
IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996 1401

On Adaptive Trajectory Tracking of a Robot

Manipulator Using Inversion o-f Its Neural Emulator
Laxmidhar Behera. Madan Gopal, and Santanu Chaudhury zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Abstract-This paper is concerned with the design of a neuro-
adaptive trajectory tracking controller. The paper presents a
new control scheme based on inversion of a feedforward neural
model of a roh'ot arm. The proposed control scheme requires
two modules. Tlhe first module consists of an appropriate feed-
forward neural imodel of forward dynamics of the robot arm that
continuously accounts for the changes in the robot dynamics.
The second module implements an efficient network inversion
algorithm that computes the control action by inverting the
neural model. In this paper, a new extended Kalman filter (EKF)
based network inversion scheme is proposed. The scheme is
evaluated through comparison with two other schemes of network
inversion: gradient search in input space and Lyapunov function
approach. Using these three inversion schemes the proposed
controller was implemented for trajectory tracking control of
a two-link manipulator. Simulation results in all cases confirm
the efficacy of control input prediction using network inversion.
Comparison of the inversion algorithms in terms of tracking
accuracy showed the superior performance of the EKF based
inversion scheme over others.

I. INTRODUCTION

OBOT manipulators are characterized by complex non- R linear dynamical structures with inherent unmodeled

dynamics and unstructured uncertainties. These features make

the designing of controllers for manipulators a difficult task in

the framework. of classical adaptive and nonadaptive control zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
[I]-[4]. Artificial neural networks offer promising possibilities

for providing better solutions to robot tracking problems,

primarily because of their excellent capability to learn any

complex mapping from training examples zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[5] , [6]. Simulation

and experimental results of a number of investigators such as

Narendra and Parthasarathy [7], Miller zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet al. [SI, Goldberg
and Pearlmutter [9], Miyamoto et al. [IO], Bassi and Bekey

11 11, Gomi and Kawato 1121, and others have confirmed the

potential of these networks in the area of dynamic modeling

and control of nonlinear systems.

The existing literature on neural control of robot manip-

ulators reveals that most of these applications are based on

learning inverse dynamics of a robot arm. Some of these

learning schemes of inverse dynamics can be summarized as

follows. In direct inverse modeling of robot manipulators [8],

191. the network is trained using input-output data of the plant

in a reverse fashion (i.e., joint angle 0 + input torque 7)

directly. In the case of forward and inverse modeling [131, the

Manuscript received March 28, 1994; revised March 1, 1995 and May IO,

The authors ire with the Department of Electrical Engineering, Indian

Publisher Item Identifier S 1045-9227(96)07459-0.

1996.

Institute of Technology Delhi, Hauz Khas, New Delhi 110 016 India.

forward m,odel is learned by monitoring the input toque vector

~ (t) and output joint position vector Q(t) of the manipulator.

Next, the desired trajectory d d (t) is fed to the inverse model

to calculate the feedforward motor command zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA~ f f (t) . The

resulting error in the trajectory B d (t) - B(t) is backpropagated

through the forward model to calculate the command error,

which is then used as the error signal for training the inverse

model. The feedback error learning scheme of Miyamoto et
al. [lo] uses feedback torque as the error signal to train the
inverse dynamic model of the robot arm. These inverse models

compute t.he feedforward torque given a desired trajectory, and

feedback stabilizing signal is actuated by a simple potential

difference (PD) controller.

In our present work, a different approach is proposed where

instead of training a separate network to learn the inverse

dynamics, we directly perform the iterative inversion of a

forward model of a robot zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAarm to generate control action on-

line. This approach avoids a separate scheme of providing a

feedback stabilizing signal [8], [9], [141. The motivating factor

for this work is to see the feasibility of implementing direct

inversion of a neural network to actuate on-line control signal,

an approach that has got little attention in control literature.

This approach also provides an alternative to backpropagation

of utility as proposed by Werbos [151 and Nguyen and Widrow

[161, which are basically off-line schemes.

Iterative inversion of multilayered neural networks based

on gradient search in input space was first proposed by

Linden and Kindermann [17]. This work shows that iterative

inversion of a neural network model is possible by ascribing

backpropagated errors in network output to errors in the

network input signal. This technique has been extended to

adaptive control of simple linear systems by Hoskins et al.
[1 81. Lee [191 has proposed a network inversion scheme based

on the L,yapunov function approach in application to pattern

recognition problems. Extension of this technique to on-line

inversion of neural networks to predict control input is not

reported in the literature. Keeping these facts in mind, in this

paper we have explored the applications of the above two

inversion schemes to robot tracking problems. In an attempt

to search for a fast and robust inversion scheme, we have

proposed an extended Kalman filter (EKF) based inversion

algorithm for radial basis function network model of multi-
input/multioutput (MIMO) systems. The proposed inversion

scheme was motivated by the algorithm proposed by Iiguni

et al. [2.O] and Scalero and Tepedelenlioglu [21] for training

feedforward networks. Since EKF was found to be fast and

efficient for training multilayered networks (MLN's), EKF

1045-9227/96$05.00 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 19961 IEEE

1402 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, NO. 6, NOVEMBER 1996

based inversion is expected to give better performance for

on-line inversion applications.

The proposed controller based on each of the three different

approaches of network inversion is implemented for a two-link

robot manipulator. The forward dynamics of the manipulator is

modeled by a radial basis function network (RBFN) network.

