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Abstract

Some partial orderings which compare probability distributions with the expo-

nential distribution, are found to be very useful to understand the phenomenon

of ageing. Here, we introduce some new generalized partial orderings which de-

scribe the same kind of characterization of some generalized ageing classes. We

give some equivalent conditions for each of the orderings. Inter-relations among

the generalized orderings have also been discussed.
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1 Introduction

Ageing and partial ordering are two very well known concepts in reliability theory.

Positive ageing describes the situation where an older system has shorter remaining life-

time in some stochastic sense than a younger one. Many classes of lifetime distributions

∗e-mail: asok.k.nanda@gmail.com, corresponding author.
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are characterized by their ageing properties. Exponential distribution is exceptional one

which has no ageing property due to its memory less property. It will not be out of

the way to mention here that there are some orderings for which Weibull distribution is

the borderline distribution, namely, ageing intensity ordering, see, for example, Nanda

et al. [16], Righter et al. [17]. Many different types of ageing notions have been studied

in the literature, for instance, see Bryson and Siddiqui [5], Barlow and Proschan [4],

Klefsjö [9], Deshpande et al. ([6], [7]), Loh [13], Lai and Xie [11] and the references

there in. On the other hand, partial orderings are used to compare two different dis-

tributions. Shaked and Shanthikumar [19] is a very good reference for this purpose. It

has been observed that among all the partial orderings, there are two special kinds of

partial orderings which describe the phenomenon of ageing: Firstly, the partial order-

ings which compare probability distributions with the exponential distribution; secondly,

those which compare residual lifetimes at different ages. In our paper we concentrate

our discussion particularly on the first case. The significant works in the direction of our

work have been developed by Kochar and Wiens [10], Sengupta and Deshpande [18] and

many other researchers.

For an absolutely continuous nonnegative random variable X , the probability den-

sity function is denoted by fX(·) and the distribution function by FX(·). We write

F̄X(·) ≡ 1−FX(·) to denote the survival function of the random variable X . Let us write

TX,0(x) = fX(x),

and

TX,s(x) =

∫
∞

x
TX,s−1(t)dt

µ̃X,s−1
, (1.1)

for s = 1, 2, . . ., where

µ̃X,s =

∫
∞

0

TX,s(t)dt,

s = 0, 1, 2, . . ., · We assume µ̃X,s to be finite. Note that TX,2(·) is the survival function

of the equilibrium distribution of X , which plays an important role in ageing concepts

(Deshpande et al. [6]), whereas TX,s(·) is the survival function of the equilibrium distri-

bution of a distribution with survival function TX,s−1(·), s = 1, 2, . . . · We further define,

for s = 1, 2, . . . ,

rX,s(x) =
TX,s−1(x)∫

∞

x
TX,s−1(t)dt

=
TX,s−1(x)

µ̃X,s−1TX,s(x)
,
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and

µX,s(x) =

∫
∞

x
TX,s(t)dt

TX,s(x)
,

where rXs
(·) and µX,s(·), respectively, represent the failure rate and the mean residual

life functions corresponding to TX,s(·). Note that, for s = 1, 2, . . . ,

µX,s(0) = µ̃X,s,

and, for s = 2, 3, . . . ,

rX,s(x) =
1

µX,s−1(x)
. (1.2)

Let F be the class of distribution functions F : [0,∞) −→ [0, 1] with F (0) = 0. We as-

sume that all F (∈ F) have their finite generalized means µ̃X,s, and are strictly increasing

on their support. If F is not strictly increasing, we take the inverse as

F−1(y) = inf{x : F (x) ≥ y}.

Throughout the paper, increasing and decreasing properties are not used in strict sense.

For any differentiable function k(·), we write k′(t) to denote the first derivative of k(t)

with respect to t.

The scaled total time on test (TTT) transform is a very useful tool to analyze the

statistical lifetime data. It was first introduced by Barlow and Campo [3]. To know more

about TTT transform, readers may refer to Barlow [2] and the references there in. The

TTT transform corresponding to TX,s(·) is denoted by H−1
X,s(·), and is defined as

H−1
X,s(u) =

1

µ̃X,s

T−1

X,s
(u)∫

0

TX,s(y)dy

= TX,s+1

(
T−1
X,s(u)

)
,

for u ∈ [0, 1] and s = 1, 2, . . . , where TX,s(·) ≡ 1− TX,s(·). Define, for s = 1, 2, . . . ,

R−1
X,s(u) = 1−H−1

X,s(1− u) (1.3)

= TX,s+1

(
T

−1

X,s(u)
)
.

Note that, for s = 1, 2, . . . ,

RX,s(u) = 1−HX,s(1− u) (1.4)

= TX,s

(
T

−1

X,s+1(u)
)
.
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The Lorenz curve introduced by Lorenz [14], is basically used to understand the concept

of income inequalities in Economics. A brief discussion about Lorenz curve may be found

in Aaberge [1]. The Lorenz curve of TX,s(·), denoted by LX,s(·), is defined as

LX,s(u) =
1

µ̃X,s

u∫

0

T−1
X,s(y)dy for u ∈ [0, 1] and s = 1, 2 . . . .

In the literature, the partial orderings with respect to different ageing properties, namely,

IFR (Increasing in Failure Rate), IFRA (Increasing in Failure Rate Average), NBU (New

Better than Used), DMRL (Decreasing in Mean Residual Life), NBUE (New Better than

Used in Expectation) and HNBUE (Harmonically New Better than Used in Expectation)

have been defined and discussed in Bryson and Siddiqui [5], Barlow and Proschan [4],

Klefsjö [9] and others.

For the sake of completeness, we reproduce the following definitions of generalized

ageing classes from Fagiuoli and Pellerey [8].

