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On Adaptive Trajectory Tracking of a Robot 

Manipulator Using Inversion o-f Its Neural Emulator 
Laxmidhar Behera. Madan Gopal, and Santanu Chaudhury zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-This paper is concerned with the design of a neuro- 
adaptive trajectory tracking controller. The paper presents a 
new control scheme based on inversion of a feedforward neural 
model of a roh'ot arm. The proposed control scheme requires 
two modules. Tlhe first module consists of an appropriate feed- 
forward neural imodel of forward dynamics of the robot arm that 
continuously accounts for the changes in the robot dynamics. 
The second module implements an efficient network inversion 
algorithm that computes the control action by inverting the 
neural model. In this paper, a new extended Kalman filter (EKF) 
based network inversion scheme is proposed. The scheme is 
evaluated through comparison with two other schemes of network 
inversion: gradient search in input space and Lyapunov function 
approach. Using these three inversion schemes the proposed 
controller was implemented for trajectory tracking control of 
a two-link manipulator. Simulation results in all cases confirm 
the efficacy of control input prediction using network inversion. 
Comparison of the inversion algorithms in terms of tracking 
accuracy showed the superior performance of the EKF based 
inversion scheme over others. 

I. INTRODUCTION 

OBOT manipulators are characterized by complex non- R linear dynamical structures with inherent unmodeled 

dynamics and unstructured uncertainties. These features make 

the designing of controllers for manipulators a difficult task in 

the framework. of classical adaptive and nonadaptive control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[ I]-[4]. Artificial neural networks offer promising possibilities 

for providing better solutions to robot tracking problems, 

primarily because of their excellent capability to learn any 

complex mapping from training examples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ 5 ] ,  [6]. Simulation 

and experimental results of a number of investigators such as 

Narendra and Parthasarathy [7], Miller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [SI, Goldberg 
and Pearlmutter [9], Miyamoto et al. [ IO],  Bassi and Bekey 

11 11, Gomi and Kawato 1121, and others have confirmed the 

potential of these networks in the area of dynamic modeling 

and control of nonlinear systems. 

The existing literature on neural control of robot manip- 

ulators reveals that most of these applications are based on 

learning inverse dynamics of a robot arm. Some of these 

learning schemes of inverse dynamics can be summarized as 

follows. In direct inverse modeling of robot manipulators [8], 

191. the network is trained using input-output data of the plant 

in a reverse fashion (i.e., joint angle 0 + input torque 7 )  

directly. In the case of forward and inverse modeling [ 131, the 
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forward m,odel is learned by monitoring the input toque vector 

~ ( t )  and output joint position vector Q(t)  of the manipulator. 

Next, the desired trajectory d d ( t )  is fed to the inverse model 

to calculate the feedforward motor command zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ f f ( t ) .  The 

resulting error in the trajectory B d ( t )  - B(t) is backpropagated 

through the forward model to calculate the command error, 

which is then used as the error signal for training the inverse 

model. The feedback error learning scheme of Miyamoto et 
al. [lo] uses feedback torque as the error signal to train the 
inverse dynamic model of the robot arm. These inverse models 

compute t.he feedforward torque given a desired trajectory, and 

feedback stabilizing signal is actuated by a simple potential 

difference (PD) controller. 

In our present work, a different approach is proposed where 

instead of training a separate network to learn the inverse 

dynamics, we directly perform the iterative inversion of a 

forward model of a robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm to generate control action on- 

line. This approach avoids a separate scheme of providing a 

feedback stabilizing signal [8], [9], [ 141. The motivating factor 

for this work is to see the feasibility of implementing direct 

inversion of a neural network to actuate on-line control signal, 

an approach that has got little attention in control literature. 

This approach also provides an alternative to backpropagation 

of utility as proposed by Werbos [ 151 and Nguyen and Widrow 

[ 161, which are basically off-line schemes. 

Iterative inversion of multilayered neural networks based 

on gradient search in input space was first proposed by 

Linden and Kindermann [17]. This work shows that iterative 

inversion of a neural network model is possible by ascribing 

backpropagated errors in network output to errors in the 

network input signal. This technique has been extended to 

adaptive control of simple linear systems by Hoskins et al. 
[ 1 81. Lee [ 191 has proposed a network inversion scheme based 

on the L,yapunov function approach in application to pattern 

recognition problems. Extension of this technique to on-line 

inversion of neural networks to predict control input is not 

reported in the literature. Keeping these facts in mind, in this 

paper we have explored the applications of the above two 

inversion schemes to robot tracking problems. In an attempt 

to search for a fast and robust inversion scheme, we have 

proposed an extended Kalman filter (EKF) based inversion 

algorithm for radial basis function network model of multi- 
input/multioutput (MIMO) systems. The proposed inversion 

scheme was motivated by the algorithm proposed by Iiguni 

et al. [2.O] and Scalero and Tepedelenlioglu [21] for training 

feedforward networks. Since EKF was found to be fast and 

efficient for training multilayered networks (MLN's), EKF 
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based inversion is expected to give better performance for 

on-line inversion applications. 