The RBFN model is trained by input-output data generated in

the robot workspace using a simple PD controller. Experiments

were carried out to evaluate the efficiency of each inversion

algorithm in terms of root mean square (rms) tracking errors

by varying the initial conditions and changing the upper-bound

on the number of iterations allowed per sampling interval to

predict the control input. These experiments indicate that the

performance of the EKF based inversion scheme is better

than the other two. The present paper is organized in the

following manner. Section 11 describes the nonlinear dynamic

modeling using an RBFN and the corresponding learning

mechanism. Three different schemes of network inversion are

presented in Section 111. The structure of the proposed robot

trajectory controller is explained in Section IV. In Section V,

we provide the simulation results by implementing a proposed

neuro-adaptive controller for tracking control of the two-link

manipulator. Finally, concluding remarks are given in Section

VI.

11. RBFN MODEL OF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFORWARD DYNAMICS OF ROBOT ARM

Consider a class of nonlinear discrete time dynamical sys-

tems described by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4 k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ 1) = M k) , 4 k) I (1)

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAz (k) E R'L and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu (k) E Rp represent, respectively, state

and input vectors of the system at the kth sampling instant.

The states of the system are assumed to be accessible and

nonlinear function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf (.) is assumed to be unknown.

The unknown mapping I (.) can be learned using either

an MLN or RBF network. In MLN, activation of output

layer neurons has a highly nonlinear relationship with the

network parameters. Training algorithms based on recursive

least squares methods [22] or the EKF approach [20] , [21]

are consequently computationally intensive. The popular back-

propagation algorithm is prone to local minima trap and

relatively slow in convergence. On the other hand, RBF

network response is a linear function of its weights. This

allows us to choose any of the least squares methods to train

the network. In general, the leaming i n RBFN is fast. As we

require the neural emulator to account for continuous changes

in plant dynamics, RBFN is preferred over MLN.

A. Neural Modeling zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo f f (.) Using RBFN

output of such a network can be expressed as

Fig. 1 shows an m-inputln-output RBF network. The ith

P zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
oi zz ,qi(u) = C 0ij4,f(iIv - cjli) (2)

where v E X" is the network input vector; 1 1 . 1 1 denotes the

Euclidean norm; cJ E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR" , 1 5 j 5 e are RBF centers; $ j (.) is

j=l

Input un i rs Computing Ourpur u n i t s
un i t s

An m - i n p u t n -ou tpu t RBF N e t w o r k

Fig. 1. An m input n-output RBF network

the j t h activation function of hidden layer; d i J , 1 5 j 5 e, 1 5
i 5 n are the connection weights from hidden layer to output

layer; and L is the number of hidden units in the first layer.

Typical choices for activation functions are Gaussian, thin-

plate splines, etc. With any one of these activation functions

RBF networks are capable of constructing reasonably good

approximations of unknown functions [23] , [24]. In fact,

Powell [6] has shown that thin-plate-spline functions have

good modeling capability. For our present application we have

opted for the following thin-plate spline function:

(3)

We have made this choice because with this activation func-

tion, unlike a Gaussian function, we do not need to estimate

the free parameter, i.e., width of the basis function [25] . RBF

network parameters 0 and c are required to be determined

so that network response g(.) can approximate the underlying

dynamics f(.) in (1). Define the input vector w (k) as

4j (d) = d2 log d.

w(k) = [.(k)';u(k)T]'. (4)

i (k + 1) = g (v (k) ; c ; 0) .

Then the estimated states will be described as

(5)

The estimation error e(k + 1) is defined by

e(k + 1) = z (k + 1) - 2 (k + 1)

= f [z (k) , 4 k) l - q [v (k) , c, 01. (6)

The RBFN has captured the dynamics for an optimal set of

parameters 8 and c if

llf(2,u) - g(v, c, H) J l = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIle < E for all (x; U) E D (7)

where E is a suitably chosen constant and D is the region of

operation in the input space.

B. RBFN Learning

A number of leaming algorithms [19], [23] , [26], [271

is available to train RBF networks. Here we will briefly

summarize the learning mechanisms available for real-time

applications. RBFN is trained in a two-stage process: 1)
choosing radial centers and 2) adjusting weights.

BEHERA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ON ADAPTIVE TRAJECTORY TRACKING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1403

The radial centers are chosen in such a manner that these

centers suitably sample the network input domain and should

be able to track the changing pattern of data. One of the

practices is to use an n-means clustering technique to update

the RBF centers as suggested by Moody and Darken [28].

In this work we have chosen these centers to be of uniform

random distribution over the input space.

Because the response of the network is linear with respect
to its weights, the recursive least squares methods may be

used for adjusting weights. In the following we provide

the recursive least squares algorithm (RLS) that has been

employed in the present work.

The ith output of the RBFN described earlier can be written

as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2i = $TQ;, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAi = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI,... , T L (8)

where E zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR‘ is the output vector of the hidden layer; 0i E Re
is the connection weight vector from the hidden units to the ith
output unit. The weight update equations as per RLS algorithm

are described ,as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
e@) =e,@ - 1) + P(k)$(k - 1)

P(k) = P (k - 1) - P(k - l)$h(k - 1)[1+ q5(k - 1)T

’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[s;(k) - q5(k - l y & (k - l)]

. P (k - l)d(k - l)]-h$(k - 1) T P (k - 1)

(9)

(10)

where P(k) E Initial value P(0) is taken as 201 for
the present application and that of weight vector 0; can be

assigned to zero or small random numbers.