Definition 1.1 For s = 1, 2, . . ., X is said to be

(i) s-IFR if rX,s(x) is increasing in x ≥ 0;

(ii) s-IFRA if 1
x

∫ x

0
rX,s(t)dt is increasing in x > 0;

(iii) s-NBU if TX,s(x+ t) ≤ TX,s(x).TX,s(t) for all x, t ≥ 0;

(iv) s-NBUFR if rX,s(0) ≤ rX,s(x) for all x ≥ 0;

(v) s-NBAFR if rX,s(0) ≤
1
x

∫ x

0
rX,s(x) for all x > 0. ✷

One can easily verify that each of the following equivalence relations holds:

1-IFR ⇔ IFR, 2-IFR ⇔ DMRL, 3-IFR ⇔ DVRL,

1-IFRA ⇔ IFRA, 2-IFRA ⇔ DMRLHA, 1-NBU ⇔ NBU,

1-NBUFR ⇔ NBUFR, 2-NBUFR ⇔ NBUE, 3-NBUFR ⇔ NDVRL,

1-NBAFR⇔NBAFR, 2-NBAFR⇔HNBUE.

For the definitions of DVRL (Decreasing in Variance Residual Life) and NDVRL (Net

DVRL) classes one may refer to Launer [12], DMRLHA (Decreasing Mean Residual Life

in Harmonic Average) and NBUFR (New Better than Used in Failure Rate) classes are

discussed in Deshpande et al. [6], whereas NBAFR (New Better Than Used in Failure

Rate Average) is due to Loh [13].

A function f(·) is called star-shaped (resp. antistar-shaped) if f(x)/x is increasing
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(resp. decreasing) in x. On the other hand, it is called super-additive (resp. sub-additive)

if, for all x, y, f(x+ y) ≥ (resp. ≤ )f(x) + f(y).

Let an absolutely continuous nonnegative random variable Y have the respective

generalized functions (analogous to the one defined above for X) T Y,s(·), µ̃Y,s, rY,s(·),

µY,s(·), HY,s(·), RY,s(·) and LY,s(·). For the sake of simplicity we write, for x ≥ 0 and

s = 1, 2, . . . ,

αs(x) = T
−1

Y,s

(
TX,s(x)

)
= T−1

Y,s (TX,s(x)) .

Here, we define and study some more general partial orderings using the generalized

ageing properties. These extend the concepts of the generalized ageing, given in Definition

1.1, to compare the ageing properties of two life distributions. In Sections 2, 3, 4, 5 and

6, we discuss s-IFR, s-IFRA, s-NBU, s-NBUFR and s-NBAFR orderings, respectively.

We give some equivalent representations for each ordering. We prove that these are all

partial orderings. Inter-relations among these orderings are also discussed. We make a

bridge by which one can go from these orderings to generalized ageings, and vice versa.

2 s-IFR Ordering

In this section we define s-IFR ordering and study different properties of this ordering.

Definition 2.1 For any positive integer s, X (or its distribution FX) is said to be more

s-IFR than Y (or its distribution FY ) (written as FX ≤s−IFR FY ) if αs(x) is convex. ✷

Remark 2.1 For s = 1, Definition 2.1 gives FX ≤IFR FY , for s = 2, FX ≤DMRL FY ,

and for s = 3, we get FX ≤DV RL FY .

The following lemma may be obtained in Marshall and Olkin ([15], Section 21(f), pp.

699-700).

Lemma 2.1 Let f(·) and g(·) be two real-valued continuous functions, and ζ(·) be a

strictly increasing (resp. decreasing) and continuous function defined on the range of f

and g. Then, for any real number c > 0, f(x)− cg(x) and ζ(f(x))− ζ(cg(x)) have sign

change property in the same (resp. reverse) order, as x traverses from left to right. ✷

In the following two propositions, we give some equivalent representations of the s-IFR

ordering. The proof of the first proposition can easily be done by using Lemma 2.1, or

Proposition 2.C.8 of Marshall and Olkin [15].

Proposition 2.1 Definition 2.1 can equivalently be written in one of the following forms:

5



(i) For any real numbers a and b, T
−1

Y,sTX,s(x) − (ax + b) changes sign at most twice,

and if the change of signs occurs twice, they are in the order +,−,+, as x traverses

from 0 to ∞.

(ii) For any real numbers a and b, TX,s(x) − T Y,s(ax + b) changes sign at most twice,

and if the change of signs occurs twice, they are in the order −,+,−, as x traverses

from 0 to ∞.

(iii) For any real numbers a and b, TX,s(ax + b) − T Y,s(x) changes sign at most twice,

and if the change of signs occurs twice, they are in the order −,+,−, as x traverses

from 0 to ∞.

(iv) For any real numbers a and b, T Y,s(x) − TX,s(ax + b) changes sign at most twice,

and if the change of signs occurs twice, they are in the order +,−,+, as x traverses

from 0 to ∞.

(v) For any real numbers a and b, T
−1

X,sT Y,s(x) − (ax + b) changes sign at most twice,

and if the change of signs occurs twice, they are in the order −,+,−, as x traverses

from 0 to ∞.

(vi) α−1
s (x) is concave in x > 0. ✷

Proposition 2.2 For s = 2, 3, . . . , Definition 2.1 can equivalently be written in one of

the following forms:

(i)
rX,s(T−1

X,s
(u))

rY,s(T−1

Y,s
(u))

is increasing in u ∈ [0, 1].

(ii)
µX,s−1(T−1

X,s
(u))

µY,s−1(T−1

Y,s
(u))

is decreasing in u ∈ [0, 1].