The proposed controller based on each of the three different 

approaches of network inversion is implemented for a two-link 

robot manipulator. The forward dynamics of the manipulator is 

modeled by a radial basis function network (RBFN) network. 

The RBFN model is trained by input-output data generated in 

the robot workspace using a simple PD controller. Experiments 

were carried out to evaluate the efficiency of each inversion 

algorithm in terms of root mean square (rms) tracking errors 

by varying the initial conditions and changing the upper-bound 

on the number of iterations allowed per sampling interval to 

predict the control input. These experiments indicate that the 

performance of the EKF based inversion scheme is better 

than the other two. The present paper is organized in the 

following manner. Section 11 describes the nonlinear dynamic 

modeling using an RBFN and the corresponding learning 

mechanism. Three different schemes of network inversion are 

presented in Section 111. The structure of the proposed robot 

trajectory controller is explained in Section IV. In Section V, 

we provide the simulation results by implementing a proposed 

neuro-adaptive controller for tracking control of the two-link 

manipulator. Finally, concluding remarks are given in Section 

VI. 

11. RBFN MODEL OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFORWARD DYNAMICS OF ROBOT ARM 

Consider a class of nonlinear discrete time dynamical sys- 

tems described by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) = M k ) ,  4 k ) I  (1) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz ( k )  E R'L and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu ( k )  E Rp represent, respectively, state 

and input vectors of the system at the kth sampling instant. 

The states of the system are assumed to be accessible and 

nonlinear function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf ( . )  is assumed to be unknown. 

The unknown mapping I ( . )  can be learned using either 

an MLN or RBF network. In MLN, activation of output 

layer neurons has a highly nonlinear relationship with the 

network parameters. Training algorithms based on recursive 

least squares methods [22] or the EKF approach [20] ,  [21] 

are consequently computationally intensive. The popular back- 

propagation algorithm is prone to local minima trap and 

relatively slow in convergence. On the other hand, RBF 

network response is a linear function of its weights. This 

allows us to choose any of the least squares methods to train 

the network. In general, the leaming i n  RBFN is fast. As we 

require the neural emulator to account for continuous changes 

in plant dynamics, RBFN is preferred over MLN. 

A. Neural Modeling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f f  (.) Using RBFN 

output of such a network can be expressed as 

Fig. 1 shows an m-inputln-output RBF network. The ith 

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
oi zz ,qi(u) = C 0ij4,f(iIv - cjli) (2 )  

where v E X" is the network input vector; 1 1  . 1 1  denotes the 

Euclidean norm; cJ E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" , 1 5 j 5 e are RBF centers; $ j ( . )  is 

j=l 

Input un i rs  Computing Ourpur u n i t s  
un i t s  

An m - i n p u t  n -ou tpu t  RBF N e t w o r k  

Fig. 1. An m input n-output RBF network 

the j t h  activation function of hidden layer; d i J  , 1 5 j 5 e,  1 5 
i 5 n are the connection weights from hidden layer to output 

layer; and L is the number of hidden units in the first layer. 

Typical choices for activation functions are Gaussian, thin- 

plate splines, etc. With any one of these activation functions 

RBF networks are capable of constructing reasonably good 

approximations of unknown functions [23] ,  [24]. In fact, 

Powell [6] has shown that thin-plate-spline functions have 

good modeling capability. For our present application we have 

opted for the following thin-plate spline function: 

(3) 

We have made this choice because with this activation func- 

tion, unlike a Gaussian function, we do not need to estimate 

the free parameter, i.e., width of the basis function [25] .  RBF 

network parameters 0 and c are required to be determined 

so that network response g( .) can approximate the underlying 

dynamics f(.) in (1). Define the input vector w ( k )  as 

4j ( d )  = d2 log d. 

w(k) = [.(k)';u(k)T]'. (4) 

i ( k  + 1) = g ( v ( k ) ; c ;  0) .  

Then the estimated states will be described as 

( 5 )  

The estimation error e(k + 1) is defined by 

e(k  + 1) = z ( k  + 1) - 2 ( k  + 1) 

= f [ z ( k ) ,  4 k ) l  - q [ v ( k ) ,  c, 01. (6) 

The RBFN has captured the dynamics for an optimal set of 

parameters 8 and c if 

llf(2,u) - g(v, c, H ) J l  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIle < E for all (x; U )  E D (7) 

where E is a suitably chosen constant and D is the region of 

operation in the input space. 

B. RBFN Learning 

A number of leaming algorithms [19], [23] ,  [26], [271 

is available to train RBF networks. Here we will briefly 

summarize the learning mechanisms available for real-time 

applications. RBFN is trained in a two-stage process: 1)  
choosing radial centers and 2)  adjusting weights. 
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The radial centers are chosen in such a manner that these 

centers suitably sample the network input domain and should 

be able to track the changing pattern of data. One of the 

practices is to use an n-means clustering technique to update 

the RBF centers as suggested by Moody and Darken [28]. 