111. NETWORK INVERSION ALGORITHMS

In this section, we present three different network inversion

schemes which are useful for applications in control. The

RBFN model I as given by (5)] represents a nonlinear mapping

from m-dimensional input space to n-dimensional output

space where 12 < m(m = p + n) . The objective of inverse
operation on this model is to predict only p-inputs out of m
number of total inputs. The remaining n inputs are known a
priori (present system states). Thus the inverse mapping can

be mathematically expressed as

G (k) = g- l [z (k) , x ” (k + l) ,c ,Q] (1 1)

where z d (k + 1) is the desired output activation. This

shows that basically we are performing invenion mapping
9 - I : !JP + W where p < n for the N-link robot manipulator

tracking control (p = N , n = 2 N) .
These inversion algorithms carry out the mapping given in

(1 1) by updating input activation i (k) iteratively until desired

output activation is achieved or the number of iterations

reaches a maximum, t,,, within a sampling interval. This
upper-bound trlldX, therefore, should be determined on the

basis of the sampling interval and the computation time

required per iteration. It is clear from this discussion that speed

of convergence of the inversion algorithm can be measured

by the number of iterations required to produce the de?ired

output. The initial guess of the input activation G (k) during
each sampling interval is taken as the input activation i (k - 1)

predicted in the previous sampling instant. For the case of first

sampling interval, the initial guess is selected arbitrarily from

the input space.

A. Gradient Search (GS) in Input Space

The iterative inversion of the RBF network can be carried

out using the gradient descent algorithm as proposed by Linden

and Kindermann [17]. The iterative rule is given as

3E + .[.;t(k) - i i-yk)] (12) G t + l (k) = .;E(k) - 17-
3u: (k)

where t refers to iterative step, 7 is the learning gain, and

a! is the momentum rate. The error function is given by

E = 112 C:=.=,(xp - 2%)’. To prevent the input activation

i (k) from growing without limit, the input is conlsidered as

an output of a “pseudoneuron” with a limited output range

[171.
For the RBF network shown in Fig. 1, with thin-plate-spline

activation function, dE/du, can be expressed as

and

k=l

where d (k) = ((‘U - c k / (~

B. Inverse Mapping Following Lyapunov
Function (LF) Approach

The inverse mapping based on the Lyapunov function as
a general means of achieving a recall process for selective

attention as applicable to a pattern recognition process has

been presented by Lee [19]. We adapt the same concept for

control applications in the following way.

The Lyapunov function candidate V is chosen to be a
quadratic error function in desired trajectories given by

V = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$kTx where x = zd - 3 . (15)

Here, xd is the desired output activation and 3 is the actual

output activation of the RBFN model. The time dlerivative of
the Lyapunov function is given by

1404 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIEEE TRANSACTIONS ON NEURAL NETWORKS, VOL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI , NO. 6, NOVEMBER 1996

Theorem I : If an arbitrary initial input activation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu(0) is

updated by

U * (t ') = u(0) + U d t (17) .i'
where

then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx converges to zero under the condition that U exists

along the convergence trajectory.

Proof Substitution for U from (1 8) into (1 6) we have

v = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-115$ 5 0 (19)

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV < 0 for all zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 # 0 and Q.E.D.

The iterative input activation update rule based on (17) can

be given as

= 0 iff zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2 = 0.

&(t) = U(t ~ 1) + @(t - 1) (20)

where p is a small constant representing the update rate.

C. EKF-Based Inversion Algorithm

The EKF-based algorithm was proposed for training of

MLN's by Iiguni et al. [20], Scalero and Tepedelenlioglu [21],

and others. Here we propose a decoupled form of the inversion

algorithm based on the EKF approach for RBF networks.

EKF is a method of estimating the state vector. Here, the

unknown input vector u (k) is considered as the state vector to

be estimated. The input vector of RBFN has m-components

out of which n-inputs, i.e., the present state vector of the

system ~ (k) are known at the kth sampling instant. Remaining

p components (u (k)) of the input vector 'U are estimated

through the inversion process. During the iterative inversion

of the network, RBFN parameters c and 6' are held constant.

So, RBFN output can be expressed as

The individual update of an input U, can be decoupled from

other updates if we assume that other (p - 1) inputs are known

a priori. In other words, estimates of these (p - 1) inputs

obtained in the previous iteration can be used for the update
of the ith input in the present iteration. The inversion scheme

presented here is based on this assumption.

Let the output vector and desired output vector of RBFN

corresponding to the tth iteration and kth sampling instant

be 3 (k . t) and ~ ' (k + I), respectively. The RBFN can be

expressed by the following nonlinear system equations as

a function of the ith input (k has been dropped from the

argument list for convenience):

Here, [(t) is assumed as a white noise vector with n x n
covariance matrix R(t). The application of EKF to (22) and

(23) gives the following real-time learning algorithm [29]:

i i ; (t) = i i i (t - 1) + K;(t)[& - q t)]
Kz(t) =Pi(t - I)Hi(t)T[Hi(t)P,(t - l)Hi(t)T + R,(t)]y

P,(t) = Pz(t - 1) - Pi(t - 1)Ki(t)H,(t)

(24)

(25)

(26)

where Ki(t) , the (I x n) matrix, is called the Kalman gain

and Hi (t) , the (n x 1) matrix, is defined as

The j th element of H,(t) can be expressed for the case of

thin-plate-spline activation function as follows:

The expression for 30,/3u, is given in (14). During the

inversion process as each output of the feedforward network

is considered to be an independent function of control inputs

only (23) , the output covariance matrix R(t) can safely be

assumed to be diagonal matrix X I . This assumption avoids

the matrix inversion involved in (25). Applying the matrix

inversion lemma. we have

j' (29)
Pz(t - l)H,(t)Hi(t)T

x + P;(t - I)H i (t)THi (t)
= - I- ; [

The inversion algorithm is simplified as

As covariance matrix R(t) is unknown a priori, X is

estimated on-line using the following recursion [20]:

i (t) = i (t - 1) + w (t)

where ~ (t) = l/t.
This inversion algorithm, as indicated before, is decoupled

in nature with respect to input updates. Decoupling of pre-

diction of inputs can help in parallel implementation of the

algorithm which is very important advantage for real-time

applications.