(iii)
TY,s−1(αs(x))

TY,s−1(αs−1(x))
is decreasing in x ≥ 0.

(iv) RX,s−1R
−1
Y,s−1(u) is antistar-shaped in u ∈ [0, 1].

(v)
1−HX,s−1(u)

1−HY,s−1(u)
is increasing in u ∈ [0, 1].

(vi)
RX,s−1(u)

RY,s−1(u)
is decreasing in u ∈ [0, 1].

(vii) R−1
Y,sRX,s(u) is concave in u ∈ [0, 1].
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Proof: FX ≤s−IFR FY is equivalent to the fact that

α′

s(x) is increasing in x ≥ 0. (2.5)

Note that, for x ≥ 0,

α′

s(x) =

(
µ̃Y,s−1

µ̃X,s−1

)(
TX,s−1(x)

T Y,s−1T
−1

Y,s

(
TX,s(x)

)

)
(2.6)

=

(
µ̃Y,s−1

µ̃X,s−1

)(
TX,s−1(x)

TX,s(x)

)(
TX,s(x)

T Y,s−1T
−1

Y,s

(
TX,s(x)

)

)

= rX,s(x)



µ̃Y,s−1T Y,s

(
T

−1

Y,sTX,s(x)
)

T Y,s−1

(
T

−1

Y,sTX,s(x)
)




=
rX,s(x)

rY,s
(
T−1
Y,sTX,s(x)

) ,

which can equivalently be written as

α′

s

(
T−1
X,s(u)

)
=

rX,s

(
T−1
X,s(u)

)

rY,s
(
T−1
Y,s(u)

) for all u ∈ [0, 1]. (2.7)

Thus, the result follows from (2.5). This proves (i). Equivalence of (i) and (ii) follows

by using (1.2) in (2.7). By noting the fact that

T Y,s−1 (αs(x))

T Y,s−1 (αs−1(x))
=

(
µ̃Y,s−1

µ̃X,s−1

)
1

α′
s(x)

,

the equivalence of (i) and (iii) follows from (2.5). Note that

RX,s−1R
−1
Y,s−1(u) is antistar-shaped in u ∈ [0, 1],

if, and only if,

TX,s−1T
−1

X,sT Y,sT
−1

Y,s−1(u)

u
is decreasing in u ∈ [0, 1],

or equivalently,
TX,s−1(x)

T Y,s−1T
−1

Y,s

(
TX,s(x)

) is increasing in x ≥ 0.

Thus, the equivalence of (i) and (iv) follows from (2.5) and (2.6). The equivalence of (i)

and (v) follows from (2.6) and using the fact that

1−HX,s−1(u)

1−HY,s−1(u)
=

TX,s−1

(
T−1
X,s(u)

)

T Y,s−1

(
T−1
Y,s (u)

) .
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Equivalence of (v) and (vi) follows from (1.4). We write ΥX,s(u) = R′

X,s(u) and ΥY,s(u) =

R′

Y,s(u) for u ∈ [0, 1]. Then, we have, for all u ∈ [0, 1],

ΥX,s(u) =

(
µ̃X,s

µ̃X,s−1

)


TX,s−1

(
T

−1

X,s+1(u)
)

TX,s

(
T

−1

X,s+1(u)
)



 ,

which gives

ΥX,s

(
R−1

X,s(u)
)
=

(
µ̃X,s

µ̃X,s−1

)


TX,s−1

(
T

−1

X,s(u)
)

u



 .

So, on using (2.6) we have, for all u ∈ [0, 1],

ΥX,s

(
R−1

X,s(u)
)

ΥY,s

(
R−1

Y,s(u)
) =

(
µ̃X,s

µ̃Y,s

)
α′

s

(
T

−1

X,s(u)
)
. (2.8)

Thus, (2.5) can equivalently be written as

ΥX,s

(
R−1

X,s(u)
)

ΥY,s

(
R−1

Y,s(u)
) is decreasing in u ∈ [0, 1],

or equivalently,
ΥX,s(u)

ΥY,s

(
R−1

Y,sRX,s(u)
) is decreasing in u ∈ [0, 1].

This means that
d

du

(
R−1

Y,sRX,s(u)
)
is decreasing in u ∈ [0, 1],

or equivalently,

R−1
Y,sRX,s(u) is concave in u ∈ [0, 1].

This gives the equivalence of (i) and (vii). ✷

Remark 2.2 For s = 1, Definition 2.1 can equivalently be written in one of the following

forms:

(i)
rX,1(F−1

X
(u))

rY,1(F−1

Y
(u))

is increasing in u ∈ [0, 1].

(ii) R−1
Y,1RX,1(u) is concave in u ∈ [0, 1]. ✷

Definition 2.2 Two distribution functions FX , FY (∈ F) are said to be equivalent (FX ∼

FY ) if there exists a θ > 0 such that FX(x) = FY (θx) for all x ≥ 0. ✷

Following are a few lemmas to be used in proving the upcoming theorems.
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Lemma 2.2 If FX ∼ FY , then TX,s(x) = T Y,s(θx) for some θ > 0 and all x ≥ 0, and

s = 1, 2, . . . ·

Proof: FX ∼ FY if, and only if FX(x) = F Y (θx) for some θ > 0 and for all x ≥ 0. Thus

the result is true for s = 1. Suppose the result holds for s. Then

TX,s+1(x) =
1

µ̃X,s

∫
∞

x

TX,s(u)du.

Further

µ̃X,s =

∫
∞

0

TX,s(u)du

=

∫
∞

0

T Y,s(θu)du

=
µ̃Y,s

θ
.

The second equality follows from the hypothesis. Hence

TX,s+1(x) =
θ

µ̃Y,s

∫
∞

x

T Y,s(θu)du

= T Y,s+1(θx).