In this work we have chosen these centers to be of uniform 

random distribution over the input space. 

Because the response of the network is linear with respect 
to its weights, the recursive least squares methods may be 

used for adjusting weights. In the following we provide 

the recursive least squares algorithm (RLS) that has been 

employed in the present work. 

The ith output of the RBFN described earlier can be written 

as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2i = $TQ;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,... , T L  (8) 

where E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR‘ is the output vector of the hidden layer; 0i E Re 
is the connection weight vector from the hidden units to the ith 
output unit. The weight update equations as per RLS algorithm 

are described ,as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e@) =e,@ - 1) + P(k)$(k - 1) 

P(k )  = P ( k  - 1) - P(k - l)$h(k - 1)[1+ q5(k - 1)T 

’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[s;(k) - q5(k - l y & ( k  - l)] 

. P ( k  - l)d(k - l)]-h$(k - 1 ) T P ( k  - 1) 

(9) 

(10) 

where P(k )  E Initial value P(0) is taken as 201 for 
the present application and that of weight vector 0; can be 

assigned to zero or small random numbers. 

111. NETWORK INVERSION ALGORITHMS 

In this section, we present three different network inversion 

schemes which are useful for applications in control. The 

RBFN model I as given by (5 ) ]  represents a nonlinear mapping 

from m-dimensional input space to n-dimensional output 

space where 12 < m(m = p + n) .  The objective of inverse 
operation on this model is to predict only p-inputs out of m 
number of total inputs. The remaining n inputs are known a 
priori (present system states). Thus the inverse mapping can 

be mathematically expressed as 

G ( k )  = g- l [ z (k ) , x ” ( k  + l ) ,c ,Q] (1 1) 

where z d ( k  + 1) is the desired output activation. This 

shows that basically we are performing invenion mapping 
9 - I :  !JP + W where p < n for the N-link robot manipulator 

tracking control ( p  = N ,  n = 2 N ) .  
These inversion algorithms carry out the mapping given in 

(1 1) by updating input activation i ( k )  iteratively until desired 

output activation is achieved or the number of iterations 

reaches a maximum, t,,, within a sampling interval. This 
upper-bound trlldX, therefore, should be determined on the 

basis of the sampling interval and the computation time 

required per iteration. It is clear from this discussion that speed 

of convergence of the inversion algorithm can be measured 

by the number of iterations required to produce the de?ired 

output. The initial guess of the input activation G ( k )  during 
each sampling interval is taken as the input activation i ( k  - 1) 

predicted in the previous sampling instant. For the case of first 

sampling interval, the initial guess is selected arbitrarily from 

the input space. 

A. Gradient Search (GS) in Input Space 

The iterative inversion of the RBF network can be carried 

out using the gradient descent algorithm as proposed by Linden 

and Kindermann [17]. The iterative rule is given as 

3E + .[.;t(k) - i i-yk)] (12) G t + l  ( k )  = .;E(k) - 17- 
3u: ( k )  

where t refers to iterative step, 7 is the learning gain, and 

a! is the momentum rate. The error function is given by 

E = 112 C:=.=,(xp - 2%)’. To prevent the input activation 

i ( k )  from growing without limit, the input is conlsidered as 

an output of a “pseudoneuron” with a limited output range 

[171. 
For the RBF network shown in Fig. 1, with thin-plate-spline 

activation function, dE/du,  can be expressed as 

and 

k=l  

where d ( k )  = ((‘U - c k / ( ~  

B. Inverse Mapping Following Lyapunov 
Function (LF) Approach 

The inverse mapping based on the Lyapunov function as 
a general means of achieving a recall process for selective 

attention as applicable to a pattern recognition process has 

been presented by Lee [19]. We adapt the same concept for 

control applications in the following way. 

The Lyapunov function candidate V is chosen to be a 
quadratic error function in desired trajectories given by 

V = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$kTx where x = zd - 3 .  (15) 

Here, xd is the desired output activation and 3 is the actual 

output activation of the RBFN model. The time dlerivative of 
the Lyapunov function is given by 
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Theorem I :  If an arbitrary initial input activation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(0) is 

updated by 

U * (t ') = u(0) + U d t  (17) .i' 
where 

then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx converges to zero under the condition that U exists 

along the convergence trajectory. 

Proof Substitution for U from (1 8) into (1  6) we have 

v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-115$ 5 0 (19) 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV < 0 for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 # 0 and Q.E.D. 

The iterative input activation update rule based on (17) can 

be given as 

= 0 iff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 0. 

&(t)  = U( t  ~ 1) + @(t - 1) (20) 

where p is a small constant representing the update rate. 

