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ON DYNAMICS GENERATED BY A UNIFORMLY
CONVERGENT SEQUENCE OF MAPS

PUNEET SHARMA AND MANISH RAGHAV

Abstract. In this paper, we study the dynamics of a non-autonomous
dynamical system (X,F) generated by a sequence ( fn) of continu-
ous self maps converging uniformly to f . We relate the dynamics
of the non-autonomous system (X,F) with the dynamics of (X, f ).
We prove that if the family F commutes with f and ( fn) converges
to f at a ”sufficiently fast rate”, many of the dynamical properties
for the systems (X,F) and (X, f ) coincide. In the procees we es-
tablish equivalence of properties like equicontinuity, minimality
and denseness of proximal pairs (cells) for the two systems. In ad-
dition, if F is feeble open, we establish equivalence of properties
like transitivity, weak mixing and various forms of sensitivities.
We prove that feeble openness of F is sufficient to establish equiv-
alence of topological mixing for the two systems. We prove that
if F is feeble open, dynamics of the non-autonomous system on a
compact interval exhibits any form of mixing if and only if (X, f )
exhibits identical form of mixing. We also investigate dense pe-
riodicity for the two systems. We give examples to investigate
sufficiency/necessity of the conditions imposed. In the process we
derive weaker conditions under which the established dynamical
relation (between the two systems (X,F) and (X, f )) is preserved.

1. INTRODUCTION

The theory of dynamical systems has been long used to study vari-
ous physical or natural processes occurring in nature. Many of these
processes have been modelled using discrete or continuous systems
and their long term behavior has been investigated. The theory has
found applications in a variety of fields like complex systems, con-
trol theory, biomechanics and cognitive sciences. While [3] used
dynamical systems theory to study the agent environment interac-
tion in the cognitive setting, in [8] authors used dynamical systems
approach to lower extremity running injuries. In [11] authors used
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the theory of discrete systems to model the chemical turbulence in a
system. Although, the theory has been used extensively in a variety
of fields, in most cases the physical/natural system is approximated
using an autonomous system. Consequently, the governing rule f
for a dynamical system is assumed to be constant with time and the
dynamics of the system (X, f ) is used to approximate the dynamics of
the underlying system. Although such studies have resulted in good
approximations of the underlying systems, better approximations
can be obtained by allowing the governing rule to be time variant.
As any general model approximating any natural/physical process
is non-autonomous in nature, such a modification provides greater
insight to the problem and hence results in a better approximation of
the original system. Thus there is a strong need to investigate natural
or physical systems using non-autonomous dynamical systems. As
a result, some investigations for such a setting in the discrete case
have been made and interesting results have been obtained. While
[9] study the topological entropy when the family F is equicontin-
uous or uniformly convergent, [10] discusses minimality conditions
for a non-autonomous system on a compact Hausdorff space while
focussing on the case when the non-autonomous system is defined
on a compact interval of the real line. In [12] authors investigate a
non-autonomous system generated by a finite family of maps. In the
process, they study properties like transitivity, weak mixing, topolog-
ical mixing, existence of periodic points, various forms of sensitivities
and Li-Yorke chaos. In [7] authors prove that if fn → f , in general
there is no relation between chaotic behavior of the non-autonomous
system generated by fn and the chaotic behavior of f . In [2] authors
investigate properties like weakly mixing, topological mixing, topo-
logical entropy and Li-Yorke chaos for the non-autonomous system.

In this paper, we investigate the dynamical behavior of a non-
autonomous system generated by a sequence F = ( fn) of maps con-
verging uniformly to f . In the process we establish relation between
the dynamical behavior of the systems (X,F) and (X, f ). We prove that

if f commutes with each fn and
∞
∑

n=1

dH( fn, f ) < ∞, many of the dynam-

ical properties coincide for the two systems. In the process, we estab-
lish that ”commutative condition” and ”fast convergence” ensures
equivalence of properties like equicontinuity, minimality and dense-
ness of proximal cells (pairs) for the two systems. Further, we prove
that while feeble openness of F ensures equivalence of topological
mixing for the two systems, additional assumptions of ”commutative



ON DYNAMICS GENERATED BY A UNIFORMLY CONVERGENT SEQUENCE OF MAPS3

condition” and convergence at a ”sufficiently fast rate” are needed
to establish equivalence of properties like transitivity, weak mixing
and various forms of sensitivities. We prove that if the limit map is
an isometry, ”commutative condition” is redundant and hence the
established results hold good if fn converge at a sufficiently fast rate.
We prove that if F is feeble open, dynamics of the non-autonomous
system on a compact interval exhibits any form of mixing if and only
if (X, f ) exhibits identical form of mixing. Further, we prove that any
point periodic for (X,F) is periodic for (X, f ) and hence a dense set
of periodic points for (X,F) ensures dense set of periodic points for
(X, f ). We give example to show that existence of periodic points is
not equivalent for the two systems. We also give examples to inves-
tigate the suffiency/necessity of conditions imposed for the results to
hold good. In the process, we derive weaker conditions under which
the derived relation between the two systems (X,F) and (X, f ) is pre-
served. Before we move further, we give some of the basic concepts
and definitions required.

Let (X, d) be a compact metric space and let F = { fn : n ∈ N} be a
family of continuous self maps on X. For any initial seed x0, any such
family generates a non-autonomous dynamical system via the rela-
tion xn = fn(xn−1). Throughout this paper, such a dynamical system
will be denoted by (X,F). For any x ∈ X, { fn ◦ fn−1 ◦ . . .◦ f1(x) : n ∈N}
defines the orbit of x. The objective of study of a non-autonomous
dynamical system is to investigate the orbit of an arbitrary point x in
X. For notational convenience, let ωn

n+k
= fn+k ◦ fn+k−1 ◦ . . . ◦ fn+1 and

ωn(x) = fn ◦ fn−1 ◦ . . . ◦ f1(x) (the state of the system after n iterations).

A point x is called periodic for (X,F) if there exists n ∈ N such
that ωnk(x) = x for all k ∈ N. The least such n is known as the pe-
riod of the point x. A system (X,F) is called feeble open if for any
non-empty open set U in X, int( f (U)) , φ for all f ∈ F. The system
(X,F) is equicontinuous if for each ǫ > 0, there exists δ > 0 such that
d(x, y) < δ implies d(ωn(x), ωn(y)) < ǫ for all n ∈N, x, y ∈ X. The sys-
tem (X,F) is transitive (or F is transitive) if for each pair of non-empty
open sets U,V in X, there exists n ∈ N such that ωn(U)

⋂

V , φ. The
system (X,F) is said to be minimal if it does not contain any proper
non-trivial subsystems. The system (X,F) is said to be weakly mix-
ing if for any collection of non-empty open sets U1,U2,V1,V2 in X
there exists a natural number n such that ωn(Ui)

⋂

Vi , φ, i = 1, 2.
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Equivalently, we say that the system is weakly mixing if F×F is tran-
sitive. The system is said to be topologically mixing if for every pair of
non-empty open sets U,V there exists a natural number K such that
ωn(U)

⋂

V , φ for all n ≥ K. The system is said to be sensitive if there
exists a δ > 0 such that for each x ∈ X and each neighborhood U of
x, there exists n ∈ N such that diam(ωn(U)) > δ. If there exists K > 0
such that diam(ωn(U)) > δ ∀n ≥ K, then the system is cofinitely sen-
sitive. A pair (x, y) is proximal for (X,F) if lim inf

n→∞
d(ωn(x), ωn(y)) = 0.

For any x ∈ X, the set ProxF(x) = {y : (x, y) is proximal for (X,F)}
is called the proximal cell of x in (X,F). A system (X,F) is said
to exhibit dense set of proximal pairs if the set of pairs proximal
for (X,F) is dense in X × X. A set S is said to be δ-scrambled in
(X,F) if for any distinct x, y ∈ S, lim sup

n→∞

d(ωn(x), ωn(y)) > δ but

lim inf
n→∞

d(ωn(x), ωn(y)) = 0. A system (X,F) is Li-Yorke sensitive if

there exists δ > 0 such that for each x ∈ X and each neighborhood
U of x there exists y ∈ U such that (x, y) is a δ-scrambled set. For
any x ∈ X, let LYF(x) = {y ∈ X : (x, y) is a Li-Yorke pair for (X,F)} is
called the Li-Yorke cell of x. It may be noted that in case the fn’s
coincide, the above definitions coincide with the known notions of
an autonomous dynamical system. See [4, 5, 6] for details.

