressed Hertz sys-

tems by nondimensionalizing the precompressed Hertz system, and rescaling its time and position coordinates

so that the equation of motion in the precompressed Hertz system agrees with that in the Toda system up to

second order in the displacement difference. Our comparison shows that, at relatively small impulse energies,

the ratios in the two systems are close to each other; however, as the impulse energy is increased, the ratios in

these systems deviate, even though they both eventually approach the same limiting unit value.

The results of this study open a number of interesting theoretical questions. For example:

(a) We demonstrated numerically that the temporal oscillations of the KE and the PE in the Hertz system

are described by trigonometric functions at all energies. However, whether this dependence can be proven

mathematically is still an open question. It is relevant to note that this is a nontrivial task as there is no closed

functional form for the SW in the highly nonlinear Hertzian case but only approximate ones [32, 33].

(b) Similarly, it would be desirable to have a rigorous proof of the fact that the fraction of the energy that

goes to the SW in the Hertz system is independent of the energy of the initial impulse.

(c) An analytical characterization of the semi-infinite Toda lattice with open BCs and a velocity perturbation

at the first particle is still absent. Note that open BCs are much more complicated to deal with than fixed BC

mathematically, since they break the integrability of the lattice.

(d) Another interesting open topic is a detailed characterization of the radiation generated by a velocity

impulse in the Toda lattice, which could be obtained by approprate use of the IST as was done in other discrete

and continuous integrable systems (e.g., see [39]). More generally, the vein of “contact” between the Toda

chain and the granular chain with precompression can be used for a variety of semi-analytical efforts. One can

explore different types of initial conditions tailored towards exciting multiple solitary waves and exploring their

interactions in the Toda lattice and by extension in the granular precompressed chain. Another vein important

for future work concerns the connection of dispersive shock waves in the Toda lattice (see, e.g., [40]) to the

study of analogous features in the Hertzian chain (for a discussion of the latter see, e.g., [41]). Such directions

are currently under consideration and will be reported in future studies.
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Appendix A Oscillation of the PE in the Hertzian system at different energies

As we discussed in section 2, the PE and KE of SWs in the Hertzian system also demonstrate oscillatory

behavior, like the SWs in the Toda system. Here, we show that the average value and oscillation amplitude are

proportional to the overall energy.

Let us denote by P(x − vswt; E) the spatial profile at time t of the PE of a SW in the Hertzian system with

total energy E. (Note that the temporal variation amounts to a continuous variation of the argument, cf. (2.11).)

Without loss of generality, we can take the peak of P(x; E) to be located at x = 0. It should be clear that

the temporal evolution of the PE is simply equivalent to a translation of the spatial variable x, and that its

maximum and minimum values occur respectively at t = 0 and t = 1/(2vsw).

PE(E) =
1

2 ∑
n∈Z

(P(n; E) + P(n/2; E)) , (A.1a)
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∆PE(E) = ∑
n∈Z

(P(n; E)− P(n/2; E)) . (A.1b)

Recalling that the profile of SWs in the Hertzian system is universal, and that only its amplitude depends on E
[cf. (2.11)], we then have

P(x; aE) = h(a) P(x; E) , (A.2)

where h(a) is a yet-to-be-determined function (see also the discussion in section Appendix C). This relation

immediately implies

PE(aE) = h(a)PE(E).

Note, however, that the virial theorem also implies

PE(aE) = a PE(E). (A.3a)

Combining the last two equations, we then immediately have h(a) ≡ a. Thus, P(x; aE) = a P(x; E). which

also implies

∆PE(aE) = a ∆PE(E) . (A.3b)

Appendix B Limiting behavior of PE/Etot in the Toda system as κ → 0 and κ → ∞

Recall (2.8) and (2.12), we have

PE = −2κ + sinh2 κ

(

2K′
m

π

)2(
E′

m

K′
m

− m

)

+
sinh2 κ

2Km

(

2K′
m

π

)2

m
∫ 2Km

0
cn2(t; m)dt

= PEmin +
4 sinh2 κ

π2
K′2

m

(

Em

Km
− 1 + m

)

≡ PEmin + PEintegral

(B.1)

and also recall that κ is related to m by (2.10).