C. EKF-Based Inversion Algorithm 

The EKF-based algorithm was proposed for training of 

MLN's by Iiguni et al. [20], Scalero and Tepedelenlioglu [21], 

and others. Here we propose a decoupled form of the inversion 

algorithm based on the EKF approach for RBF networks. 

EKF is a method of estimating the state vector. Here, the 

unknown input vector u ( k )  is considered as the state vector to 

be estimated. The input vector of RBFN has m-components 

out of which n-inputs, i.e., the present state vector of the 

system ~ ( k )  are known at the kth sampling instant. Remaining 

p components ( u ( k ) )  of the input vector 'U are estimated 

through the inversion process. During the iterative inversion 

of the network, RBFN parameters c and 6' are held constant. 

So, RBFN output can be expressed as 

The individual update of an input U, can be decoupled from 

other updates if we assume that other ( p  - 1) inputs are known 

a priori. In other words, estimates of these ( p  - 1) inputs 

obtained in the previous iteration can be used for the update 
of the ith input in the present iteration. The inversion scheme 

presented here is based on this assumption. 

Let the output vector and desired output vector of RBFN 

corresponding to the tth iteration and kth sampling instant 

be 3 ( k . t )  and ~ ' ( k  + I), respectively. The RBFN can be 

expressed by the following nonlinear system equations as 

a function of the ith input ( k  has been dropped from the 

argument list for convenience): 

Here, [ ( t )  is assumed as a white noise vector with n x n 
covariance matrix R(t). The application of EKF to (22) and 

(23) gives the following real-time learning algorithm [29]: 

i i ; ( t)  = i i i ( t  - 1) + K;(t)[& - q t ) ]  
Kz(t) =Pi(t - I)Hi(t)T[Hi(t)P,(t - l )Hi( t )T + R,( t ) ]y  

P,(t) = Pz(t - 1) - Pi(t - 1)Ki( t )H,( t )  

(24) 

(25) 

(26) 

where Ki( t ) ,  the (I  x n)  matrix, is called the Kalman gain 

and Hi ( t ) ,  the (n  x 1) matrix, is defined as 

The j th  element of H,( t )  can be expressed for the case of 

thin-plate-spline activation function as follows: 

The expression for 30,/3u, is given in (14). During the 

inversion process as each output of the feedforward network 

is considered to be an independent function of control inputs 

only (23) ,  the output covariance matrix R(t) can safely be 

assumed to be diagonal matrix X I .  This assumption avoids 

the matrix inversion involved in (25). Applying the matrix 

inversion lemma. we have 

j' (29) 
Pz(t - l )H,( t )Hi( t )T 

x + P;(t - I )H i ( t )THi ( t )  
= -  I- ; [ 

The inversion algorithm is simplified as 

As covariance matrix R(t) is unknown a priori, X is 

estimated on-line using the following recursion [20]: 

i ( t )  = i ( t  - 1) + w ( t )  

where ~ ( t )  = l/t. 
This inversion algorithm, as indicated before, is decoupled 

in nature with respect to input updates. Decoupling of pre- 

diction of inputs can help in parallel implementation of the 

algorithm which is very important advantage for real-time 

applications. 
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r - r  

c n ,  

I 1 I 

500 1000 1500 

sampling instants 

Training data generated by tracking "pick and place" traiectories: I )  
torque input at joint 1;-2) torque input at join; 2; 3 )  joint I posiiion; and 4) 
joint 2 position. (JnpuVoutput data are normalized and scaled differently.) 

Iv. NEURAL CONTROLLER FOR ROBOT MANIPULATOR 

The vector equation of motion of the N-link rigid manipu- 

lator can be written in the form 

M(q)ii + c ( q . 4 4  + G(q) = 7 (34) 

where 7 is the N x 1 vector of joint actuator torques, q is the 
N x 1 vector of joint positions, M ( q )  is an N x N inertial 

matrix, C(q, 4)Q represent torque arising from centrifugal and 

Coriolis forces, and G(g) represent torques due to gravitational 

effects. 

The model in (34) suffers from two kinds of dynamic 

uncertainties: structured and unstructured. The structured un- 

certainties are due to uncertainties in parameter values while 

unstructured uncertainties are because of unmodeled effects 
such as friction, joint flexibility, motor backlash, and external 

5 

4 

3 

2 

1 

0 

Fig. 4. 
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i- 4 

I- 4 

I I I 1 1  
500 1000 1500 

sampling instants 

Training data generated by tracking sinusoid trajectories: I )  torque 
input at joint 1; 2) torque input at joint 2; 3) joint 1 position; and 4) joint 2 
position. (Input/output data are normalized and scaled differently.) 

disturbances. To account for both types of uncertainties, we 
opted for a neural model of the robot arm using a priori 
knowledge of the approximate model (34). Thus in (l), z ( k )  
is chosen as z ( k )  = [ q (k )T !  4 ( k ) T ] T ,  2N x 1 vector and u(k) 
is assigned as u ( k )  = ~ ( k ) ,  N x 1 vector. 