Let X be a compact space and let K(X) denote the collection of
all non-empty compact subsets of X. For any A,B ∈ K(X) de-
fine DH(A,B) = inf{ǫ > 0 : A ⊂ S(B, ǫ) and B ⊂ S(A, ǫ)} where
S(A, ǫ) =

⋃

x∈A

S(x, ǫ) is the ǫ-ball around A. Then DH defines a metric

on K(X) and is known as the Hausdorff metric. It is known that
a system (X, f ) is a weakly mixing (topological mixing) if and only
if for any compact set K with non-empty interior lim sup

n→∞

f n(K) = X

(lim
n→∞

f n(K) = X) with respect to the metric DH.

Let (X, d) be a compact metric space and let C(X) denote the collec-
tion of continuous self maps on X. For any f , g ∈ C(X), define,

D( f , g) = sup
x∈X

d( f (x), g(x))

It is easily seen that D defined above is a metric on C(X) and is
known as the Supremum metric. It can be seen that a sequence ( fn)
in C(X) converges to f in (C(X),D) if and only if fn converges to
f uniformly on X and hence the topology generated by the metric
defined above is known as the topology of uniform convergence. A
collection of sequences {( f i

j
) : i ∈ I} converges collectively to {gi : i ∈
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I} with respect to the metric D if for each ǫ > 0, there exists n0 ∈ N

such that D( f i
j
, gi) < ǫ ∀ j ≥ n0, i ∈ I.

2. Main Results

Throughout this section, the family F and the limit map f are
assumed to be surjective.

Proposition 1. Let (X,F) be a non-autonomous system generated by F
and let f be any continuous self map on X. If the family F commutes with

f then for any x ∈ X and any k ∈N, d(ωk(x), f k(x)) ≤
k
∑

i=1

D( fi, f ).

Proof. Let x ∈ X and n be a natural number. As fk’s commute with
f , d( f2 ◦ f1(x), f 2(x)) ≤ d( f2 ◦ f1(x), f ◦ f1(x)) + d( f ◦ f1(x), f ◦ f (x)) =
d( f2◦ f1(x), f◦ f1(x))+d( f1◦ f (x), f◦ f (x)) ≤ D( f2, f )+D( f1, f ). Proceeding

inductively, if d( fn ◦ fn−1 ◦ . . . ◦ f1(x), f n(x)) ≤
n
∑

i=1

D( fi, f ), then, d( fn+1 ◦

fn ◦ . . .◦ f1(x), f n+1(x)) ≤ d( fn+1 ◦ fn ◦ . . .◦ f1(x), f ◦ fn ◦ . . .◦ f1(x))+ d( f ◦
fn ◦ . . .◦ f1(x), f n+1(x)) = d( fn+1 ◦ fn ◦ . . .◦ f1(x), f ◦ fn ◦ . . .◦ f1(x)+ d( fn ◦

fn−1 ◦ . . . ◦ f1 ◦ f (x), f n ◦ f (x)) ≤ D( fn+1, f ) +
n
∑

i=1

D( fi, f ) (by induction).

Hence for any k ∈ N, d( fk ◦ fk−1 ◦ . . . ◦ f1(x), f k(x)) ≤
k
∑

i=1

D( fi, f ) or

d(ωk(x), f k(x)) ≤
k
∑

i=1

D( fi, f ). �

Remark 1. The above result captures the deviations in the orbit of the
non-autonomous system, when approximated by an autonomous
system (X, f ). Consequently, the result provides an upper bound for
the error in the approximation of the trajectory of the non-autonomous
system, when approximated using the system (X, f ). It may be noted

that as error after k iterations is bounded by
k
∑

i=1
D( fi, f ), if ( fn) con-

verges to f with order more than O( 1
nr ) (r > 1), the total error for the

system remains bounded. Further, if ( fn) converges faster than O( 1
nr ),

approximating the trajectory after its observation for finite time leads
to a better approximation. In particular, an arbitrarily small bound
for the error can be obtained if approximation process is initiated
after finitely many iterations. Thus, we get the following corollary.
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Corollary 1. Let (X,F) be a non-autonomous system generated by F and
let f be any continuous self map on X. If the family F commutes with f

then for any x ∈ X and any k, n ∈N, d(ωn+k(x), f k(ωn(x))) ≤
k
∑

i=1
D( fn+i, f )

Proof. The result is trivial by approximating the trajectory of x0 =

ωn(x) for k iterations when F = { fn+1 : n ∈N}. �

Remark 2. The corollary above establishes that if the family F com-

mutes with f then for any k, n ∈ N, D(ωn+k, f k(ωn)) ≤
k
∑

i=1

D( fn+i, f ) or

in other words, D(ωn
n+k

(ωn), f k(ωn)) ≤
k
∑

i=1

D( fn+i, f ) ∀(k, n) ∈ N2. Con-

sequently, if fn converges to f at a sufficiently fast rate and each fi is
surjective then ωn

n+k
converges to f k collectively (with respect to the

metric D). It may be noted that if fn converges uniformly to f then for
each k ∈ N, ωn

n+k
converges uniformly to f k. However, if the family

F commutes with f the convergence is collective and hence a much
stronger form of convergence can be concluded which need not hold
good in general . Hence we get the following corollary.

Corollary 2. Let (X,F) be a non-autonomous system generated by a family
F and let f be any continuous self map on X. If the familyF commutes with

f and
∞
∑

n=1
D( fn, f ) < ∞ then {(ωn

n+k
) : k ∈ N} converges to { f k : k ∈ N}

collectively (with respect to the metric D).

Proof. If the family F commutes with f , by corollary 1 we have

D(ωn
n+k

(ωn), f k(ωn)) ≤
k
∑

i=1

D( fn+i, f ). Consequently, if the family F is

surjective then eachωn is surjective and hence D(ωn
n+k
, f k) ≤

k
∑

i=1

D( fn+i, f ).

Further, if
∞
∑

n=1

D( fn, f ) < ∞, then for each ǫ > 0 there exists r ∈N such

that
∞
∑

i=1
D( fr+i, f ) < ǫ which implies D(ωn

n+k
, f k) < ǫ ∀k ∈ N, n ≥ r and

hence the convergence is collective. �

Remark 3. The corollary establishes that if the familyF commutes with

f and
∞
∑

n=1

D( fn, f ) < ∞ then {(ωn
n+k

) : k ∈ N} converges collectively to

{ f k : k ∈ N} with respect to the metric D. However the proof uses
the fact that the stated conditions ensure that for each ǫ > 0 there
exists n0 ∈ N such that d(ωn+k(x), f k(ωn(x))) < ǫ for any k ∈ N, n ≥
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n0 and x ∈ X, which in turn ensures the collective convergence.
Conversely, if {ωn

n+k
: k ∈ N} converges collectively then for each

ǫ > 0 there exists n0 ∈ N such that D(ωn
n+k
, f k) < ǫ for all k ∈ N and

n ≥ n0. Further, if each fi is surjective then ωn are surjective and
hence d(ωn

n+k
(ωn(x)), f k(ωn(x))) < ǫ for all x ∈ X, k ∈ N and n ≥ n0 or

d(ωn+k(x), f n(ωn(x))) < ǫ for all x ∈ X, k ∈ N and n ≥ n0 and hence
two statements are equivalent.

Proposition 2. Let (X,F) be a non-autonomous system generated by a

family F commuting with f . If
∞
∑

n=1

D( fn, f ) < ∞ then (X, f ) is equicontin-

uous⇒ (X,F) is equicontinuous. Further, if f ′
i
s are bijective then, (X,F)

is equicontinuous⇒ (X, f ) is equicontinuous.