Hence, by induction, the result is established. ✷

Following lemma follows from the definition of rX,s(·) and Lemma 2.2.

Lemma 2.3 If FX ∼ FY , then there exists a θ > 0 such that, for all x ≥ 0 and s =

1, 2, . . . ,

rX,s(x) = θrY,s(θx).

✷

The following lemma gives the converse of Lemma 2.2.

Lemma 2.4 If TX,s(x) = T Y,s(θx) for some θ > 0, some s = 1, 2, . . ., and all x ≥ 0,

then FX(x) = F Y (θx) for all x.

Proof: Let us fix s ≥ 2 because for s = 1, it is trivial. Then TX,s(x) = T Y,s(θx) for all

x ≥ 0 gives, by (1.1),
∫
∞

x
TX,s−1(u)du

µ̃X,s−1

=

∫
∞

θx
T Y,s−1(u)du

µ̃Y,s−1

for all x ≥ 0.

Taking derivative with respect to x on both sides of the above expression, we get, for all

x ≥ 0,
TX,s−1(x)

µ̃X,s−1

= θ
T Y,s−1(θx)

µ̃Y,s−1

for all x ≥ 0. (2.9)
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Putting x = 0 in (2.9), we get µ̃Y,s−1/µ̃X,s−1 = θ. Hence (2.9) becomes

TX,s−1(x) = T Y,s−1(θx) for all x ≥ 0.

Proceeding in this line, we get FX(x) = F Y (θx) for all x ≥ 0. ✷

The following two lemmas are easy to prove.

Lemma 2.5 Let f(·) and g(·) be two nonnegative, increasing, and convex functions.

Then f (g(·)) is convex. ✷

Lemma 2.6 Let f(·) be a nonnegative, increasing and convex function. Then f−1(·) is

concave. ✷

The following theorem shows that s-IFR ordering is a partial ordering.

Theorem 2.1 The relationship FX ≤s−IFR FY is a partial ordering of the equivalence

classes of F .

Proof: (i) That s-IFR ordering is reflexive, is trivial.

(ii) FX ≤s−IFR FY gives that T−1
Y,s (TX,s(x)) is convex, which, by Lemma 2.6, reduces to

the fact that

T−1
X,s (TY,s(x)) is concave. (2.10)

Further, FY ≤s−IFR FX gives that

T−1
X,s (TY,s(x)) is convex. (2.11)

Combining (2.10) and (2.11), we get

T−1
X,s (TY,s(x)) = α + βx,

for some constants α and β. Now, by evaluating the above expression at x = 0, we get

α = 0. Hence, we have

T−1
X,s (TY,s(x)) = βx,

which, by Lemma 2.4, gives FX ∼ FY .

(iii) On using Lemma 2.5, one can easily see that s-IFR ordering is transitive. ✷

The following lemma can be easily verified.

Lemma 2.7 Let X ∼ FX(x) = e−λx. Then, for s = 1, 2, . . .,

(i) rX,s(x) = λ;
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(ii) TX,s(x) = e−λx. ✷

The following theorem shows that a random variable X is smaller than exponential

distribution in s-IFR ordering if, and only if, X has s-IFR distribution.

Theorem 2.2 If F Y (x) = exp(−λx), then FX ≤s−IFR FY if, and only if, FX is s-IFR.

Proof: By Lemma 2.7, FX ≤s−IFR FY is equivalent to saying that

ln
(
TX,s(x)

)
is concave,

or equivalently,

rX,s(x) is increasing in x ≥ 0,

giving that X is s-IFR. ✷

3 s-IFRA Ordering

We start this section with the following definition.

Definition 3.1 For any positive integer s, X (or its distribution FX) is said to be more s-

IFRA than Y (or its distribution FY ) (written as FX ≤s−IFRA FY ) if αs(x) is star-shaped.

✷

Remark 3.1 For s = 1, the above definition gives FX ≤IFRA FY .

Below we give some equivalent representations of s-IFRA ordering. The first proposi-

tion can easily be proved by using Lemma 2.1.

Proposition 3.1 Definition 3.1 can equivalently be written in one of the following forms:

(i) For any real number a, T
−1

Y,sTX,s(x) − ax changes sign at most once, and if the

change of sign does occur, it is in the order −,+, as x traverses from 0 to ∞.

(ii) For any real number a, TX,s(x) − T Y,s(ax) changes sign at most once, and if the

change of sign does occur, it is in the order +,−, as x traverses from 0 to ∞.

(iii) For any real number a, TX,s(ax) − T Y,s(x) changes sign at most once, and if the

change of sign does occur, it is in the order +,−, as x traverses from 0 to ∞.

(iv) For any real number a, T Y,s(x) − TX,s(ax) changes sign at most once, and if the

change of sign does occur, it is in the order −,+, as x traverses from 0 to ∞.
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(v) For any real number a, T
−1

X,sT Y,s(x) − ax changes sign at most once, and if the

change of sign does occur, it is in the order +,−, as x traverses from 0 to ∞.

(vi) α−1
s (x) is antistar-shaped in x > 0. ✷

Proposition 3.2 For s = 2, 3, . . . , Definition 3.1 can equivalently be written in one of

the following forms:

(i)
T

−1

Y,s(u)

T
−1

X,s(u)
is decreasing in u ∈ [0, 1].

(ii)
rX,s(T−1

X,s
(u))

rY,s(T−1

Y,s
(u))

≥
T−1

Y,s
(u)

T−1

X,s
(u)

for all u ∈ [0, 1].

(iii)
µY,s−1(T−1

Y,s
(u))

µX,s−1(T−1

X,s
(u))

≥
T−1

Y,s
(u)

T−1

X,s
(u)

for all u ∈ [0, 1].