BEHERA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ON PiDAPTIVE TRAJECTORY TRACKING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

k 4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

1405

Fig. 2.

5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
4

3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

Fig. 3.

Proposed controller structure. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
scalcxi zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdc normallsed input/output data

r - r

c n ,

I 1 I

500 1000 1500

sampling instants

Training data generated by tracking "pick and place" traiectories: I)
torque input at joint 1;-2) torque input at join; 2; 3) joint I posiiion; and 4)
joint 2 position. (JnpuVoutput data are normalized and scaled differently.)

Iv. NEURAL CONTROLLER FOR ROBOT MANIPULATOR

The vector equation of motion of the N-link rigid manipu-

lator can be written in the form

M(q)ii + c (q . 4 4 + G(q) = 7 (34)

where 7 is the N x 1 vector of joint actuator torques, q is the
N x 1 vector of joint positions, M (q) is an N x N inertial

matrix, C(q, 4)Q represent torque arising from centrifugal and

Coriolis forces, and G(g) represent torques due to gravitational

effects.

The model in (34) suffers from two kinds of dynamic

uncertainties: structured and unstructured. The structured un-

certainties are due to uncertainties in parameter values while

unstructured uncertainties are because of unmodeled effects
such as friction, joint flexibility, motor backlash, and external

5

4

3

2

1

0

Fig. 4.

waled h normalised input/output dah

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

i- 4

I- 4

I I I 1 1
500 1000 1500

sampling instants

Training data generated by tracking sinusoid trajectories: I) torque
input at joint 1; 2) torque input at joint 2; 3) joint 1 position; and 4) joint 2
position. (Input/output data are normalized and scaled differently.)

disturbances. To account for both types of uncertainties, we
opted for a neural model of the robot arm using a priori
knowledge of the approximate model (34). Thus in (l), z (k)
is chosen as z (k) = [q (k)T ! 4 (k) T] T , 2N x 1 vector and u(k)
is assigned as u (k) = ~ (k) , N x 1 vector.

The RBFN model of the robot arm learned using training

data, in the format given in (3, is placed in parallel to the

actual plant to take account of on-line dynamic changes.

Once the neural emulator of the plant is obtained, the con-

trol objective can be defined as follows. Given the desired

trajectory z d (k + 1) = [q d (k + l) T , Q d (k + l)T:IT and the

present state z (k) = [q (k)T , q(k)'IT, compute the input joint
torque ~ (k) using the iterative network inversion algorithm so

that RBFN output activation approximates desired response.

During inversion, at each sampling instant the initial guess of
control input is chosen to be .r(k - 1). The controller structure

thus described is shown in Fig. 2.
Prediction of the control input at the Kth sampling instant is

carried out in the following steps after neural-network training

is over.

1) Get z (k) from sensors, z d (k + l) from trajectory planner

2) Start iterative inversion; t = 0 (iterative step); and

and assign zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAii(k - 1) to i (k) .

&(t) = & (k)

loop: f = t + l
Compute RBFN response k(k + 1).
If I (z" (k + 1) - k(k + 1)11 < E, or if t >. t,,,, then

{stop iterative loop and actuate control action

else {update input vector u (k) using any of

(GS/LF/EKF) and go to loop}.

q k) = i (t) }

the inversion algorithms

1406 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0.1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.05 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

_ .
m zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
9 -0.05
;i; zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2 -0.1
0

&.I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0.15

i:
Zi
2 -0.2
k Y zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

-0.25 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
-0.3

-0.35

tracking performance of inversion schemes(Joint 1)

.’ cs
-LF

- _ _ EKF
----- EKF(AR)

0 50 100 150 200 250 300

sampling instants

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5. Position tracking of joint 1 using inversion algorithms GS, LF, EKF, and EKF (after retraining of RBFN model)

tracking performance of inversion schemes(Joint 2)
0.15

1

-0.1 L 1

50 100 150 200 250 300 0

sampling instants

Fig. 6. Position tracking of joint 2 using inversion algorithms GS, LF, EKF, and EKF (after retraining of RBFN model).

V. SIMULATION RESULTS

of freedom manipulator used by Slotine and Li [l] are used
for input-output data generation and controller structure is

obtained based on these sets of data only. The robot arm
dynamics can be written explicitly as

where C21 = cos(qz - ql),S21 = sin(q2 - 41). The four

and ‘.O2’ kg-m2,
As an example, the dynamic equations of the two-degree- parameters a1,a21 a31 and a4 are taken as 0.15, 0.04, 0.033

On-Line Data Generation

BEHERA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ON .ADAPTIVE TRAJECTORY TRACKING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1407

-101 I I I I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA50 100 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA150 200 250 300

Sompling instants

Fig. 7. Neural controller response of joint 1 using EKF based inversion algorithm: before and after retraining of RBFN model. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Neural controller response

10 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
8

6 RBFN model)
Joint 2 (at ter retraining ot

i 4
e
.E 2
t 0 .-
t o
0
4

- 2
4-

0
U -4

- 6

- 8

10
0 50 100 150 200 250 300

Sompling instants

Fig. 8. Neural controller response of joint 2 using EKF based inversion algorithm: before and after retraining of RBFN model.

trajectories (Fig. 4). The robot joint work space is constrained

by following boundaries (the joint position is expressed in

radian) 0 < 41 < 5.0,0 < 42 < 7 and input torque limit is set to

at each sampling instant, various dither signals in the form of

white noise, impulses, step functions, and ramp and parabolic

types of functions are added to the PD controller output to

improve generalization capabilities of the RBFN model. In

this way we generated 3000 pairs of input-output data taking

the sampling interval to be 10 ms. The command sinusoid
trajectories for the PD controller are taken as

-8.0 < 7 1 , ~ ~ < 8.0 N . m. While tracking random trajectories zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq d (t) = qr + Qmdx(l - COS&).