Proof. Let (X, f ) be equicontinuous and let ǫ > 0 be given. By equicon-
tinuity, there exists δ > 0 such that d(x, y) < δ implies d( f n(x), f n(y)) <

ǫ
3

for all n ∈ N. As
∞
∑

n=1

D( fn, f ) < ∞, choose r ∈ N such that

∞
∑

n=r
D( fn, f ) < ǫ

3
and hence for any x ∈ X, by corollary 1 we have,

d(ωr+k(x), f k(ωr(x))) <
k
∑

i=1
D( fr+i, f ) < ǫ

3
. As ωr is continuous, choose

ηr > 0 such that d(x, y) < ηr implies d(ωr(x), ωr(y)) < δ and hence
d( f k(ωr(x)), f k(ωr(y))) < ǫ

3
for all k ∈ N. By triangle inequality,

d(x, y) < ηr implies d(ωr+k(x), ωr+k(y)) < ǫ for all k ∈Nor d(ωk(x), ωk(y)) <
ǫ for all k ≥ r+ 1. Further, as {ω1, ω2, . . . , ωr} is a finite set, there exists
η′r > 0 such that d(x, y) < η′r forces d(ωi(x), ωi(y)) < ǫ for i = 1, 2, . . . , r
and hence choosing η = min{ηr, η

′
r} ensures equicontinuity of (X,F).

Conversely, let fi’s be bijective and let ǫ > 0 be given. By equicon-
tinuity of (X,F), there exists δ > 0 such that d(x, y) < δ implies

d(ωn(x), ωn(y)) < ǫ
3

for all n ∈ N. As
∞
∑

n=1
D( fn, f ) < ∞, choose r ∈ N

such that
∞
∑

n=r
D( fn, f ) < ǫ

3
. Also bijectivity of fi implies ωr is a home-

omorphism and thus there exists ηr > 0 such that d(x, y) < ηr im-
plies d(ω−1

r (x), ω−1
r (y)) < δ. Let x, y ∈ X such that d(x, y) < ηr. Let

xr = ω
−1
r (x) and yr = ω

−1
r (y). It may be noted that d( f k(x), f k(y)) =

d( f k(ωr(xr)), f k(ωr(yr))) ≤ d( f k(ωr(xr)), ωr+k(xr)) + d(ωr+k(xr), ωr+k(yr)) +

d(ωr+k(yr), f k(ωr(yr))). By corollary 1, d(ωr+k(xr), f k(ωr(xr))) ≤
k
∑

i=1
D( fr+i, f ) <
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ǫ
3

and d(ωr+k(yr), f k(ωr(yr))) ≤
k
∑

i=1
D( fr+i, f ) < ǫ

3
. Also d(x, y) < ηr im-

plies d(xr, yr) < δ and hence by equicontinuity we have d(ωr+k(xr), ωr+k(yr)) <
ǫ
3
. By triangle inequality d( f k(ωr(xr)), f k(ωr(yr))) < ǫor d( f k(x), f k(y)) <
ǫ. As the proof holds for any k ∈N, (X, f ) is equicontinuous. �

Remark 4. The above result establishes the relation between equicon-
tinuity of the two systems (X, f ) and (X,F). While a ”sufficiently
fast rate of convergence” is enough to establish the equicontinuity
of (X,F) from equicontinuity of (X, f ), the proof uses additional as-
sumption of bijectivity of the generating functions fi to establish the
converse. However, it may be noted that the converse part does
not use the bijectivity completely and the result holds good under
a much weaker assumption. In particular, if every pair of nearby
points can be obtained from nearby points, a similar proof of the con-
verse holds good and the equicontinuity of the two systems is still
equivalent. We say that a system (X,F) exhibits ”nearness criteria”
if for each ǫ > 0, there exists δ > 0, such that for every pair of points
x, y ∈ X with d(x, y) < δ, there exists u, v ∈ X and r ∈ N such that
ωr(u) = x, ωr(v) = y and d(u, v) < ǫ. The definition is analogous to the
continuity of the inverse and is equivalent to continuity of each fibre
of the inverse. In view of this definition, the above result yields the
following corollary.

Corollary 3. Let (X,F) be a non-autonomous system generated by a family

F commuting with f . If (X,F) satisfies nearness criteria and
∞
∑

n=1
D( fn, f ) <

∞ then (X, f ) is equicontinuous⇔ (X,F) is equicontinuous.

Proposition 3. Let (X,F) be a non-autonomous system generated by a

sequence F commuting with f . If
∞
∑

n=1
D( fn, f ) < ∞ then (X, f ) is minimal

⇔ (X,F) is minimal.

Proof. Let (X, f ) be minimal and let x ∈ X. Let U be any non-empty
open set in X. Choose u ∈ U and ǫ > 0 such that S(u, ǫ) ⊂ U. As
∞
∑

n=1
D( fn, f ) < ∞, there exists r ∈ N such that

∞
∑

n=r
D( fn, f ) < ǫ

2
. As

(X, f ) is minimal, orbit of ωr(x)(under f ) is dense in X and there
exists k ∈ N such that f k(ωr(x)) ∈ S(u, ǫ

2
). Also by corollary 1,

d(ωr+k(x), f k(ωr(x))) ≤
k
∑

i=1

D( fr+i, f ) < ǫ
2
. Thus, by triangle inequal-

ity, d(ωr+k(x), u) ≤ d(ωr+k(x), f k(ωr(x))) + d( f k(ωr(x)), u) < ǫ and hence
ωr+k(x) ∈ S(u, ǫ) ⊂ U. As the proof holds good for any non-empty
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open set U of X, orbit of x (under F) is dense in X. As the proof holds
good for any x ∈ X we establish that (X,F) is minimal.

Conversely, let (X,F) be minimal and let x ∈ X. Let U be any non-
empty open set in X. Choose u ∈ U and ǫ > 0 such that S(u, ǫ) ⊂ U.

As
∞
∑

n=1
D( fn, f ) < ∞, there exists r ∈ N such that

∞
∑

n=r
D( fn, f ) < ǫ

2
. As

(X,F) is minimal, orbit of any y ∈ ω−1
r (x)(under F) is dense in X

and hence intersects S(u, ǫ
2
). Further, as the orbit intersects S(u, η) for

each η, the set {n : ωn(y) ∈ S(u, ǫ
2
)} is infinite and there exists k ∈ N

such that ωr+k(y) ∈ S(u, ǫ
2
). Also by corollary 1, d(ωr+k(y), f k(ωr(y))) ≤

k
∑

i=1

D( fr+i, f ) < ǫ
2

and hence by triangle inequality, d( f k(ωr(y)), u) < ǫ

or d( f k(x), u) < ǫ and hence f k(x) ∈ U. As the proof holds good for
any non-empty open set U, orbit of x(under f ) is dense in X. As the
proof holds good for any x ∈ X, (X, f ) is minimal. �

Proposition 4. Let (X,F) be a non-autonomous system generated by a

family F of feeble open maps commuting with f . If
∞
∑

n=1
D( fn, f ) < ∞ then

(X, f ) is transitive⇔ (X,F) is transitive.

Proof. Let ǫ > 0 be given and let U = S(x, ǫ) and V = S(y, ǫ) be two

non-empty open sets in X. As
∞
∑

n=1
D( fn, f ) < ∞, ∃ r ∈ N such that

∞
∑

n=r
D( fn, f ) < ǫ

2
. As the family F is feeble open, int(ωr(U)) is non-

empty open and thus by transitivity of (X, f ), for open sets U′ =
int(ωr(U)) and V′ = S(y, ǫ

2
) there exists m ∈N such that f m(U′)∩V′ ,

φ. Consequently there exists u′ ∈ U′ such that f m(u′) ∈ V′. Further,
as U′ = int(ωr(U)), there exists u ∈ U such that u′ = ωr(u) and hence
f m(ωr(u)) ∈ V′.

Also, from corollary 1, we have d(ωm+r(u), f m(ωr(u))) ≤
m
∑

i=1

D( fr+i, f ) <

ǫ
2
. By triangle inequality d(y, ωm+r(u)) < ǫ and henceωm+r(U)∩V , φ.