The RBFN model of the robot arm learned using training 

data, in the format given in (3, is placed in parallel to the 

actual plant to take account of on-line dynamic changes. 

Once the neural emulator of the plant is obtained, the con- 

trol objective can be defined as follows. Given the desired 

trajectory z d ( k  + 1) = [ q d ( k  + l ) T , Q d ( k  + l)T:IT and the 

present state z ( k )  = [ q (k )T ,  q(k)'IT, compute the input joint 
torque ~ ( k )  using the iterative network inversion algorithm so 

that RBFN output activation approximates desired response. 

During inversion, at each sampling instant the initial guess of 
control input is chosen to be .r(k - 1). The controller structure 

thus described is shown in Fig. 2. 
Prediction of the control input at the Kth sampling instant is 

carried out in the following steps after neural-network training 

is over. 

1) Get z ( k )  from sensors, z d ( k + l )  from trajectory planner 

2) Start iterative inversion; t = 0 (iterative step); and 

and assign zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii(k - 1) to i ( k ) .  

&(t)  = & ( k )  

loop: f = t + l  
Compute RBFN response k(k  + 1). 
If I (z" (k  + 1) - k(k  + 1)11 < E, or if t >. t,,,, then 

{stop iterative loop and actuate control action 

else {update input vector u ( k )  using any of 

(GS/LF/EKF) and go to loop}.  

q k )  = i ( t ) }  

the inversion algorithms 
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Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5.  Position tracking of joint 1 using inversion algorithms GS, LF, EKF, and EKF (after retraining of RBFN model) 
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Fig. 6. Position tracking of joint 2 using inversion algorithms GS, LF, EKF, and EKF (after retraining of RBFN model). 

V. SIMULATION RESULTS 

of freedom manipulator used by Slotine and Li [l] are used 
for input-output data generation and controller structure is 

obtained based on these sets of data only. The robot arm 
dynamics can be written explicitly as 

where C21 = cos(qz - ql),S21 = sin(q2 - 41). The four 

and ‘.O2’ kg-m2, 
As an example, the dynamic equations of the two-degree- parameters a1,a21 a31 and a4 are taken as 0.15, 0.04, 0.033 

On-Line Data Generation 
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Fig. 7. Neural controller response of joint 1 using EKF based inversion algorithm: before and after retraining of RBFN model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Neural controller response 
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Fig. 8. Neural controller response of joint 2 using EKF based inversion algorithm: before and after retraining of RBFN model. 

trajectories (Fig. 4). The robot joint work space is constrained 

by following boundaries (the joint position is expressed in 

radian) 0 < 41 < 5.0,0 < 42 < 7 and input torque limit is set to 

at each sampling instant, various dither signals in the form of 

white noise, impulses, step functions, and ramp and parabolic 

types of functions are added to the PD controller output to 

improve generalization capabilities of the RBFN model. In 

this way we generated 3000 pairs of input-output data taking 

the sampling interval to be 10 ms. The command sinusoid 
trajectories for the PD controller are taken as 

-8.0 < 7 1 , ~ ~  < 8.0 N . m. While tracking random trajectories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq d ( t )  = qr + Qmdx(l - COS&). 

The trajectory parameters ( p a x I  U )  expressed in (radian, 
radianh) are fixed at values (2.0, 3.0) and (1.2, 5.0) for joint 

1 and joint 2, respectively, while qr is varied randomly over 
the interval (0,7r/4). 
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8.0,S.O 

TABLE I 
COMPARATIVE PERFORMANCE OF INVERSION ALGORITHMS POSITION TRACKING OF JOINT 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 0.072 0.036 0.01 
10 0.086 0.01 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.01 

Initial Maximum 
Condition number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) iterations t- 

3 
-8.0,-8.0 5 

10 

3 

10 

3 

0.0,o.o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
10 

3 

4.8,-3.2 5 
10 

3 
8.0,8.0 5 

10 

-3.2,4.8 5 

rms error in Joint 2 position 

GS LF EKF 

0.036 0.1 0.02 
0.03 0.38 0.02 

0.013 0.057 0.02 

0.045 0.02 0.02 
0.02 0.032 0.018 

0.018 0.089 0.019 

0.037 0.09 0.02 
0.027 0.0153 0.016 

0.015 0.012 0.026 

0.018 0.43 0.021 

0.24 0.044 0.0 18 

0.04 0.018 0.026 

0.1 0.02 0.019 
0.035 0.058 0.017 
0.045 0.04 0.027 

B. RBFN Model trajectories. After training was over the rms error for the test 

data set was found to be 0.003. 