We first discuss the limit κ → 0. Note that in this limit

κ = − π2

log m
16

+ O

(

m

log2 m

)

, (B.2a)

Etot =
4

3
κ3 +

4

15
κ5 + O(κ7), (B.2b)

as a result we have

Etot = −4

3

(

π2

log m
16

)3[

1 + O

(

1

log2 m

)]

. (B.3)

Also note that

sinh2 κ =

(

π2

log m
16

)2

+
1

3

(

π2

log m
16

)4

+ O

(

1

log6 m

)

, (B.4a)

(

2K′
m

π

)2(
Em

Km
− 1 + m

)

= O(m log2 m), (B.4b)

(

2K′
m

π

)2(
E′

m

K′
m

− m

)

= − 2

π2
log

m

16
+ O(m log2 m), (B.4c)
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therefore

PE = −2

3

(

π2

log m
16

)3[

1 + O

(

1

log2 m

)]

. (B.5)

Combining (B.3) and (B.5), we have

lim
κ→0

PE

Etot
=

1

2
+ O(κ2). (B.6)

Next we consider the limit κ → ∞, in this limit we have m → 1, we then write m = 1 − m′. Following a

similar discussion, we have

κ = log
16

m′ + O(m′), (B.7a)

lim
κ→∞

PE

Etot
= O

(

1

log m′

)

. (B.7b)

Therefore

lim
κ→∞

PE

Etot
= O(1/κ). (B.8)

Appendix C Scaling between vsw and v for different impulses

The discussion in the previous sections raises the obvious question of what is the precise dependence of the

velocity vsw of the resulting SW on the velocity v of the impulse for the Hertzian chain. Numerical simulations

suggest that, for the Hertz chain, one has vsw ∼ v0.2 [42], while for a quartic lattice, one has vsw ∼ v0.5 [43].

Indeed, one can show that, for lattices with Hertz-type potentials given by (1.4) with arbitrary values of α > 2
and ∆ = 0, and for two distinct initial impulses v1 and v2, one can show that the following relation holds by

using scaling analysis [4]:

v
(v2)
sw = (v2/v1)

1−2/αv
(v1)
sw . (C.1)

In this section we provide an alternative proof by using the Virial theorem.

Recalling the expression (2.11) for the shape of the SW, let us denote by Y(v)(n − v
(v)
sw t) the displacement

of a SW resulting from an impulse v. Similarly, let us denote the KE and PE of the SW by KE(v) and PE(v)

respectively, Explicitly,

PE(v) = c ∑
n

|Y(v)(n + 1 − v
(v)
sw t)− Y(v)(n − v

(v)
sw t)|α , (C.2a)

KE(v) =
1

2 ∑
n

(

dY(v)(n − v
(v)
sw t)

dt

)2

, (C.2b)

where c is the constant in (1.4).

Now recall that in the Hertz-type system, a SW takes a constant portion of the impulse energy under

arbitrary impulse v. The virial theorem [34] immediately implies that

PE
(kv)

= k2PE
(v)

, (C.3a)

KE
(kv)

= k2KE
(v)

. (C.3b)

Also recall that the width of the displacement profiles of SWs in Hertz-type systems is independent of the

energy of the SW [32]. We therefore have

Y(kv) = g(k)Y(v)(n − v
(kv)
sw t), (C.4)
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where g(k) = A(kv)/A(v) is a function yet to be determined. Combining (C.2a) and (C.3a), however, we

immediately have
g(k) = k2/α . (C.5)

From (C.2) and combining the above results, we then have

KE(kv) =
1

2
k

4
α ∑

n

(

dY(v)(n − v
(kv)
sw t)

dt

)2

=
1

2
k

4
α (v

(kv)
sw )2 ∑

n

(

dY(v)(u)

du

)2

. (C.6)

Evaluating this expression for k = 1 and comparing the two results we then have

KE(kv) = k
4
α
(v

(kv)
sw )2

(v
(v)
sw )2

KE(v). (C.7)

Recalling (C.3b), we then finally obtain (C.1).
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