As the proof holds for any pair of non-empty open sets S(x, ǫ), S(y, ǫ)
in X, the proof holds for any pair of non-empty open sets in X. Hence
(X,F) is transitive.

Conversely, let ǫ > 0 be given and let S(x, ǫ) and S(y, ǫ) be two

non-empty open sets in X. As
∞
∑

n=1
D( fn, f ) < ∞, choose r ∈ N such
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that
∞
∑

n=r
D( fn, f ) < ǫ

2
. Further, transitivity of a system forces any

open set U to visit S(y, 1
m

) for each m and hence the set of times
when any non-empty open set U visits S(y, ǫ) is infinite. Applying
transitivity to open sets U = ω−1

r (S(x, ǫ)) and V = S(y, ǫ
2
) we can

choose k such that ωr+k(U)∩V , φ. Consequently, there exists u ∈ U
such that d(ωr+k(u), y) < ǫ

2
. Also by corollary 1, d(ωr+k(u), f k(ωr(u))) <

k
∑

i=1

D( fr+i, f ) < ǫ
2

and hence by triangle inequality d(y, f k(ωr(u))) < ǫ.

As ωr(u) ∈ S(x, ǫ) we have f k(S(x, ǫ))∩ S(y, ǫ) , φ. As the proof holds
for any choice of non-empty open sets S(x, ǫ) and S(y, ǫ), the system
(X, f ) is transitive. �

Remark 5. The above proofs establish the equivalence of properties
like equicontinuity (minimality and transitivity) for the two systems
under the stated conditions. However, the proof uses the identity

D(ωn+k, f k(ωn)) <
∞
∑

i=1

D( fn+i, f ) ∀k, n ∈ N to establish the results. Con-

sequently, the proof utilizes the collective convergence of the se-
quences {(ωn

n+k
) : k ∈N} and does not make use of the commutativity

condition or the rate of convergence of the sequence ( fn) explicitly.
Hence the established results hold good under a weaker assump-
tion of collective convergence. Thus, the conditions imposed are
sufficient in nature and similar conclusions can hold good even in
absence of these conditions. We now give some examples in support
of our claim.

Example 1. Let X = S1 be the unit circle and α ∈ R be an irrational. For
each n ∈N, let fn : S1 → S1 be defined as

fn(θ) =

{

θ + α + 2
n+1

0 ≤ θ ≤ 1 if n is odd
θ + α − 2

n
0 ≤ θ ≤ 1 if n is even

Then fn converges uniformly to an irrational rotation and
∞
∑

n=1
D( fn, f ) is

infinite. However, as ω2n rotates the point theta by 2nα, both (X,F) and
(X, f ) are minimal although the sequence does not converge at sufficiently
fast rate. As the system (X,F) is equicontinuous (transitive), the example
shows that rate of convergence is not a necessary condition for properties
like equicontinuity (minimality or transitivity) to be equivalent for the two
systems.

Example 2. Let X = {0, 1}N be the collection of all one-sided sequences
of 0 and 1. For any x, y ∈ X, d(x, y) = 1

k
(where k is the least positive



ON DYNAMICS GENERATED BY A UNIFORMLY CONVERGENT SEQUENCE OF MAPS11

integer satisfying xk , yk) defines a metric on X and generates the product
topology. For each n ∈ N define φn : X → X be defined as φn(x) = yn

(where yn is obtained by deleting n-th entry from the sequence x) and let
f : X→ X be defined as f (x) = x+(100 . . .). LetF = { fn = f ◦φn : n ∈N}.

Then, fn converges uniformly to f and
∞
∑

n=1
D( fn, f ) is infinite. Further, the

family F does not commute with f and hence the system does not satisfy
any of the imposed conditions. However, both (X,F) and (X, f ) are minimal
(equicontinuous) and hence the properties are preserved in the absence of
imposed conditions.

Remark 6. The above examples show that equicontinuity (minimality
and transitivity) of the two systems can be equivalent without the im-
posed conditions. However, collective convergence plays a vital role
in establishing the equivalence and is needed for the proofs to hold
good. It may be noted that as D(ωn

n+r+1
, f r+1) = D( fn+r+1(ωn

n+r), f ( f r)) ≤
D( fn+r+1(ωn

n+r), f (ωn
n+r))+D( f (ωn

n+r), f ( f r)), if f is an isometry then un-
der ”fast convergence” of ( fn), the notion of uniform convergence
implies (and hence is equivalent to) the notion of collective con-
vergence. Consequently, if f is an isometry, the proofs establish-
ing equivalence of equicontinuity (minimality and transitivity) hold
good in the absence of ”commutative condition” and hence the dy-
namical behavior of the two systems is equivalent in this sense. Thus
we get the following results.

Proposition 5. Let (X,F) be a non-autonomous system generated by a
family F and let f be any continuous self map on X. If f is an isometry

and
∞
∑

n=1
D( fn, f ) < ∞ then {(ωn

n+k
) : k ∈ N} converges to { f k : k ∈ N}

collectively (with respect to the metric D).

Proof. We first prove that if f is an isometry then D(ωn
n+k
, f k) ≤

k
∑

i=1
D( fn+i, f ). As ωn

n+1
= fn+1, D(ωn

n+1
, f ) = D( fn+1, f ) and hence the

result is true for k = 1. It may be noted that D(ωn
n+r+1
, f r+1) =

D( fn+r+1(ωn
n+r), f ( f r)) ≤ D( fn+r+1(ωn

n+r), f (ωn
n+r)) + D( f (ωn

n+r), f ( f r)) ≤
D( fn+r+1, f )+D(ωn

n+r, f r) (as f is an isometry). Thus if the claim holds

for k = r then, D(ωn
n+r+1
, f r+1) ≤

r+1
∑

i=1

D( fn+i, f ) and hence D(ωn
n+k
, f k) ≤

k
∑

i=1

D( fn+i, f ) for any k ∈ N. As
∞
∑

n=1

D( fn, f ) < ∞, for any ǫ > 0,

there exists n0 ∈ N such that
∞
∑

i=1
D( fn0+i, f ) < ǫ. Consequently,
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D(ωn
n+k
, f k) < ǫ ∀k ∈ N, n ≥ n0 and hence the family {(ωn

n+k
) : k ∈ N}

converges collectively to { f k : k ∈ N} (with respect to the metric
D). �

Corollary 4. Let (X,F) be a non-autonomous system generated by a family

F. If f is an isometry and
∞
∑

n=1
D( fn, f ) < ∞ then (X, f ) exhibits equiconti-

nuity (minimality)⇔ (X,F) exhibits the same. Further, if F is feeble open
then (X, f ) is transitive⇔ (X,F) is transitive.

Remark 7. The above result establishes that if f is an isometry and
fn’s converge to f at a ”sufficiently fast rate” then uniform conver-
gence is equivalent to ”collective convergence”, which in general is
a stronger notion of convergence. It may be noted that the above
proof holds good when f does not expand any region in the space
i.e.,d( f (x), f (y) ≤ d(x, y) ∀x, y ∈ X and hence equivalence of uniform
convergence with collective convergence is established for a larger
class of maps. Consequently, if f is ”shrinking” (does not expand
any region of the space) and fn’s converge to f at a sufficiently fast
rate then properties like equicontinuity, minimality and transitivity
are equivalent for the two sysyems. Hence we get the following
corollary.

Corollary 5. Let (X,F) be a non-autonomous system generated by a family

F. If f is shrinking and
∞
∑

n=1

D( fn, f ) < ∞ then (X, f ) exhibits equicontinuity

(minimality)⇔ (X,F) exhibits the same. Further, if F is feeble open then
(X, f ) is transitive⇔ (X,F) is transitive.