C. Comparison of Three Inversion Schemes 
Bused on Proposed Controller 

are chosen as 

The RBFN model for the two-link manipulator given by 

(35) and (36) is designed to have six inputs ( r ( k ) ,  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(,k), q ( k ) )  
and four outputs ( q ( k  + l), k ( k  + 1)). The model incorporates 

100 hidden computing units. Training of the RBFN is carried 

numbers of passes (30000 

iterations). Then following the same technique used for gener- 

using 3ooo data pairs for The desired trajectories for both joints of the manipulator 

ation of training data, we generated a test data set for 10 new q d l ( t )  = 1.5(1 -  COS^^) (37) 
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Initial Maximum 
Condition number of 

iterations t,, T (0) 

3 
-8.0,-8.0 5 

10 

3 
-3.2,4.8 5 

10 

1409 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rms error in Joint 1 velocity 

GS LF EKF 

0.093 0.05 0.012 

0.085 0.16 0.012 

0.043 0.028 0.012 

0.058 0.035 0.012 
0.042 0.032 0.02 

0.028 0.04 0.012 

TABLE I11 
COMPARATIVE PERFORMANCE OF INVLRSION ALGORITHMS VELOCITY TRACKING OF JOINT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 

8.0,8.0 
3 0.13 0.045 0.02 

5 0.077 0.065 0.0 168 
10 0.123 0.029 0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 0.092 0.068 0.013 1 :O 1 0.034 1 0.027 I :::: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0,o.o 0.054 0.022 

Initial 

Condition 

T (0) 

-8.0,-8.0 

-3.2,4.8 

3 0.054 0.26 0.021 
4.8,-3.2 0.196 0.034 0.01 1 1 :O 1 0.094 1 0.017 1 0.014 

Maximum 

number of 

iterations t,, 

rms error in Joint 2 velocity 

GS LF EKF 

3 0.06 0.093 0.01 1 
5 0.034 0.21 0.01 
10 0.017 0.056 0.0099 

3 0.021 0.049 0.01 
5 0.0 14 0.05 1 0.01 

10 0.012 0.07 0.01 

0.0,o.o 

4.8,-3.2 

8.0,S.O 

3 0.038 0.088 0.016 
5 0.01 7 0.038 0.01 1 
10 0.014 0.029 0.009 

3 0.021 0.5 0.018 
5 0.145 0.055 0.01 1 

10 0.0499 0.03 1 0.014 

3 0.09 0.065 0.018 
5 0.029 0.074 0.018 
10 0.06 0.048 0.016 

(1$2 ( t )  = (1 - cos 5 t ) .  (38) 

The control algorithm presented in Section IV is imple- 
mented for all three inversion algorithms. For the gradient 

search scheme the leaming rate is fixed at 1 .O. The Lyapunov 

function-based inversion scheme, as given in (18) and (20), 
is implementetl choosing ~ to be o. 1 ,  The initial values 

for implementation of the EKF-based inversion algorithm 

[(30)-(33)] are selected as = p2 = 1.0 and X(0) = 0.05. In 

all the cases, the initial condition for control input at the first 

sampling instant is chosen as ~ ( 0 )  = [ O 7 O I T  N . m, and the 

maximum number of iterations per sampling interval is kept at 

Tracking performance of all the schemes are compared in 

Figs. 5 and 6 in terms of joint tracking error. Position tracking 

errors for joint 1 is shown in Fig. 5 while Fig. 6 shows position 

tracking errors for joint 2. The controller responses for joints 

1 and 2 are shown in Figs. 7 and 8, respectively, for the Case 

of the EKF approach. The proposed controller is found to be 

stable in all the cases though tracking errors are relatively 
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1 .o 1 .o 2.0 2.0 
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rms error in Joint 1 velocity 

GS LF EKF 

0.038 0.01 78 0.045 

TABLE V 
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER POSITION TRACKING OF JOINT 1 

1.5 

0.5 

1.5 

TABLE VI 
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER POSITION TRACKING OF JOINT 2 

~ ~ ~~ ~~ ~ 

1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 5.0 0.034 0.027 0.013 

0.5 1 .o 4.0 0.034 0.022 0.033 

1 .o 3.0 3.0 0.067 0.027 0.029 

TABLE VI1 
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 1 

1 .o 1 .o 2.0 3.0 0.094 0.028 0.045 

large. The error is found to be maximum in the case of GS 

and minimum in the case of EKF. 

Further study was done to evaluate comparative perfor- 

mances of each algorithm by varying the initial condition 

~ ( 0 )  and allowable number of maximum iteration t,,, for the 

following reasons. Earlier we mentioned that each inversion 

algorithm computes input ? ( k )  starting with initial guess 

?(k  - 1) as predicted in the previous sampling instant. But 

when k = 1, the initial condition is not known a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori. So 

we are left with the option of choosing arbitrary an initial 

condition from the input space. Thus the effect of the initial 

condition in control input prediction is noteworthy. The second 

parameter t,,, (maximum allowable number of iterations per 

sampling interval) is important because the control input must 

be predicted using a fixed number of iterations within the 

sampling interval. 