(iv)
TY,s−1(αs−1(x))

TY,s−1(αs(x))
≥
(

µ̃X,s−1

µ̃Y,s−1

)(
αs(x)
x

)
for all x ≥ 0.

(v)
RX,s−1(u)

RY,s−1(u)
≥
(

µ̃X,s−1

µ̃Y,s−1

)(
T

−1

Y,s(u)

T
−1

X,s(u)

)
for all u ∈ [0, 1].

(vi)
1−HX,s−1(u)

1−HY,s−1(u)
≥
(

µ̃X,s−1

µ̃Y,s−1

)(
T−1

Y,s
(u)

T−1

X,s
(u)

)
for all u ∈ [0, 1].

Proof: The proof of (i) follows from definition. Again, (i) can equivalently be written

as

(
µ̃Y,s−1

µ̃X,s−1

)(
TX,s−1(x)

T Y,s−1T
−1

Y,s

(
TX,s(x)

)

)
≥

T
−1

Y,sTX,s(x)

x
. (3.12)

The above inequality holds if, and only if, for all x ≥ 0,

rX,s

(
T−1
X,s(u)

)

rY,s
(
T−1
Y,s(u)

) ≥
T−1
Y,s (u)

T−1
X,s(u)

for all u ∈ [0, 1],

which is (ii). Equivalence of (ii) and (iii) follows from (1.2). Note that

T Y,s−1 (αs−1(x))

T Y,s−1 (αs(x))
=

TX,s−1(x)

T Y,s−1T
−1

Y,s

(
TX,s(x)

)

≥

(
µ̃X,s−1

µ̃Y,s−1

)(
αs(x)

x

)
,
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where the inequality follows from (3.12). This gives the equivalence of (i) and (iv). On

using (3.12), the equivalence of (iv) and (v) follows. For u ∈ [0, 1],

1−HX,s−1(u)

1−HY,s−1(u)
=

TX,s−1

(
T−1
X,s(u)

)

T Y,s−1

(
T−1
Y,s (u)

)

≥

(
µ̃X,s−1

µ̃Y,s−1

)(
T−1
Y,s(u)

T−1
X,s(u)

)
,

where the inequality follows from (3.12). Hence, the equivalence of (i) and (vi) follows.

✷

Remark 3.2 For s = 1, Definition 3.1 can equivalently be written in one of the following

forms:

(i)
F̄−1

Y
(u)

F̄−1

X
(u)

is decreasing in u ∈ [0, 1].

(ii)
rX,1(F−1

X
(u))

rY,1(F−1

Y
(u))

≥
F−1

Y
(u)

F−1

X
(u)

for all u ∈ [0, 1]. ✷

The following theorem gives some equivalent characterization of s-IFRA ordering.

Theorem 3.1 The following statements are equivalent:

(i) FX ≤s−IFRA FY .

(ii) For all functions α(·) and β(·), such that α(·) is nonnegative and α(·) and α(·)/β(·)

are decreasing, and such that
1∫
0

α(u)dT−1
X,s(u) < ∞, and

1∫
0

α(u)dT−1
Y,s(u) < ∞,

0 6=
1∫
0

β(u)dT−1
X,s(u) < ∞, and 0 6=

1∫
0

β(u)dT−1
Y,s(u) < ∞, we have

1∫
0

α(u)dT−1
Y,s(u)

1∫
0

α(u)dT−1
Y,s(u)

≤

1∫
0

β(u)dT−1
X,s(u)

1∫
0

β(u)dT−1
X,s(u)

.

(iii) For any increasing functions a(·) and b(·) such that b(·) is nonnegative, if
1∫
0

a(u)b(u)dT−1
X,s(u) = 0, then

1∫
0

a(u)b(u)dT−1
Y,s(u) ≤ 0.

Proof: The proof follows from Theorem 4.B.10 of Shaked and Shanthikumar [19] by

noting the fact that TX,s and TY,s are playing the role of F and G, respectively. ✷

Below we give two lemmas to be used in the upcoming theorem. The proofs are

omitted.
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Lemma 3.1 Let f(·) and g(·) be two nonnegative, increasing, and star-shaped functions.

Then f (g(·)) is star-shaped. ✷

Lemma 3.2 Let f(·) be a nonnegative, increasing, and star-shaped function. Then

f−1(·) is antistar-shaped. ✷

Below we show that s-IFRA ordering is a partial ordering.

Theorem 3.2 The relationship FX ≤s−IFRA FY is a partial ordering of the equivalence

classes of F .

Proof: (i) It is trivial to show that s-IFRA ordering is reflexive.

(ii) FX ≤s−IFRA FY gives that T−1
Y,s(TX,s(x)) is star-shaped, which, by Lemma 3.2, reduces

to the fact that

T−1
X,s(TY,s(x)) is antistar-shaped. (3.13)

Further, FY ≤s−IFRA FX gives that

T−1
X,s(TY,s(x)) is star-shaped. (3.14)

Combining (3.13) and (3.14), we have

T−1
X,s(TY,s(x)) = θx,

for some constant θ. This, by Lemma 2.4, gives FX ∼ FY .

(iii) By Lemms 3.1, we have that the s-IFRA ordering is transitive. ✷

The following theorem is a bridge between s-IFRA ordering and s-IFRA ageing.

Theorem 3.3 If F Y (x) = e−λx, λ > 0, then

FX ≤IFRA FY if, and only if, FX is s-IFRA.

Proof: The proof follows from Definition 3.1 and Lemma 2.7. ✷

Since every convex function is star-shaped, we have the following theorem.