Remark 8. The above proof establishes equivalence of properties like
equicontinuity (minimality and transitivity) in the absence of com-
mutativity condition. However, the proof requires the limit map f to
be an isometry (shrinking) which ensures collective convergence and
hence establishes the equivalence of mentioned dynamical properties
for the two systems. It may be noted that to establish the equivalence
of transitivity for the two systems, the proof requires the family F to
be feeble open (along with collective convergence of (ωn

n+k
)). How-

ever, the converse part does not use the feeble openness of the maps
fn and hence transitivity of the non-autonomous system is carried
forward to (X, f ) even when the family F is not feeble open. Further,
if N f (U,V)/NF(U,V) denotes the set of times when an open set U vis-
its V under f /F, the proof establishes that for each pair of open sets
U,V, there exists a pair of open sets U′,V′ of open sets such that the
set of times of interactions of U and V under F contains the translates
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(by a fixed number depending on the diameter of open sets and the
rate of convergence) of set of times of interactions of U′ and V′ under
f (and vice-versa). As the argument depends on the diameter of open
sets and not on open sets themselves, a argument similar to above
holds good for two pairs U1,U2 and V1,V2 of non-empty open sets in
X and hence weakly mixing is also equivalent for the two systems.
We include the proof for the sake of completion.

Proposition 6. Let (X,F) be a non-autonomous system generated by a

family F of feeble open maps commuting with f . If
∞
∑

n=1
D( fn, f ) < ∞ then

(X, f ) is weakly mixing⇔ (X,F) is weakly mixing.

Proof. Let U1,U2 and V1,V2 be a pair of two non-empty open sets in
X. Without loss of generality, let Ui = S(ui, ǫ) Vi = S(vi, ǫ) for i = 1, 2.

As
∞
∑

n=1

D( fn, f ) < ∞, ∃ r ∈N such that
∞
∑

n=r
D( fn, f ) < ǫ

2
. As fi are feeble

open U′
i
=int(ωr(Ui)) is open, applying weak mixing of f to pairs

U′
1
,U′2 and V′

1
,V′2 (where V′

i
= S(vi,

ǫ
2
)), there exists k ∈ N such that

f k(U′
i
) ∩ V′

i
, φ. A proof similar to the transitive case establishes

existence of ui ∈ Ui such that ωk+r(ui) ∈ Vi for i = 1, 2 and hence the
system (X,F) is weakly mixing.

Conversely, let ǫ > 0 be given and let U1,U2 and V1,V2 be two non-

empty open sets in X. Once again, as
∞
∑

n=1
D( fn, f ) < ∞, ∃ r ∈ N such

that
∞
∑

n=r
D( fn, f ) < ǫ

2
. Further, continuity of ωr implies U′

i
= ω−1

r (Ui)

is open in X. Applying weak mixing of the system (X,F) to pairs of
open sets U′

1
,U′2 and V′

1
,V′2 (where V′

i
= S(vi,

ǫ
2
)), a proof similar to

the transitive case establishes existence of ui ∈ Ui and k ∈N such that
f k(ui) ∈ Vi and hence (X, f ) is weakly mixing. �

Remark 9. The above result generalises proposition 4 and establishes
the equivalence of weakly mixing for the two systems under stated
conditions. As a result, feeble openness of fn’s is redundant for the
converse part and hence the proof holds good even when the maps
fn generating the non-autonomous system are not feeble open. It
may be noted that if f is topologically mixing map then for any non-
empty open set U, lim

n→∞
f n(U) = X. Consequently, there exists ǫ > 0

such that if U is open set such that DH(U,X) < ǫ then DH( f (U),X) < ǫ
(proof follows from the fact that if U is big enough then it cannot
shrink significantly as f is topological mixing). Consequently, as fn

converges uniformly to f , there exists n1 ∈ N such that if U is open
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set such that DH(U,X) < ǫ then DH( fn(U),X) < ǫ for all n ≥ n1. As
f is topological mixing there exists k0 ∈ N such that DH( f n(U),X) <
ǫ∀n ≥ k0. Further,ωn

n+k0
converges to f k0 and hence there exists n2 ∈N

such that D(ωn
n+k0
, f k0) < ǫ∀n ≥ n2. Thus if r = max{n1, n2} then for any

k ≥ k0, n ≥ r, triangle inequality ensures that DH(ωn
n+k

(U), f k(U)) < 2ǫ.
As the argument holds for a sequence of smaller ǫn > 0 (ǫn → 0), the
discussions ensure collective convergence of ωn

n+k
(U) to X and hence

the non-autonomous system is topologically mixing. It may be noted
that if non-autonomous system is topologically mixing then a similar
set of arguments once again establishes collective convergence of
ωn

n+k
(U) (to X) and hence topological mixing is equivalent for the two

systems unconditionally.

Proposition 7. Let (X,F) be a non-autonomous system generated by a
family F of feeble open maps. If ( fn) converges uniformly to f then, (X, f )
is topologically mixing⇔ (X,F) is topologically mixing.

Proof. The proof follows from discussions in Remark 9. �

Remark 10. The above result establishes equivalence of topological
mixing for the two systems if the family F is feeble open. The proof
uses the fact that for a topologically mixing system, if an open set
is ”large” then it stays ”large” for all times. Further as f r(U) and
f s(U) are close for large r, s and ωn

n+r converges to f r, ωn
n+k

converges
collectively and hence the non-autonomous system is topologically
mixing. It may be noted that any transitive map f on I = [a, b] is either
topologically mixing or there exists a fixed point c ∈ I such that for
P1 = [a, c],P2 = [c, b], f (P1) = P2, f (P2) = P1 and f 2|Pi

is topologically
mixing. As topologically mixing is equivalent for the two systems
for feeble open F, transitivity (and hence all forms of mixing) are
equivalent for the two systems when F is feeble open. Hence we get
the following corollary.

Corollary 6. Let I = [0, 1] be the unit interval and let (I,F) be a non-
autonomous system generated by a feeble open family F. If ( fn) converges
uniformly to f then, (I, f ) is exhibits any form of mixing⇔ (I,F) is exhibits
identical form of mixing.

We now turn our attention to various forms of sensitivities for the
two systems.

Proposition 8. Let (X,F) be a non-autonomous system generated by a

family F of feeble open maps commuting with f . If
∞
∑

n=1

D( fn, f ) < ∞ then

(X, f ) is sensitive⇔ (X,F) is sensitive.
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Proof. Let ǫ > 0 be given and let U = S(u, ǫ) a non-empty open set in

X. As
∞
∑

n=1
D( fn, f ) < ∞, by corollay 1 we obtain, for any ǫ > 0, there

exists n ∈N such that d(ωn+k(x), f k(ωn(x))) < ǫ for all x ∈ X, k ∈N.

Let δ > 0 be constant of sensitivity for f and let m ∈ N such that
1
m
< δ

4
. Thus, there exists n0 ∈ N such that d(ωn0+k(x), f k(ωn0

(x))) < 1
m

for all x ∈ X, k ∈ N. As fn’s are feeble open, ωn0
(U) is feeble open

and hence sensitivity of f implies there exists v1, v2 ∈ ωn0
(U) and

k ∈ N such that d( f k(v1), f k(v2)) > δ. As v1, v2 ∈ ωn0
(U), there ex-

ists v′
1
, v′2 ∈ U such that v1 = ωn0

(v′
1
) and v2 = ωn0

(v′2) and hence

d( f k(ωn0
(v′

1
)), f k(ωn0

(v′2))) > δ. Also d(ωn0+k(v
′
i
), f k(ωn0

(v′
i
))) < 1

m
for i =

1, 2 and thus by triangle inequality d(ωn0+k(v
′
1
), ωn0+k(v

′
2)) > δ− 2

m
> δ

2
.

Thus we obtain v′
1
, v′2 ∈ U such that d(ωn0+k(v

′
1
), ωn0+k(v

′
2)) > δ

2
and

hence (X,F) is sensitive.

Conversely, let (X,F) be sensitive with sensitivity constant δ and let
U be non-empty open in X. Let m ∈ N such that 1

m
< δ

4
. Thus, there

exists n0 ∈ N such that d(ωn0+k(x), f k(ωn0
(x))) < 1

m
for all x ∈ X, k ∈ N.

For any n ∈ N, as sensitivity of (X,F) ensures existence of kn ∈ N

with diam(ωkn(S(x, 1
n
))) > δ, the set {k : daim(ωk(S(x, 1

n
))) > δ} is infinite.