To study the comparative performance of inversion 

algorithms, we selected five arbitrary initial conditions as 

~ ( 0 )  = [-8.0, -8.OlT; [-3.2, 4.8IT; [0,  O I T ;  [4.8, -3.2IT; 
and [8.0, 8.OIT, respectively. The parameter t,,, maximum 

number of iterations per sampling interval, is varied at three 

different values 3, 5, and 10, respectively. The root-mean- 

square (rms) error over each trajectory is observed while 

implementing the proposed controller to track the trajectories 
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1 .o 

1411 

GS LF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2  

2.0 2.0 0.038 0.028 0.035 

TABLE VI11 
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 2 

1.5 

0.5 

1.5 

1 .o 3.0 5.0 0.014 0.029 0.01 1 

0.5 1 .o 4.0 0.006 0.04 0.006 

1 .o 3.0 3.0 0.03 0.042 0.032 

1 .o 1 .o 2.0 3.0 0.035 0.054 0.02 

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5 

3 

2.5 

m 

4 2  
m 

1.5 

1 
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-. - desired joint 2 traj 
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sampling instants 

Fig. 9. Trajectory tracking using EKF-based inversion algorithm to see generalization capability of the controller. 

given by (37) and (38). The simulation results for GS-, LF-, 

and EKF-based inversion schemes are compared in Tables 

I-IV for individual joint position and velocity separately. 

The results in these tables show that GS- and LF-based 

inversion schemes are affected by initial conditions while 

the performance of EKF-based inverse mapping is practically 

invariant to these initial conditions. Also, we observe that 

convergence of the EKF-based inversion scheme is faster 

because for almost all the cases the algorithm has converged 

with rms error. below 0.021 within the first three iterations, 

unlike the other two algorithms. But most important of all is 

the superior tracking accuracy of the proposed controller based 

on the EKF-based inversion scheme compared to the other two 

approaches. For example, while tracking the same trajectory 

for the joint 1 position, Table I shows that the GS approach 

resulted in a tracking error varying from 0.017 to 0.39, the 

LF approach resulted in a tracking error varying from 0.006 

to 0.2, while for the EKF approach the tracking error shows a 

small variation from 0.008 to 0.021. These results indicate that 

rms error per trajectory is minimum in the case of the EKF- 

based inversion scheme while rms trajectory tracking error is 

maximum in the case of the GS-based inversion scheme. 

The superior performance of the EKF-based inversion ap- 

proach can be qualitatively explained in the following fashion. 

The rate of convergence for the gradient search scheme 

is dependent on a tuning parameter, q, the learning rate, 

heuristically determined by the user. On the other hand, in 

EKF, the rate of convergence is dependent on tlhe Kalman 

gain which is adapted through the iterative process to give 

the minimum variance estimate of the input activation. Both 

the GS- and LF-based inversion schemes predict input by 

minimizing the target error at the emulator output. As the 

output of the emulator bears a stochastic relationship with the 

actual response of the robot arm, minimum variance prediction 

of input is expected to do better, in particular, when the 

network is partially trained. This explains why the EKF-based 
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rms error in Joint 1 position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
91- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42- 0 1  a 2  

1 .o 1 .o 2.0 2.0 

GS LF EKF 

0.012 0.0046 0.00s 

0.5 

1.5 

1 .o 

~~ ~ 

0.0027 0.5 1 .o 4.0 0.004 0.004 

1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 3.0 0.009 0.004 0.003 

1 .o 2.0 3.0 0.003 0.009 0.007 

TABLE X 
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER POSITION TRACKING OF JOINT 2 AFTER RETRAINING OF RBFN MODEL 

41- 

1 .o 

II Trajectory Parameters I rms error in Joint 2 position II 
GS LF EKF 

1 .o 2.0 2.0 0.01 1 0.007 0.013 

42- 0 1  w2 

1.5 

0.5 

1 .5 

1 .0 

1 .o 3.0 5.0 0.017 0.007 0.007 

0.5 1 .o 4.0 0.004 0.007 0.004 

1 .o 3.0 3.0 0.033 0.010 0.013 

1 .o 2.0 3.0 0.006 0.013 0.010 

TABLE XI 
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 1 AFTER RETRAINING OF RBFN MODEL 

Trajectory Parameters 

41- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe- 0 1  0 2  

1 .o 1 .0 2.0 2.0 

rms error in Joint 1 velocity 

GS LF EKF 

0.03 0.007 0.0027 

1.5 

0.5 

1.5 

1 .o 3.0 5.0 0.004 0.013 0.006 

0.5 1 .o 4.0 0.0037 0.010 0.0026 

1 .o 3.0 3.0 0.015 0.012 0.006 

approach performed better in terms of both tracking accuracy 

and convergence speed. 

1 .O 

D. Generalization Capability of the Controller 

To study the generalization capability of the proposed 

controller in tracking any arbitrary trajectory we performed 

the following simulation. The desired trajectory for each joint 

is chosen as 

1 .o 2.0 3.0 0.004 0.0095 0.004 

q d l  ( t )  = q y X (  1 - cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1t) 

& 2 ( t )  = q y y l  - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoswzt) .  