Theorem 3.4 If FX ≤s−IFR FY , then FX ≤s−IFRA FY . ✷
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4 s-NBU Ordering

In this section we study s-NBU ordering.

Definition 4.1 For any positive integer s, X (or its distribution FX) is said to be more s-

NBU than Y (or its distribution FY ) (written as FX ≤s−NBU FY ) if αs(x) is super-additive.

✷

Remark 4.1 For s = 1, the above definition gives FX ≤NBU FY .

Proposition 4.1 Definition 4.1 can equivalently be written as

TX,s

(
T

−1

X,s(u) + T
−1

X,s(v)
)
≤ T Y,s

(
T

−1

Y,s(u) + T
−1

Y,s(v)
)

for all u, v ∈ [0, 1].

Proof: FX ≤s−NBU FY holds if, and only if, for all x, y ≥ 0,

T
−1

Y,s

(
TX,s(x+ y)

)
≥ T

−1

Y,s

(
TX,s(x)

)
+ T

−1

Y,s

(
TX,s(y)

)
.

Writing x = T
−1

X,s(u) and y = T
−1

X,s(v) in the above inequality, we get the required result.

✷

To prove the next theorem we use two lemmas which are given below. The proofs are

omitted.

Lemma 4.1 Let f(·) and g(·) be two nonnegative, increasing, and super-additive func-

tions. Then f (g(·)) is super-additive. ✷

Lemma 4.2 Let f(·) be a nonnegative, increasing, and super-additive function. Then

f−1(·) is sub-additive. ✷

The following theorem shows that s-NBU ordering is a partial ordering.

Theorem 4.1 The relationship FX ≤s−NBU FY is a partial ordering of the equivalence

classes of F .

Proof: (i) The proof of reflexive property of s-NBU ordering is trivial.

(ii) Let FX ≤s−NBU FY . Then

T−1
Y,s (TX,s(x)) is super-additive.

By Lemma 4.2, the above statement can equivalently be written as

T−1
X,s (TY,s(x)) is sub-additive. (4.15)
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Further, FY ≤s−NBU FX gives that

T−1
X,s (TY,s(x)) is super-additive. (4.16)

Combining (4.15) and (4.16), we get

T−1
X,s (TY,s(x)) = βx,

for some constant β, which, by Lemma 2.4, gives FX ∼ FY .

(iii) On using Lemma 4.1, one can easily verify that s-NBU ordering is transitive. ✷

Below Theorem 4.2 shows that, if a probability distribution is smaller than exponential

distribution in s-NBU ordering, then it is actually an s-NBU distribution. The proof

follows from Lemma 2.7.

Theorem 4.2 Let F Y (x) = e−λx, λ > 0. Then, for s = 1, 2, . . .,

FX ≤s−NBU FY if, and only if, FX is s-NBU.

✷

Since, all star-shaped functions are super-additive, we have the following theorem.

Theorem 4.3 If FX ≤s−IFRA FY , then FX ≤s−NBU FY . ✷

5 s-NBUFR Ordering

We begin this section with the following definition.

Definition 5.1 For any positive integer s, X (or its distribution FX) is said to be more

s-NBUFR than Y (or its distribution FY ) (written as FX ≤s−NBUFR FY ) if α′

s(x) ≥

α′

s(0). ✷

Remark 5.1 For s = 1, s = 2 and s = 3, the above definition gives FX ≤NBUFR FY ,

FX ≤NBUE FY and FX ≤NDV RL FY , respectively.

In the following proposition we discuss some equivalent conditions of the s-NBUFR

ordering.

Proposition 5.1 For s = 2, 3, . . . , Definition 5.1 can equivalently be written in one of

the following forms:

(i) αs(x) ≥ αs−1(x) for all x ≥ 0.
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(ii)
rX,s(T−1

X,s
(u))

rY,s(T−1

Y,s
(u))

≥
µ̃Y,s−1

µ̃X,s−1

for all u ∈ [0, 1].

(iii)
rX,s(T−1

X,s−1
(u))

rY,s(T−1

Y,s−1
(u))

≥
µ̃Y,s−1

µ̃X,s−1

for all u ∈ [0, 1].

(iv)
µY,s−1(T−1

Y,s
(u))

µX,s−1(T−1

X,s
(u))

≥
µ̃Y,s−1

µ̃X,s−1

for all u ∈ [0, 1].

(v)
µY,s−1(T−1

Y,s−1
(u))

µX,s−1(T−1

X,s−1
(u))

≥
µ̃Y,s−1

µ̃X,s−1

for all u ∈ [0, 1].

(vi)
TY,s−1(αs(x))

TY,s−1(αs−1(x))
≤ 1 for all x ≥ 0.

(vii) RX,s−1(u) ≥ RY,s−1(u) for all u ∈ [0, 1].

(viii) HX,s−1(u) ≤ HY,s−1(u) for all u ∈ [0, 1].

Proof: FX ≤NBUFR FY if, and only if, for all x ≥ 0,

TX,s−1(x) ≥ T Y,s−1T
−1

Y,s

(
TX,s(x)

)
, (5.17)

or equivalently,

αs(x) ≥ αs−1(x),

which is (i). Note that, for all x ≥ 0, (5.17) can equivalently be written as

rX,s(x)

rY,s

(
T

−1

Y,sTX,s(x)
) ≥

µ̃Y,s−1

µ̃X,s−1

,

or equivalently,
rX,s

(
T−1
X,s(u)

)

rY,s
(
T−1
Y,s (u)

) ≥
µ̃Y,s−1

µ̃X,s−1
for all u ∈ [0, 1].

