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ON CONVEX VECTOR OPTIMISATION

JOYDEEP DUTTA

In this article we present a simple method to deduce necessary conditions for weak
minimisation of a convex vector program in a Banach space. Our main tool here
will be the generalised Jabcobian of Ralph.

1. INTRODUCTION

Let X, Y and Z be Banach spaces. Let K C Y and S C Z be closed and convex

cones in Y and Z respectively. Here we shall be concerned with the following vector

optimisation problem (VP).

Weak Minimise f(x)

subject to — g(x) € S

where / : X -y Y and g : X -> Z. We use Y' and Z' to denote the dual spaces of Y

and Z respectively. We shall assume throughout that int K / 0 and int 5 / 0. We

shall denote by K* and Z* the dual cones of K and S respectively. A point x* e X is

said to be weak minimum for (VP) if it is feasible for (VP) and there exists no feasible

x such that f(x) - f(x*) € — int K. For any given if-convex function h : X -* Y, the

vector subdifferential of h at a £ X is given by

dh(a) = {A e L(X, Y) : h(x) - h{a) - A(x - a) e K for all x e X}.

Our aim is to deduce necessary KKT conditions for weak minimisation of (VP) in terms

of the subdifferentials of / and g. In this context it is important to know when dh(a)

is non-empty since in general the vector subdifferential of a if-convex function could

be empty. Under mild conditions one can assert its non-emptiness by using the idea of

Ralph's generalised Jacobian [4] defined for locally Lipschitz vector functions. Given

h : X -> Y a locally Lipschitz vector function, the Ralph generalised Jacobian at a £ X

is defined by

d
R
h{a) = [A 6 L(X, Y) : V(w, A) e X x Y', (A/i)°(o,u) > XAu}
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where (Xh)°(a, u) denotes the Clark generalised directional derivative [1] of the scalar

locally Lipschitz function Ah at the point o £ X and in the direction u. It is known

from [4] that when Y is a reflexive Banach space then d
R
h(a) is a non-empty and

weak operator compact subset of L(X, Y). Though in general the Ralph's generalised

Jacobian is different from the Clarke's generalised Jacobian [1]; the Ralph's generalised

Jacobian coincides with the Clarke subdifferential when Y = R. (See [4].) Again

when Y is reflexive, from Ralph [5] we have that for all A e Y' the subdifferential

d
c
(Xh)(a) = Xd

R
h(a), where dc(A/i)(a) represents the Clarke subdifferential [1] of

the scalar function Xh : X —> R at the point a € X. For more details on the Ralph

subdifferential see [4] and [5].

2. MAIN RESULTS

We begin this section by proving the following lemma.

LEMMA 2 . 1 . Let f : X —t Y be a continuous K-convex function which is also

locally Lipschitz. Assume that Y is a reflexive Banach space. Then d
R
f(a) C df(a)

for all a G X.

PROOF: Since Y is reflexive we know that [4] d
R
f(a) is nonempty for all a e X.

Consider any A € d
R
f(a). Then by the definition of the Ralph generalised Jacobian

at a € I we have that

for all (u, A) € X x Y' we have (A/)°(o, u) 2 XAu.

Since K* C Y' we have that

for all («,A) € (X x IT), (A/)°(a,u) ^ XAu.

Again it is well known that for any A € K* the function Xf : X —> R is a Lipschtiz

convex function since / is a locally Lipschitz if-convex function. Hence the Clarke

generalised derivative (Xf)°(a,u) coincides with the one sided directional derivative

(A/)'(o, u) of the convex function Xf. This fact along with the convexity of Xf shows

that

Xf(x) - Xf(a) > {Xf)'(a,x- a) Js XA(x - a) for all x e X.

Hence we have that

Xf(x) - Xf(a) - XA(x - a) ^ 0

for all x 6 X and for any A € K*. By a standard separation argument we have that

f(x) - f(a) -A(x-a)€K for all x e X.

this proves the lemma. u
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REMARKS. The above result additionally shows the conditions under which one can

guarantee the nonemptiness of the convex vector subdifferential. In fact without as-

suming / to be a vector Lipschitz function we could have equivalently assumed that

the closed and convex cone K is normal. In fact if Y = R
m and K = iZ™ then

the subgradient of the vector convex function can be constructed from the subgradient

of the component scalar functions. Let us mention that if / is Prechet differentiable

at a e R
n then the Frechet derivative df(a) € df (a). Moreover if K is pointed then

9/(o) = {df(a}}. Also note that the vector subdifferential df(a) is a closed and convex

subset in L{X, Y).

In the context of the non-emptiness of the vector subdifferential in Banach spaces

it is important to note the work due to Craven and Glover [3] where they have used a

different approach to prove the non-emptiness of the vector subdifferential of a convex

vector function. One of the major assumptions considered in Craven and Glover [3,

Theorem 3.1] is the fact that the function is densely Gateaux differentiable in the sense

that the set of non-Gateaux differentiability forms a thin set. Craven and Glover define

a vector subdifferential and then show that the convex vector subdifferential contains

the vector subdifferential they define. For more details see Craven and Glover [3]. Our

approach differs from that of Craven and Glover in that it does not require the notion

of dense Gateaux differentiability in the sense mentioned above. It is also interesting to

note that [3, Theorem 3.1] can be deduced from [3, Lemma 4] and the above lemma.

THEOREM 2 . 1 . Consider the vector program (VP), in which Y and Z are re-

flexive Banach spaces, K C Y and S C Z are closed convex cones with interior,

f : X —> Y is locally Lipschitz and K-convex,

g : X -> y is locally Lipschitz and S-convex.

Let x* € X be a weak minimum for (VP). Then there exist (0,0) / (T, A) e K* x S"

such that

(i) 0 e rdf{x
m
) + XdG(x")

(ii) Xg(x')=0.

PROOF: Since Y and Z are reflexive Banach spaces it is clear that d
R
f{x*) and

d
R
g(x*) are nonempty. Since x* is a weak minimum the following system

-( / (x) - / (x ' ) , g(x)) 6 int (IT x S*), x € X

has no solutions. By using Craven's Basic Alternative Theorem (see [2, Theorem 2.1]) it

can be shown that there exists (0,0) / (r, A) e (K* x 5*) such that x* minimises the

scalar Lagrangian function L{., T, A) where L(x, r, A) = r/(x) + Xg(x) and additionally
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one can deduce that Xg(x*) = 0. Again as / and g are locally Lipschitz, rf + Xg is

also locally Lipschitz and hence from Clark [1] we have that

0 e d
c
{rf + Xg)(x*) and this implies that 0 e d

c
(Tf)(x*) + d

c
(Xg)(x*).

Again we know that d
c
(rf){x

m
) = rd

R
f(x*) and 9c(A^)(x*) = Xd

R
g(x'). This shows

that 0 € Td
R
f(x") + Xd

R
g(x*) and now by using Lemma 2.1 the theorem is proved. D

REMARKS. If we assume some constraint qualification then one can easily show that r

is non-zero and one can normalise r by considering it to be 1. This would lead to the

Karush-Kuhn-Tucker conditions. The KKT conditions are also sufficient since / and g

are if-convex and 5-convex functions respectively. One can now construct the Wolfe

dual easily and prove the strong duality theorem.
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