The trajectory parameters (p a x I U) expressed in (radian,
radianh) are fixed at values (2.0, 3.0) and (1.2, 5.0) for joint

1 and joint 2, respectively, while qr is varied randomly over
the interval (0,7r/4).

1408 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBANO 6, NOVEMBER 1996

8.0,S.O

TABLE I
COMPARATIVE PERFORMANCE OF INVERSION ALGORITHMS POSITION TRACKING OF JOINT 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

5 0.072 0.036 0.01
10 0.086 0.01 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.01

Initial Maximum
Condition number of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
T zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(0) iterations t-

3
-8.0,-8.0 5

10

3

10

3

0.0,o.o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5
10

3

4.8,-3.2 5
10

3
8.0,8.0 5

10

-3.2,4.8 5

rms error in Joint 2 position

GS LF EKF

0.036 0.1 0.02
0.03 0.38 0.02

0.013 0.057 0.02

0.045 0.02 0.02
0.02 0.032 0.018

0.018 0.089 0.019

0.037 0.09 0.02
0.027 0.0153 0.016

0.015 0.012 0.026

0.018 0.43 0.021

0.24 0.044 0.0 18

0.04 0.018 0.026

0.1 0.02 0.019
0.035 0.058 0.017
0.045 0.04 0.027

B. RBFN Model trajectories. After training was over the rms error for the test

data set was found to be 0.003.

C. Comparison of Three Inversion Schemes
Bused on Proposed Controller

are chosen as

The RBFN model for the two-link manipulator given by

(35) and (36) is designed to have six inputs (r (k) , zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAq(,k), q (k))
and four outputs (q (k + l), k (k + 1)). The model incorporates

100 hidden computing units. Training of the RBFN is carried

numbers of passes (30000

iterations). Then following the same technique used for gener-

using 3ooo data pairs for The desired trajectories for both joints of the manipulator

ation of training data, we generated a test data set for 10 new q d l (t) = 1.5(1 - COS^^) (37)

BEHERA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAef zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ON ADAPTIVE TRAJECTORY TRACKING

Initial Maximum
Condition number of

iterations t,, T (0)

3
-8.0,-8.0 5

10

3
-3.2,4.8 5

10

1409 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
rms error in Joint 1 velocity

GS LF EKF

0.093 0.05 0.012

0.085 0.16 0.012

0.043 0.028 0.012

0.058 0.035 0.012
0.042 0.032 0.02

0.028 0.04 0.012

TABLE I11
COMPARATIVE PERFORMANCE OF INVLRSION ALGORITHMS VELOCITY TRACKING OF JOINT zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1

8.0,8.0
3 0.13 0.045 0.02

5 0.077 0.065 0.0 168
10 0.123 0.029 0.01 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 0.092 0.068 0.013 1 :O 1 0.034 1 0.027 I :::: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.0,o.o 0.054 0.022

Initial

Condition

T (0)

-8.0,-8.0

-3.2,4.8

3 0.054 0.26 0.021
4.8,-3.2 0.196 0.034 0.01 1 1 :O 1 0.094 1 0.017 1 0.014

Maximum

number of

iterations t,,

rms error in Joint 2 velocity

GS LF EKF

3 0.06 0.093 0.01 1
5 0.034 0.21 0.01
10 0.017 0.056 0.0099

3 0.021 0.049 0.01
5 0.0 14 0.05 1 0.01

10 0.012 0.07 0.01

0.0,o.o

4.8,-3.2

8.0,S.O

3 0.038 0.088 0.016
5 0.01 7 0.038 0.01 1
10 0.014 0.029 0.009

3 0.021 0.5 0.018
5 0.145 0.055 0.01 1

10 0.0499 0.03 1 0.014

3 0.09 0.065 0.018
5 0.029 0.074 0.018
10 0.06 0.048 0.016

(1$2 (t) = (1 - cos 5 t) . (38)

The control algorithm presented in Section IV is imple-
mented for all three inversion algorithms. For the gradient

search scheme the leaming rate is fixed at 1 .O. The Lyapunov

function-based inversion scheme, as given in (18) and (20),
is implementetl choosing ~ to be o. 1 , The initial values

for implementation of the EKF-based inversion algorithm

[(30)-(33)] are selected as = p2 = 1.0 and X(0) = 0.05. In

all the cases, the initial condition for control input at the first

sampling instant is chosen as ~ (0) = [O 7 O I T N . m, and the

maximum number of iterations per sampling interval is kept at

Tracking performance of all the schemes are compared in

Figs. 5 and 6 in terms of joint tracking error. Position tracking

errors for joint 1 is shown in Fig. 5 while Fig. 6 shows position

tracking errors for joint 2. The controller responses for joints

1 and 2 are shown in Figs. 7 and 8, respectively, for the Case

of the EKF approach. The proposed controller is found to be

stable in all the cases though tracking errors are relatively

1410 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Trajectory Parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
q," qzma zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 1 0 2

1 .o 1 .o 2.0 2.0

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, NO. 6, NOVEMBER 1996

rms error in Joint 1 velocity

GS LF EKF

0.038 0.01 78 0.045

TABLE V
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER POSITION TRACKING OF JOINT 1

1.5

0.5

1.5

TABLE VI
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER POSITION TRACKING OF JOINT 2

~ ~ ~~ ~~ ~

1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 5.0 0.034 0.027 0.013

0.5 1 .o 4.0 0.034 0.022 0.033

1 .o 3.0 3.0 0.067 0.027 0.029

TABLE VI1
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 1

1 .o 1 .o 2.0 3.0 0.094 0.028 0.045

large. The error is found to be maximum in the case of GS

and minimum in the case of EKF.