This proves the equivalence of (i) and (ii). Now, for all u ∈ [0, 1],

rX,s

(
T−1
X,s−1(u)

)

rY,s
(
T−1
Y,s−1(u)

) ≥
µ̃Y,s−1

µ̃X,s−1

holds if, and only if,

rX,s(x)

rY,s

(
T

−1

Y,s−1TX,s−1(x)
) ≥

µ̃Y,s−1

µ̃X,s−1
for all x ≥ 0.

The above inequality can equivalently be written as

T Y,s

(
T

−1

Y,s−1TX,s−1(x)
)
≥ TX,s(x),
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or equivalently,

αs(x) ≥ αs−1(x) for all x ≥ 0,

giving the equivalence of (i) and (iii). On using (1.2) in (ii) and (iii), we get (iv) and

(v), respectively. Equivalence of (i), and (vi) and (vii) follows from (5.17). Equivalence

of (vii) and (viii) follows from (1.4). ✷

The following theorem shows that s-NBUFR ordering is a partial ordering.

Theorem 5.1 The relationship FX ≤s−NBUFR FY is a partial ordering of the equivalence

classes of F .

Proof: For s = 1, the result follows from Kochar and Wiens [10]. We only prove the

result for s = 2, 3, . . . · Let us fix s.

(i) It is easy to verify that s-NBUFR ordering is reflexive.

(ii) By Proposition 5.1(i), FX ≤s−NBUFR FY holds if, and only if,

T
−1

Y,s−1(TX,s−1(x)) ≤ T
−1

Y,s(TX,s(x)). (5.18)

Further, FY ≤s−NBUFR FX gives

T
−1

X,s−1(T Y,s−1(x)) ≤ T
−1

X,s(T Y,s(x)). (5.19)

Replacing x by T
−1

Y,s(TX,s(x)) in (5.19), we have

T
−1

Y,s(TX,s(x)) ≤ T
−1

Y,s−1(TX,s−1(x)). (5.20)

Combining (5.18) and (5.20), we get

αs(x) = αs−1 for all x ≥ 0. (5.21)

Note that

α′

s(x) =

(
µ̃Y,s−1

µ̃X,s−1

)(
T Y,s−1 (αs−1(x))

T Y,s−1 (αs(x))

)

= θ, (5.22)

where the last equality follows from (5.21) and θ = µ̃Y,s−1/µ̃X,s−1 (constant). Now,

integrating (5.22) from 0 to x, and then using αs(0) = 0, we have TX,s(x) = T Y,s(θx).

Thus, on using Lemma 2.4, we have FX ∼ FY .

(iii) FX ≤s−NBUFR FY gives

T
−1

Y,s−1(TX,s−1(x)) ≤ T
−1

Y,s(TX,s(x)) (5.23)
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and FY ≤s−NBUFR FZ gives

T
−1

Z,s−1(T Y,s−1(x)) ≤ T
−1

Z,s(T Y,s(x)). (5.24)

Now,

T
−1

Z,s−1(TX,s−1(x)) = T
−1

Z,s−1T Y,s−1

(
T

−1

Y,s−1TX,s−1(x)
)

≤ T
−1

Z,s−1T Y,s−1

(
T

−1

Y,sTX,s(x)
)

≤ T
−1

Z,sT Y,s

(
T

−1

Y,sTX,s(x)
)

= T
−1

Z,s(TX,s(x)),

where the first inequality follows from (5.23) and using the fact that T
−1

Z,s−1T Y,s−1(·) is an

increasing function. The second inequality holds from (5.24). Thus, s-NBUFR ordering

is transitive. ✷

The following theorem shows that a random variable X is s-NBUFR if, and only if, X

is smaller than exponential distribution in s-NBUFR ordering. The proof follows from

Lemma 2.7.

Theorem 5.2 If F Y (x) = e−λx, λ > 0, then FX ≤s−NBUFR FY if, and only if, FX is

s-NBUFR. ✷

In the following theorem, we prove that s-NBU ordering implies s-NBUFR ordering.

Theorem 5.3 FX ≤s−NBU FY ⇒ FX ≤s−NBUFR FY .

Proof: FX ≤s−NBU FY gives that, for all x, y ≥ 0,

αs(x+ y) ≥ αs(x) + αs(y).

Taking limit as y → 0 on both sides of the above inequality, and then using αs(0) = 0,

we get the required result. ✷

6 s-NBAFR Ordering

In this section we study s-NBAFR ordering. We start with the following definition.

Definition 6.1 For any positive integer s, X (or its distribution FX) is said to be more

s-NBAFR than Y (or its distribution FY ) (written as FX ≤s−NBAFR FY ) if αs(x) ≥

xα′

s(0). ✷
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Remark 6.1 For s = 1 and s = 2, the above definition gives FX ≤NBAFR FY and

FX ≤HNBUE FY , respectively.

✷

Below we give some equivalent representations of the s-NBAFR ordering.

Proposition 6.1 For s = 2, 3, . . . , Definition 6.1 can equivalently be written in one of

the following forms:

(i) TX,s (xµ̃X,s−1) ≤ T Y,s (xµ̃Y,s−1) for all x ≥ 0.

(ii) H−1
X,s−1(u) ≥ H−1

Y,s−1

[
TY,s−1

(
µ̃Y,s−1

µ̃X,s−1

T−1
X,s−1(u)

)]
for all u ∈ [0, 1].

(iii) R−1
X,s−1(u) ≤ R−1

Y,s−1

[
TY,s−1

(
µ̃Y,s−1

µ̃X,s−1

T−1
X,s−1(u)

)]
for all u ∈ [0, 1].

(iv) LX,s−1(u) ≥ LY,s−1(u) for all u ∈ [0, 1].