Consequently, for any non-empty open set U, the set of times k when
diam(ωk(U)) > δ is infinite. Thus, for the open set ω−1

n0
(U) , there

exists v1, v2 ∈ ω
−1
n0

(U) and k ∈ N such that d(ωn0+k(v1), ωn0+k(v2)) > δ.

As v1, v2 ∈ ω
−1
n0

(U), there exists v′
1
, v′2 ∈ U such that v′

1
= ωn0

(v1) and
v′2 = ωn0

(v2) and hence d( fn0+k ◦ . . . fn0+1(v′
1
), fn0+k ◦ . . . fn0+1(v′2)) > δ.

Also d(ωn0+k(vi), f k(ωn0
(vi))) <

1
m

or d(ωn0+k(vi), f k(v′
i
)) < 1

m
for i = 1, 2

and thus by triangle inequality d( f k(v′
1
), f k(v′2)) > δ − 2

m
> δ

2
. Thus

we obtain v′
1
, v′2 ∈ U such that d( f k(v′

1
), f k(v′2)) > δ

2
and hence (X, f ) is

sensitive. �

Remark 11. The above result provides sufficient conditions under
which the sensitivity of the two systems (X,F) and (X, f ) is equiv-
alent. Once again, the proof uses the collective convergence of the
set of sequences {(ωn

n+k
) : k ∈ N} and neither commutativity nor

the rate of convergence is used explicitly to establish the results. It
is established that if the collective convergence is guaranteed, fee-
ble openness ensures that sensitivity of (X, f ) implies sensitivity of
(X,F). However for the converse part, feeble openness is redundant
and collective convergence is sufficient to preserve the sensitivity
in the other direction. Further, the choice of m( 1

m
< δ

4
) is arbitrary
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and can be made finer which in turn ensures greater separability of
points for the systems considered. Hence the constant of sensitivity
is preserved and the two systems are sensitive with same constant
of sensitivity. Further, the above proof establishes that for any pair
of distinct points x, y ∈ X there exists points x′, y′ such that the set
of times of separation of x and y in the non-autonomous system
contains the translates (by a fixed number depending on the rate
of convergence) of set of times of separation of x′ and y′ in the au-
tonomous system (and vice-versa). In particular, a similar argument
establishes that for any non-empty open set U, there exists a non-
empty open set U′ such that the set of times of expansivity of U in the
non-autonomous system contains the translates (by a fixed number
depending on the rate of convergence) of set of times of expansitiv-
ity of U′ in the autonomous system and vice-versa. Consequently,
if the autonomous(non-autonomous) system is cofinitely sensitive
then non-autonomos(autonomous) system is also cofinite sensitive
and hence cofinite sensitivity is equivalent for the two systems.

Corollary 7. Let (X,F) be a non-autonomous system generated by a family

F of feeble open maps commuting with f . If
∞
∑

n=1
D( fn, f ) < ∞ then (X, f ) is

cofinitely sensitive⇔ (X,F) is cofinitely sensitive.

Remark 12. The above proof establishes the equivalence of sensitivity
(and strong sensitivity) for the two systems (X,F) and (X, f ). How-
ever, the proof once again utilizes the collective convergence guaran-
teed by ”commutative condition” and ”fast convergence” and does
not use any of the imposed conditions explicitly. Hence the above
conclusions hold good under collective convergence and can hold
good without ”commutative condition” and ”fast convergence”. Fur-
ther, it is worth noting that feeble openness is a necessary condition
for the results to hold good and hence cannot be dropped. We now
give some examples in support of our statement.

Example 3. Let S1 be the unit circle and let fn : S1 → S1 be defined as
fn(θ) = 2θ + 1

n
. Then ( fn) converges uniformly to the angle doubling map

(say f ). It may be noted that
∞
∑

n=1

D( fn, f ) is infinite and the family F does

not commute with the limit map. However, if F = { fn : n ∈ N} then both
(X,F) and (X, f ) exhibit all forms of mixing. Further, as both (X,F) and
(X, f ) exhibit sensitivity (and cofinite sensitivity), neither of the conditions
imposed is necessary for preserving any kind of mixing or sensitivity.

Example 4. Let I be the unit interval and let f : I→ I be defined as
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f (x) =

{

2x for x ∈ [0, 1
2
]

2 − 2x for x ∈ [1
2
, 1]

and let

g(x) =

{

1 for x ∈ [0, 1
2
]

2 − 2x for x ∈ [1
2
, 1]

Let (X,F) be the non-autonomous system generated by F = {g, f , f , . . .}.
It may be noted that asωn

n+k
= f k, collective convergence of {(ωn

n+k
) : k ∈N}

is ensured. However, as (X, f ) exhibits all forms of mixing and sensitivities
but (X,F) does not exhibit any form of mixing or sensitivity, feeble openness
of the family F is a necessary condition for preserving any notion of mixing
or sensitivity.

Proposition 9. Let (X,F) be a non-autonomous system generated by a
familyF. If ( fn) converges uniformly to f , then, x is periodic for (X,F)⇒ x
is periodic for (X, f ).

Proof. Let x0 be periodic for (X,F) with period k and let ǫ > 0 be
given. As ωn

n+k
converges uniformly to f k, there exists n0 ∈ N such

that D(ωn
n+k
, f k) < ǫ ∀n ≥ n0. Therefore, d(ωn0k

n0k+k
(x), f k(x)) < ǫ for any

x ∈ X and hence d(ωn0k

n0k+k
(ωn0k(x0)), f k(ωn0k(x0))) < ǫ. As ωrk(x0) = x0

for all r, the above argument ensures d( f k(x0), x0) < ǫ. As the result
holds good for any ǫ > 0 we have f k(x0) = x0 and hence x0 is periodic
for f with period k. �

Remark 13. The result establishes that if x is periodic for (X,F) then x
is periodic for (X, f ). The proof utilizes the fact that if ( fn) converges
uniformly to f then for any fixed k ∈ N, ωn

n+k
converges to f k. As

the result utilizes the convergence of ωn
n+k

for a fixed k, the proof
requires only the uniform convergence of ( fn) and is true without
any other additional assumptions. Consequently if (X,F) has dense
set of periodic points then (X, f ) also exhibits dense set of periodic
points. However, the results only establishes the preservance of
periodic points in one direction and existence of periodic points (or
dense set of periodic points) is not equivalent for the two systems.

Corollary 8. Let (X,F) be a non-autonomous system generated by a family
F. If ( fn) converges uniformly to f , then, (X,F) has dense set of periodic
points⇒ (X, f ) has dense set of periodic points.

Example 5. Let S1 denote the unit circle and let F = { fn : n ∈ N} where
fn : S1 → S1 is defined as fn(θ) = θ + 1

n2 . Then fn’s are rotations on unit
circle converging uniformly to identity I and hence every point is periodic

for (S1, I). However, as
∞
∑

n=1

1
n2 =

π2

6
< 2π, the non-autonomous system
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(S1,F) does not have any periodic point and hence the converse of the above
result is not true.

Proposition 10. Let X be compact and let (X,F) be a sensitive non-
autonomous system generated by a family F. Then for any x ∈ X, ProxF(x)
is dense in X⇔ LYF(x) is dense in X.

Proof. For any x ∈ X, it may be noted that if (X,F) is sensitive with
sensitivity constant δ, then for any y ∈ X and any neighborhood Uy

of y, there exists y′ ∈ Uy and k ∈ N such that d(ωn(y), ωn(y′)) > δ.

By triangle inequality, d(ωn(x), ωn(y)) > δ
2

or d(ωn(x), ωn(y′)) > δ
2

and

hence the set of points δ
2
-sensitive to x are dense in X.

Let ǫ > 0 be fixed. For any x ∈ X and any non-empty open

subset U of X, let V be non-empty open such that V ⊂ V ⊂ U. As
ProxF(x) is dense in X, there exists y ∈ V such that the pair (x, y) is
proximal and hence there exists n1 ∈N such that d(ωn1

(x), ωn1
(y)) < ǫ.