Further study was done to evaluate comparative perfor-

mances of each algorithm by varying the initial condition

~ (0) and allowable number of maximum iteration t,,, for the

following reasons. Earlier we mentioned that each inversion

algorithm computes input ? (k) starting with initial guess

?(k - 1) as predicted in the previous sampling instant. But

when k = 1, the initial condition is not known a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApriori. So

we are left with the option of choosing arbitrary an initial

condition from the input space. Thus the effect of the initial

condition in control input prediction is noteworthy. The second

parameter t,,, (maximum allowable number of iterations per

sampling interval) is important because the control input must

be predicted using a fixed number of iterations within the

sampling interval.

To study the comparative performance of inversion

algorithms, we selected five arbitrary initial conditions as

~ (0) = [-8.0, -8.OlT; [-3.2, 4.8IT; [0, O I T ; [4.8, -3.2IT;
and [8.0, 8.OIT, respectively. The parameter t,,, maximum

number of iterations per sampling interval, is varied at three

different values 3, 5, and 10, respectively. The root-mean-

square (rms) error over each trajectory is observed while

implementing the proposed controller to track the trajectories

BEHERA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ON ADAPTIVE TRAJECTORY TRACKING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 .o

1411

GS LF zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 2

2.0 2.0 0.038 0.028 0.035

TABLE VI11
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 2

1.5

0.5

1.5

1 .o 3.0 5.0 0.014 0.029 0.01 1

0.5 1 .o 4.0 0.006 0.04 0.006

1 .o 3.0 3.0 0.03 0.042 0.032

1 .o 1 .o 2.0 3.0 0.035 0.054 0.02

4 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3.5

3

2.5

m

4 2
m

1.5

1

0.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
0

trajectory tracking

- deslred joint 1 traj
- - actual joiilt 1 traj
-. - desired joint 2 traj
. . . actual joint 2 traj zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 50 100 150 200 250 300

sampling instants

Fig. 9. Trajectory tracking using EKF-based inversion algorithm to see generalization capability of the controller.

given by (37) and (38). The simulation results for GS-, LF-,

and EKF-based inversion schemes are compared in Tables

I-IV for individual joint position and velocity separately.

The results in these tables show that GS- and LF-based

inversion schemes are affected by initial conditions while

the performance of EKF-based inverse mapping is practically

invariant to these initial conditions. Also, we observe that

convergence of the EKF-based inversion scheme is faster

because for almost all the cases the algorithm has converged

with rms error. below 0.021 within the first three iterations,

unlike the other two algorithms. But most important of all is

the superior tracking accuracy of the proposed controller based

on the EKF-based inversion scheme compared to the other two

approaches. For example, while tracking the same trajectory

for the joint 1 position, Table I shows that the GS approach

resulted in a tracking error varying from 0.017 to 0.39, the

LF approach resulted in a tracking error varying from 0.006

to 0.2, while for the EKF approach the tracking error shows a

small variation from 0.008 to 0.021. These results indicate that

rms error per trajectory is minimum in the case of the EKF-

based inversion scheme while rms trajectory tracking error is

maximum in the case of the GS-based inversion scheme.

The superior performance of the EKF-based inversion ap-

proach can be qualitatively explained in the following fashion.

The rate of convergence for the gradient search scheme

is dependent on a tuning parameter, q, the learning rate,

heuristically determined by the user. On the other hand, in

EKF, the rate of convergence is dependent on tlhe Kalman

gain which is adapted through the iterative process to give

the minimum variance estimate of the input activation. Both

the GS- and LF-based inversion schemes predict input by

minimizing the target error at the emulator output. As the

output of the emulator bears a stochastic relationship with the

actual response of the robot arm, minimum variance prediction

of input is expected to do better, in particular, when the

network is partially trained. This explains why the EKF-based

1412 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Trajectory Parameters

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 7, NO. 6, NOVEMBER 1996

rms error in Joint 1 position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
91- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA42- 0 1 a 2

1 .o 1 .o 2.0 2.0

GS LF EKF

0.012 0.0046 0.00s

0.5

1.5

1 .o

~~ ~

0.0027 0.5 1 .o 4.0 0.004 0.004

1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 3.0 0.009 0.004 0.003

1 .o 2.0 3.0 0.003 0.009 0.007

TABLE X
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER POSITION TRACKING OF JOINT 2 AFTER RETRAINING OF RBFN MODEL

41-

1 .o

II Trajectory Parameters I rms error in Joint 2 position II
GS LF EKF

1 .o 2.0 2.0 0.01 1 0.007 0.013

42- 0 1 w2

1.5

0.5

1 .5

1 .0

1 .o 3.0 5.0 0.017 0.007 0.007

0.5 1 .o 4.0 0.004 0.007 0.004

1 .o 3.0 3.0 0.033 0.010 0.013

1 .o 2.0 3.0 0.006 0.013 0.010

TABLE XI
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 1 AFTER RETRAINING OF RBFN MODEL

Trajectory Parameters

41- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe- 0 1 0 2

1 .o 1 .0 2.0 2.0

rms error in Joint 1 velocity

GS LF EKF

0.03 0.007 0.0027

1.5

0.5

1.5

1 .o 3.0 5.0 0.004 0.013 0.006

0.5 1 .o 4.0 0.0037 0.010 0.0026

1 .o 3.0 3.0 0.015 0.012 0.006

approach performed better in terms of both tracking accuracy

and convergence speed.