Proof: FX ≤s−NBAFR FY holds if, and only, if, for all x ≥ 0,

T
−1

Y,s(TX,s(x)) ≥
µ̃Y,s−1

µ̃X,s−1
x. (6.25)

Replacing x by xµ̃X,s−1 in (6.25), we get (i). Note that (6.25) holds if, and only if, for

all x ≥ 0,

TX,s(x) ≥ TY,s

(
µ̃Y,s−1

µ̃X,s−1

x

)
. (6.26)

Putting x = T−1
X,s−1(u) in (6.26), we see that (i) and (ii) are equivalent. On using (1.3),

(ii) and (iii) become equivalent. Now, (i) can equivalently be written as

∞∫

x

TX,s−1 (tµ̃X,s−1) dt ≤

∞∫

x

T Y,s−1 (tµ̃Y,s−1) dt,

or equivalently,

∞∫

x

TX∗,s−1 (t) dt ≤

∞∫

x

T Y ∗,s−1 (t) dt, (6.27)

where TX∗,s−1(t) = TX,s−1 (tµ̃X,s−1) and T Y ∗,s−1(t) = T Y,s−1 (tµ̃Y,s−1) be the respective

survivals of two random variables X∗ and Y ∗. Thus, on using Theorem 4 of Taillie [20],

(6.27) can equivalently be written as

1

µ̃X,s−1

u∫

0

T−1
X,s−1(t)dt ≥

1

µ̃Y,s−1

u∫

0

T−1
Y,s−1(t)dt for all u ∈ [0, 1].
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This proves the equivalence of (i) and (iv). ✷

The following theorem shows that s-NBAFR ordering is a partial ordering.

Theorem 6.1 The relationship FX ≤s−NBAFR FY is a partial ordering of the equivalence

classes of F .

Proof: For s = 1, the result follows from Kochar and Wiens [10]. We only prove the

result for s = 2, 3, . . . · Let us fix s.

(i) That s-NBAFR ordering is reflexive, is trivial.

(ii) FX ≤s−NBAFR FY gives

T
−1

Y,s(TX,s(x)) ≥
µ̃Y,s−1

µ̃X,s−1
x (6.28)

and FY ≤s−NBAFR FX gives

T
−1

X,s(T Y,s(x)) ≥
µ̃X,s−1

µ̃Y,s−1
x. (6.29)

Replacing x by T
−1

Y,s(TX,s(x)) in (6.29), we have

T
−1

Y,s(TX,s(x)) ≤
µ̃Y,s−1

µ̃X,s−1
x. (6.30)

Combining (6.28) and (6.30), we have

T
−1

Y,s(TX,s(x)) =
µ̃Y,s−1

µ̃X,s−1

x

= θx,

where θ = µ̃Y,s−1/µ̃X,s−1 (constant). Hence, TX,s(x) = T Y,s(θx). Thus, on using Lemma

2.4, we have FX ∼ FY .

(iii) FX ≤s−NBAFR FY gives

T
−1

Y,s(TX,s(x)) ≥
µ̃Y,s−1

µ̃X,s−1
x (6.31)

and FY ≤s−NBAFR FZ gives

T
−1

Z,s(T Y,s(x)) ≥
µ̃Z,s−1

µ̃Y,s−1
x. (6.32)

Now,

T
−1

Z,s(TX,s(x)) = T
−1

Z,sT Y,s

(
T

−1

Y,sTX,s(x)
)

≥ T
−1

Z,sT Y,s

(
µ̃Y,s−1

µ̃X,s−1
x

)

≥

(
µ̃Z,s−1

µ̃Y,s−1

)(
µ̃Y,s−1

µ̃X,s−1
x

)

=
µ̃Z,s−1

µ̃X,s−1

x,
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where the first inequality holds from (6.31) and using the fact that T
−1

Z,sT Y,s(·) is an

increasing function. The second inequality holds from (6.32). Thus, s-NBAFR ordering

is transitive. ✷

In the following theorem we represent the relationship between s-NBAFR ageing and

s-NBAFR ordering. The proof follows from Lemma 2.7

Theorem 6.2 If F Y (x) = e−λx, λ > 0, then FX ≤s−NBAFR FY if, and only if, FX is

s-NBAFR. ✷

Below we show that s-NBUFR ordering implies s-NBAFR ordering.

Theorem 6.3 FX ≤s−NBUFR FY ⇒ FX ≤s−NBAFR FY .

Proof: FX ≤s−NBUFR FY gives that, for all x ≥ 0,

α′

s(x) ≥ α′

s(0).

Integrating with limit from 0 to x on both sides of the above inequality, and then using

αs(0) = 0, we get the required result. ✷

7 Concluding Remarks

In this paper we introduce some new generalized partial orderings. We give some

equivalent representations of each generalized ordering in terms of failure rate function,

mean residual life function, TTT transform, Lorenz curve, etc. We discuss an alternative

way out to study the generalized ageings in terms of generalized orderings. These or-

derings throw new light on the understanding of the phenomenon of generalized ageings.

Such a study is meaningful because it summarizes the existing results available in litera-

ture in a unified way. Further, the lives of two systems may have same ageing property,

but one may age faster than the other. So, one might be interested to know which one is

ageing slower to decide on which of the two systems to be chosen. The ageing orderings

help one to decide on this. Again, if one group of components are known to have the less

rate of ageing compared to the other set, this will help the design engineers to select the

former group of components in place of the latter group while designing a system. We

conclude our discussion by mentioning the following chain of implications of generalized

orderings.

FX ≤s−IFR FY ⇒ FX ≤s−IFRA FY

⇓

FX ≤s−NBU FY

⇓

FX ≤s−NBUFR FY ⇒ FX ≤s−NBAFR FY .
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