By continuity, there exists a neighborhood U1(⊂ V) of y such that
d(ωn1

(x), ωn1
(u1)) < ǫ for all u1 ∈ U1. As the set of points δ

2
-sensitive

to x are dense in X, there exists y1 ∈ U1 and m1 ∈ N such that
d(ωm1

(x), ωm1
(y1)) > δ

2
and once again by continuity there exists a

neighborhood V1(⊂ U1 ⊂ V) of y1 such that d(ωn1
(x), ωn1

(v1)) < ǫ
and d(ωm1

(x), ωm1
(v1)) > δ

2
for all v1 ∈ V1. Hence for ǫ > 0 and any

pair x,U (where x ∈ X and U is non-empty open subset of X) there
exists n,m ∈ N and a non-empty open subset Uǫ of X (satisfying

Uǫ ⊂ Uǫ ⊂ U) such that d(ωm(x), ωm(u)) > δ
2

and d(ωn(x), ωn(u)) < ǫ
for all u ∈ Uǫ.

Let x ∈ X and U be any non-empty open subset of X. By argument

above there exists non-empty open set U1, U1 ⊂ U1 ⊂ U and n1,m1 ∈

N such that d(ωm1
(x), ωm1

(y)) > δ
2

and d(ωn1
(x), ωn1

(y)) < 1
2

for all y ∈
U1. Repeating the process for the pair (x,U1), there exists U2 satisfying

U2 ⊂ U2 ⊂ U1 and n2,m2 ∈ N such that d(ωm2
(x), ωm2

(y)) > δ
2

and

d(ωn2
(x), ωn2

(y)) < 1
4

for all y ∈ U2. Inductively, we obtain a decreasing

sequence Uk of non-empty open subsets of X such that Uk ⊂ Uk ⊂ Uk−1

and sequences (nk), (mk) ∈ N such that d(ωmk
(x), ωmk

(y)) > δ
2

and

d(ωnk
(x), ωnk

(y)) < 1
2k for all y ∈ Uk. As X is compact

∞
⋂

k=1

Uk , φ. Then

for any u ∈
∞
⋂

k=1

Uk, we have d(ωmk
(x), ωmk

(u)) > δ
2

and d(ωnk
(x), ωnk

(u) <

1
2k for all k and hence (x, u) is a Li-Yorke pair. As the argument holds
good for any non-empty open set U, LYF(x) is dense in X.
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As every Li-Yorke pair is proximal, proof of the converse part is
trivial. �

Remark 14. The result establishes that for sensitive systems, if proxi-
mal cells are dense in X for (X,F) then Li-Yorke cells are also dense.
It may be noted that the result does not use the compactness of the
space X completely and holds good for locally compact spaces also.
Further, the proof does not use denseness of the proximal cell com-
pletely and establishes that for a sensitive system, if proximal cell of
a point x is dense in a neighborhood of x then Li-Yorke cell is dense in
a neighborhood of x. Consequently, a similar argument establishes
that for a sensitive system, if proximal cell of a point x is dense in a
neighborhood of x then x is point of Li-Yorke sensitivity. The result is
a natural extension of the result established in [1] for the autonomous
systems.

Corollary 9. Let (X, f ) be a compact sensitive system. Then for any x ∈ X,
Prox(x) is dense in X⇔ LY(x) is dense in X.

Proposition 11. Let (X,F) be a non-autonomous system generated by a

family F commuting with f . If
∞
∑

n=1
D( fn, f ) < ∞ then, (x, y) is proximal for

(X, f )⇒ (x, y) is proximal for (X,F).

Proof. Let ǫ > 0 be given and let (x, y) be proximal for (X, f ). As (x, y) is
proximal, there exists a sequence (nk) inN such that lim

nk→∞
d( f nk(x), f nk(y)) =

0. As
∞
∑

n=1
D( fn, f ) < ∞, choose r ∈N such that

∞
∑

n=r
D( fn, f ) < ǫ

3
. Asωr is

continuous (and hence uniformly continuous), there exists η > 0 such
that for any u, v ∈ X, d(u, v) < η implies d(ωr(u), ωr(v)) < ǫ

3
. As (x, y) is

proximal for (X, f ), there exists nk ∈ N such that d( f nk(x), f nk(y)) < η
and hence d(ωr( f nk(x)), ωr( f nk(y))) < ǫ

3
or d( f nk(ωr(x)), f nk(ωr(y))) < ǫ

3
(by commutativity). Also by corollary 1, d(ωr+nk

(u), f nk(ωr(u))) <
nk
∑

i=1

D( fr+i, f ) < ǫ
3

for any element u in X. Thus by triangle inequality,

d(ωr+nk
(x), ωr+nk

(y)) ≤ d(ωr+nk
(x), f nk(ωr(x)))+ d( f nk(ωr(x)), f nk(ωr(y)))+

d( f nk(ωr(y)), f nk(ωr(y))) < ǫ. As the proof works for any ǫ > 0, (x, y) is
proximal for (X,F). �

Proposition 12. Let X be compact and let (X,F) be a non-autonomous

system generated by a family F commuting with f . If
∞
∑

n=1

D( fn, f ) < ∞

then, proximal cell of each x is dense for (X, f )⇔ proximal cell of each x is
dense for (X,F).
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Proof. As every pair proximal for (X, f ) is proximal for (X,F), if
Prox(x) is dense for (X, f ) then Prox(x) is also dense for (X,F) and
the proof of forward part is complete.

Conversely let ProxF(x) be dense for each x ∈ X. Fix x ∈ X and
let U be a non-empty open subset of X. Let U1 be non-empty open

such that U1 ⊂ U. As
∞
∑

n=1
D( fn, f ) < ∞, for each m ∈ Z+ there exists

rm ∈ N such that
∞
∑

n=rm

D( fn, f ) < 1
3.2m . Fix m = 1 and let Vm = ω

−1
rm

(Um).

Then Vm is open in X. Pick any xm ∈ ω
−1
rm

(x). As ProxF(xm) is dense

for (X,F), there exists a zm = ω
−1
rm

(ym) ∈ Vm (ym ∈ Um) such that
(xm, zm) is proximal for (X,F). Thus, there exists a sequence (nk,m)
in N such that lim

nk,m→∞
d(ωnk,m+rm(xm), ωnk,m+rm(zm)) = 0. Choose sm ∈ N

such that d(ωsm+rm(xm), ωsm+rm(zm)) < 1
3.2m . Also, by corollary 1, for

any w ∈ X, d(ωsm+rm(w), f sm(ωrm(w))) <
sm
∑

i=1

D( frm+i, f ) < 1
3.2m and hence

by triangle inequality, we have d( f sm(ωrm(xm)), f sm(ωrm(zm))) < 1
2m or

d( f sm(x), f sm(ym)) < 1
2m . By continuity, there exists neighborhood Um+1

of ym such that Um+1 ⊂ Um and d( f sm(ωrm(x)), f sm(ωrm(y))) < 1
2m for all

y ∈ Um+1.
Repeating the process for pair (x,Um) (for each m), we obtain a open

set Um+1, Um+1 ⊂ Um ⊂ U and sm ∈ N such that d( f sm(x), f sm(y)) < 1
2m

for all y ∈ Um+1. As Um+1 is a nested decreasing sequence of closed

sets in a compact metric space and hence
∞
⋂

m=1

Um , φ. Then, for any

u ∈
∞
⋂

m=1
Um ⊂ U, as u ∈ Um for all m, we have d( f sm(x), f sm(u)) < 1

2m

for all m and hence the pair (x, u) is proximal for (X, f ). As the proof
holds good for any non-empty open set U in X, Prox f (x) is dense in
X. �

Remark 15. The above proof establishes that proximal cell of each x
is dense for (X, f ) if and only if proximal cell of each x is dense for
(X,F) and hence the dynamical behavior of two systems in equivalent
in this regard. However, the proof does not exploit the denseness
condition and establishes that denseness of proximal cells in some
neighborhood is equivalent for the two systems. Further, by Propo-
sition 10, if a system is sensitive then denseness of proximal cells
and Li-Yorke cells is equivalent for the two systems. Equivalently,
if proximal cells are dense for a system then the system is sensitive
if and only if it is Li-Yorke sensitive. As sensitivity is equivalent for
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feeble open systems (with sufficiently fast rate of convergence), we
obtain the following corollary.