1 .O

D. Generalization Capability of the Controller

To study the generalization capability of the proposed

controller in tracking any arbitrary trajectory we performed

the following simulation. The desired trajectory for each joint

is chosen as

1 .o 2.0 3.0 0.004 0.0095 0.004

q d l (t) = q y X (1 - cos zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAw1t)

& 2 (t) = q y y l - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcoswzt) .

Varying the parameters of the above trajectories such as

q?"", qydx, w ~ . and w2; we observed the tracking performance

of the neural controller in terms of rms error considering

all three inversion algorithms. Tables V-VI11 compare the

generalization capability of the controller based on GS-, LF-,

and EKF-based inversion schemes, respectively. Considering

the fact that RBFN was trained using the data generated by

trying to track a single sinusoid trajectory through combination

of PD controller output and dither signal. results presented

in Tables V-VI11 confirm the generalization capability of the

RBFN model and the proposed controller. We can conclude

that the proposed controller based on each of the inversion al-

gorithms has the capability of generalization since the tracking

BEHERA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAal.: ON ADAPTIVE TRAJECTORY TRACKING zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1 .o zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1 .O 2.0 2.0 0.034 0.016 0.0022

1.5 1 .o 3.0 5.0 0.0019 0.010 0.004 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
1

TABLE XI1
GENERALIZATION CAPABILITY OF PROPOSED CONTROLLER VELOCITY TRACKING OF JOINT 2 AFTER RETRAINING OF RBFN

0.5

1 .O

1413

0.019 1 I/ 1 .o 4.0 0.0076

3.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3.0 0.01 0.021

MODEL

Trajectory Parameters rms error in Joint 2

GS LF EKF

error was relatively small. A further test of generalization is

done by making both the joints move from the initial position zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
qd = [O , O] T to the final position qd = [3.0,2.0IT (in radian)

following the trajectories given by

q d l (t) = 1.5 + 1.5[1. + 6.e-t/.3 - 8.et/.4] (41)

qd2(t) = 1.0 + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[I + ~ l . 3 - ~ / . 4 1 . (42)

The trajectory tracking shown in Fig. 9 was obtained by

implementing the proposed controller using only the EKF-

based inversion algorithm. It is verified that the proposed

controller is stable while the rms tracking error is 0.021.

Although simulation results by and large confirm the gener-

alization of the controller in tracking any arbitrary trajectory,

rms error per trajectory is found to be more than 0.003, the

error set for forward learning. Taking account of the fact that

RBFN was traiined over the training data to achieve rms error

0.003, a relatively large tracking error in trajectory tracking

may be attribuled to dimensionally insufficient data [18]. To
verify this proposition, we conducted further simulations as

follows.

E. Generation of Training Examples to Retrain RBFN Model

Our extensive simulation has proved that the proposed con-

troller is robust and stable in tracking any arbitrary trajectory

though tracking accuracy is not good. Referring to Figs. 7 and

8, we can also see that the controller response based on the

EKF approach is not smooth as expected (generally desired

continuous smooth trajectory response is backed by a smooth

control action as far as adaptive and nonadaptive schemes

are concerned). These facts indicate the partial training of

the RBFN model. So we generated new examples (3000 data

pairs) tracking 10 more trajectories, represented by (39) and

(40) obtained by varying the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAqyx, q p , w1, and

w2 randomly. But here instead of using the PD controller, we

implemented the neural controller based on network inversion.

Through the inversion process, the network searches in the

input space for the appropriate input which would minimize

the tracking error when the RBFN model is not completely

trained for all possible trajectories in the workspace. The

input-output pair so generated can be used to retrain the RBFN
model so that it can adapt itself for newer inputs. This learning

loop, in effect, provides a self-organizing search strategy for

adapting to the complete input space. So as the controller is

trying to track the desired trajectories, simultaneously RBFN

is trained minimizing the error E = 1 / 2 C$,,(X, --IL”,)~. After

the training is over, we repeated the experiment described in

the previous subsection. The results are presented in Tables

IX-XII. Significant improvement in tracking accuracy verified

our presumption of dimensionally insufficient data being the

cause of the partially trained RBFN model. The same tra-

jectories given by (37) and (38) were again tracked by the

neural controller using the EKF-based inversion scheme, and

trajectory tracking is compared with earlier schemes as shown

in Figs. 5 and 6. The average rms error is now 0.006 while

previously it was 0.0134. The controller response in the present

case is compared with the response obtained before retraining

of the RBFN model as shown in Figs. 7 and 8. Figs. 7 and 8

show that control action after retraining of the RBFN model

is almost smooth. This proves the point that a dimensionally

sufficient RBFN model will make the controller more accurate

and robust.

VI. CONCLUSION

We presented a new tracking controller for a robotic manip-

ulator using inversion of its neural emulator. The proposed

controller was investigated using three different inversion

schemes based on gradient search, Lyapunov function, and

EKF approaches, respectively. In all the cases the robustness

and stability of the controller are established. Extensive simu-

lation was performed to compare the performance of the three

inversion schemes in terms of trajectory tracking error and

convergence speed. It is shown that the EKF-based inversion
scheme is better compared to LF- and GS-based inversion

algorithms.

REFERENCES

111 J.-J. E. Slotine and W. Li, “Composite adaptive control of robot
manipulators,” Automatica, vol. 25, no. 4, pp. 509-519, 1989.

[2] M. W. Spong and M. Vidyasagar, Robot Dynamics and Control. New
York: Wiley, 1989.

131 M. Vukobratovc, D. Stokic, and N. Kircanski, Nonadaptive and Adaptive
Control of Manipulation Robots. New York: Springer-Verlag, 1985.