Varying the parameters of the above trajectories such as 

q?"", qydx, w ~ .  and w2; we observed the tracking performance 

of the neural controller in terms of rms error considering 

all three inversion algorithms. Tables V-VI11 compare the 

generalization capability of the controller based on GS-, LF-, 

and EKF-based inversion schemes, respectively. Considering 

the fact that RBFN was trained using the data generated by 

trying to track a single sinusoid trajectory through combination 

of PD controller output and dither signal. results presented 

in Tables V-VI11 confirm the generalization capability of the 

RBFN model and the proposed controller. We can conclude 

that the proposed controller based on each of the inversion al- 

gorithms has the capability of generalization since the tracking 
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1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .O 2.0 2.0 0.034 0.016 0.0022 

1.5 1 .o 3.0 5.0 0.0019 0.010 0.004 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 

TABLE XI1 
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 2 AFTER RETRAINING OF RBFN 

0.5 

1 .O 

1413 

0.019 1 I/ 1 .o 4.0 0.0076 

3.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 0.01 0.021 

MODEL 

Trajectory Parameters rms error in Joint 2 

GS LF EKF 

error was relatively small. A further test of generalization is 

done by making both the joints move from the initial position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
qd = [ O , O ] T  to the final position qd = [3.0,2.0IT (in radian) 

following the trajectories given by 

q d l ( t )  = 1.5 + 1.5[1. + 6.e-t/.3 - 8.et/.4] (41) 

qd2(t) = 1.0 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I + ~ l . 3  - ~ / . 4 1 .  (42) 

The trajectory tracking shown in Fig. 9 was obtained by 

implementing the proposed controller using only the EKF- 

based inversion algorithm. It is verified that the proposed 

controller is stable while the rms tracking error is 0.021. 

Although simulation results by and large confirm the gener- 

alization of the controller in tracking any arbitrary trajectory, 

rms error per trajectory is found to be more than 0.003, the 

error set for forward learning. Taking account of the fact that 

RBFN was traiined over the training data to achieve rms error 

0.003, a relatively large tracking error in trajectory tracking 

may be attribuled to dimensionally insufficient data [18]. To 
verify this proposition, we conducted further simulations as 

follows. 

E. Generation of Training Examples to Retrain RBFN Model 

Our extensive simulation has proved that the proposed con- 

troller is robust and stable in tracking any arbitrary trajectory 

though tracking accuracy is not good. Referring to Figs. 7 and 

8, we can also see that the controller response based on the 

EKF approach is not smooth as expected (generally desired 

continuous smooth trajectory response is backed by a smooth 

control action as far as adaptive and nonadaptive schemes 

are concerned). These facts indicate the partial training of 

the RBFN model. So we generated new examples (3000 data 

pairs) tracking 10 more trajectories, represented by (39) and 

(40) obtained by varying the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqyx, q p ,  w1, and 

w2 randomly. But here instead of using the PD controller, we 

implemented the neural controller based on network inversion. 

Through the inversion process, the network searches in the 

input space for the appropriate input which would minimize 

the tracking error when the RBFN model is not completely 

trained for all possible trajectories in the workspace. The 

input-output pair so generated can be used to retrain the RBFN 
model so that it can adapt itself for newer inputs. This learning 

loop, in effect, provides a self-organizing search strategy for 

adapting to the complete input space. So as the controller is 

trying to track the desired trajectories, simultaneously RBFN 

is trained minimizing the error E = 1 / 2  C$,,(X, --IL”,)~. After 

the training is over, we repeated the experiment described in 

the previous subsection. The results are presented in Tables 

IX-XII. Significant improvement in tracking accuracy verified 

our presumption of dimensionally insufficient data being the 

cause of the partially trained RBFN model. The same tra- 

jectories given by (37) and (38) were again tracked by the 

neural controller using the EKF-based inversion scheme, and 

trajectory tracking is compared with earlier schemes as shown 

in Figs. 5 and 6. The average rms error is now 0.006 while 

previously it was 0.0134. The controller response in the present 

case is compared with the response obtained before retraining 

of the RBFN model as shown in Figs. 7 and 8. Figs. 7 and 8 

show that control action after retraining of the RBFN model 

is almost smooth. This proves the point that a dimensionally 

sufficient RBFN model will make the controller more accurate 

and robust. 

VI. CONCLUSION 

We presented a new tracking controller for a robotic manip- 

ulator using inversion of its neural emulator. The proposed 

controller was investigated using three different inversion 

schemes based on gradient search, Lyapunov function, and 

EKF approaches, respectively. In all the cases the robustness 

and stability of the controller are established. Extensive simu- 

lation was performed to compare the performance of the three 

inversion schemes in terms of trajectory tracking error and 

convergence speed. It is shown that the EKF-based inversion 
scheme is better compared to LF- and GS-based inversion 

algorithms. 
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