Corollary 10. Let (X,F) be a non-autonomous system generated by a family

F of feeble open maps commuting with f satisfying
∞
∑

n=1
D( fn, f ) < ∞. If

Prox(x) is dense in X for each x ∈ X, then (X, f ) is Li-Yorke sensitive⇔
(X,F) is Li-Yorke sensitive.

Proof. The result is a direct consequence of Proposition 8 and Remark
15. �

We now establish equivalence of denseness of proximal pairs for
the two systems.

Proposition 13. Let X be compact and let (X,F) be a non-autonomous

system generated by a family F commuting with f . If
∞
∑

n=1
D( fn, f ) < ∞

then, set of proximal pairs is dense for (X, f ) ⇔ set of proximal pairs is
dense for (X,F).

Proof. As every pair proximal for (X, f ) is proximal for (X,F), if (X, f )
has dense set of proximal pairs then (X,F) has dense set of proximal
pairs.

Conversely, let (X,F) exhibit dense set of proximal pairs and let
U1 × U2 be any non-empty open set in X × X. Let U′

i
be non-empty

open such that U′
i
⊂ Ui. As

∞
∑

n=1

D( fn, f ) < ∞, for each m ∈ Z+ there

exists rm ∈N such that
∞
∑

n=rm

D( fn, f ) < 1
3.2m .Fix m = 0 and let U1,m = U′

1

and U2,m = U′2. For i = 1, 2, let Vi,m = ω
−1
rm

(Ui,m). Then V1,m × V2,m is
open in X×X. Consequently there exists a (x1,m, x2,m) ∈ V1,m×V2,m such
that (x1,m, x2,m) is proximal for (X,F) and hence there exists a sequence
(nk,m) in N such that lim

nk,m→∞
d(ωnk,m+rm(x1,m), ωnk,m+rm(x2,m)) = 0. Choose

sm ∈ N such that d(ωsm+rm(x1,m), ωsm+rm(x2,m)) < 1
3.2m . Also, by corollary

2, d(ωsm+rm(xi,m), f sm(ωrm(xi,m))) <
sm
∑

i=1

D( frm+i, f ) < 1
3.2m and hence by

triangle inequality, we have d( f sm(ωrm(x1,m)), f sm(ωrm(x2,m))) < 1
2m .

Note that ωrm(xi,m) ∈ Ui,m and assuming ui,m = ωrm(xi,m) yields
d( f sm(u1,m), f sm(u2,m)) < 1

2m . Thus, there exists neighborhoods Ui,m+1

of ui,m such that Ui,m+1 ⊂ Ui,m and d( f sm(ωrm(x)), f sm(ωrm(y))) < 1
2m for

all x ∈ U1,m+1, y ∈ U2,m+1.
Repeating the process for each m, we obtain a nested sequence of

open sets Ui,m+1, Ui,m+1 ⊂ Ui,m ⊂ Ui such that d( f sm(ωrm(x)), f sm(ωrm(y))) <
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1
2m for all x ∈ U1,m+1, y ∈ U2,m+1. As Ui,m+1 is a nested decreas-
ing sequence of closed sets in a compact metric space and hence
∞
⋂

m=0
Ui,m , φ. Then, for any u1 ∈

∞
⋂

m=0
U1,m ⊂ U1, u2 ∈

∞
⋂

m=0
U2,m ⊂ U2, as

ui ∈ Ui,m for all m, we have d( f sm(u1), f sm(u2)) < 1
2m for all m and hence

(u1, u2) is proximal for (X, f ). As the proof holds good for any pair of
non-empty open sets U1,U2 in X, the set of pairs proximal for (X, f )
is dense in X × X. �

Remark 16. The above proofs establish the equivalence of denseness of
proximal cells (pairs) for the two systems (X,F) and (X, f ). The proofs
establish that under stated conditions, proximal pairs (each proximal
cell) are dense in (X,F) if and only if proximal pairs (each proximal
cell) are dense in (X, f ). It may be noted that to establish equivalence
of proximal cells (pairs) ”commutative condition” is explicitly used
and hence is needed for establishing the stated results. However, if
the family F is feeble open, a similar argument establishes identical
results under collective convergence of {(ωn

n+k
) : k ∈ N}. Hence

identical results can be obtained for a feeble open familyF if collective
convergence is guaranteed and the”commutative condition” is not
needed to establish the stated results. The discussions also establish
that if the familyF is feeble open and each proximal cell is dense then
Li-Yorke sensitivity is equivalent for the two systems. Consequently,
the results established hold good when the familyF is feeble open and
the collection {(ωn

n+k
) : k ∈ N} converges collectively. Further, feeble

openness is once again a necessary condition to establish equivalence
of Li-Yorke sensitivity for the two systems and the result does not
hold good if feeble openness of family F is dropped (as noted in
Example 4). The discussions lead to the following corollary.

Corollary 11. Let X be compact and let (X,F) be a non-autonomous sys-
tem generated by a feeble open family F. If {(ωn

n+k
) : k ∈ N} converges

collectively then, each proximal cell (proximal pairs) is dense for (X, f ) ⇔
each proximal cell (proximal pairs) is dense for (X,F).

Remark 17. The above results establish that the dynamical behavior
of (X,F) and (X, f ) are closely related when the family of sequences
{(ωn

n+k
) : k ∈ N} is collectively convergent. Such a condition is guar-

anteed when fn converges at a ”sufficiently fast rate” and the family
F commutes with the limit map f and hence the results derived hold
good when these two conditions are satisfied. As observed, such a
condition is also guaranteed (under fast convergence) when the limit
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map f is an isometry. However, ”sufficiently fast rate of conver-
gence” is not necessarily needed to establish collective convergence
(Example 1) and collective convergence is guaranteed if the cumu-
lative error can be made arbitrarily small. It may be noted that the
conditions implying collective convergence are natural and can arise
naturally in many applications. For example, if the non-autonomous
system is generated by a commutative family F, commutativity with
the limit function is guaranteed. Further, if fn converges uniformly to
f and f n = I (the identity function) for some n ∈N, the validity of the
derived results is guaranteed (under fast convergence). More gen-
erally, if fn converge uniformly to an isometry f then, convergence
at a sufficiently fast rate guarantees identical dynamical behavior of
the two systems under consideration. The results can be applied to
theory of group actions when the limit function is in the center of
the acting group and interesting dynamics can be observed in this
case. More generally, the results are true for a more generalized set
of assumptions which are in general difficult to verify. In any case,
the results derived can be visualized in many interesting situations
and can be applied to many natural phenomena.

3. Conclusion

In this paper, dynamics of a non-autonomous system generated
by a uniformly convergent sequence is investigated. In the process,
we relate the dynamics of the non-autonomous system (X,F) with
the dynamics of the limiting system (X, f ). It is observed that if the
family F commutes with f and fn converges to f at a ”sufficiently
fast rate” then many of the dynamical properties coincide for the two
systems (X,F) and (X, f ). In the process, equivalence of properties
like equicontinuity, minimality, transitivity, weakly mixing, various
notions of sensitivities, denseness of proximal cells and denseness
of proximal pairs is established. While we establish that topological
mixing for the two systems is equivalent for feeble open F, we prove
that if (X,F) has a dense set of periodic points then (X, f ) has a dense
set of periodic points. We give an example to show that the result
does not hold in the opposite direction. We prove that if the limit
map f is an isometry (shrinking), the established results hold good
without the ”commutative condition”. More generally, we prove that
the equivalence of the dynamics of (X, f ) and (X,F) can be established
under the weaker assumption of collective convergence. We establish
that denseness of proximal cell is equivalent to denseness of Li-Yorke
cells for sensitive systems. In the process, we generalize the result
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obtained in [1] to the non-autonomous case. We prove that denseness
of proximal cells (proximal pairs) is equivalent for the two systems
under collective convergence. We also give examples to investigate
the necessity of the conditions imposed.
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