[41 J. Craig, Adaptive Control ofMechanical Manipulators. Reading, MA:
Addison-Wesley, 1988.

151 K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, pp.
356-366, 1989.

1414 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI, NO. 6, NOVEMBER 1996

[6j M. J. D. Powell, “Radial basis function approximations to polynomials,”
in zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProc. 12th Biennial Numerical Analysis Con$, 1987, pp. 223-241.

[7] K. S. Narendra and K. Parthasarathy, “Identification and control of
dynamic systems using neural networks,” IEEE Trans. Neural Networks,
vol. 1, pp. 4-27, 1990.

[8] W. T. Miller, F. H. Glanz, and L. G. Kraft, 111, “Application of a general
learning algorithm to the control of robotic manipulators,” Int. J. Robot.
Res., pp. 84-98, 1987.

[9] K. Y. Goldberg and B. A. Pearlmutter, “Using backpropagation with
temporal windows to learn the dynamics of the CMU direct drive
arm zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA11,” in Advances in Neural Information Processinx Systems, D. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS .

[27] C.-L. Chen, W.-C. Chen, and F.-Y. Chang, “Hybrid learning algorithm
for Gaussian potential function networks,” IEE Proc.-D, vol. 140, no.
6, Nov. 1993.

[28] J. Moody and C. Darken, “Fast learning in networks for locally tuned
processing units,” Neural Computa., vol. 1, pp. 281-294, 1989.

[29] A. H. Jazwinski, Stochastic Process and Filtering Theory. New York:
Academic, 1970. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

I zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-.

Touretzky, Ed.
[lo] H. Miyamoto, M. Kawato, T. Setoyama, and R. Suzuki, “Feedback error

learning neural networks for trajectory control of a robotic manipulator,”
Neural Networks, vol. 1, pp. 251-265, 1988.

[1 1 j D. Bassi and G. Bekey, “High precision position control by Cartesian
trajectory feedback and connectionist inverse dynamics feedforward,”
in Proc. Int. Joint Con$ Neural Networks, Washington, D.C., 1989, pp.

325-332.
[12j H. Gomi and M. Kawato, “Neural-network control for a closed loop

system using feedback error learning,” Neural Networks, vol. 6, pp.
933-946, 1993.

[13] M. I. Joradan, “Supervised learning and systems with excess degree of
freedom,” Univ. Massachusetts, Amherst, COINS Tech. Rep. 88-27.

[14] A. Y. Zomaya and T. M. Nabhan, “Centralised and decentralised neuro-
adaptive robot controllers,” Neural Networks, vol. 6, pp. 223-244, 1993.

[15] P. J. Werbos, “Beyond regression: New tools for prediction and analysis
in the behavior science,” Ph.D. dissertation, Harvard Univ., Cambridge,
MA, 1974.

[16] D. Nguyen and B. Widrow, “Neural networks for self learning control
systems,” Int. J. Contr., vol. 54, no. 6, pp. 1439-1451, 1991.

[17] A. Linden and J. Kindermann, “Inversion of multilayer nets,” in IJCNN,
Washington, D.C., June 1989, pp. I1 425-11 430.

[18] D. A. Hoskins, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAJ. N. Hwang, and J. Vagners, “Iterative inversion of
neural networks and its application to adaptive control,” IEEE Trans.
Neural Networks, vol. 3, pp. 292-301, 1992.

[19] S. Lee, “Supervised learning with Gaussian potential,” in Neural Net-
works for Sinnal Processinn, B. Kosko, Ed. Ennlewood Cliffs, NJ:

San Mateo, CA: Morgan Kaufmann, 1989.

Prentiie-Hal< 1992.
1201 Y. Iiguni, H. Sakai, and H. Tokumaru, “A real time learning algorithm

for a-multilayered neural network based on extended Kalman- filter,”
IEEE Trans. Signal Processing, vol. 40, Apr. 1992.

[21] R. S. Scaler0 and N. Tepedelenlioglu, “A fast new algorithm for training
feedforward neural networks,” ZEEE Trans. Signal Processing, vol. 40,
Jan. 1992.

[22] S. Chen, S. A. Billings, and P. M. Grant, “Nonlinear system identifica-
tion using neural networks,”Znt. J. Contr., vol. 51, no. 6, pp. 1191-1214,
1990.

[23] S. Chen, C. F. N. Cowan, and P. M. Grant, “Orthogonal least squares
learning algorithm for radial basis function networks,” IEEE Trans.
Neural Networks, vol. 2, pp. 302-309, Mar. 1991.

[24] T. A. Poggio and F. Girosi, “Networks for approximation and learning,”
Proc. IEEE, vol. 78, no. 9, pp. 1481-1497, Sept. 1990.

[25] P. E. An, M. Brown, and C. J. Harris, “Comparative aspects of neural
network algorithms for on-line modeling of dynamic processes,” in Proc.
Inst. Mech. Eng., Part I , vol. 207, 1993, pp. 223-241.

1261 S. Chen, S. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA. Billings, and P. M. Grant, “Recursive hybrid algorithm
for nonlinear system identification using radial basis function networks,”
Int. J. Contr., vol. 55, no. 5 , pp. 1051-1070, 1992.

Laxmidhar Behera was born in January 1967. He
received the bachelor’s degree and master’s degree
in electrical engineering from the Regional Engi-
neering College (REC), Rourkela, India, in 1988
and 1990, respectively. He carried out his doctoral
research at the Indian Institute of Technology, Delhi,

from 1991 to 1995.
He worked as a Lecturer at the REC from 1990

to 1991. At present, he is working as an Assistant
Professor at the Birla Institute of Technology and
Science. Pilani. He is now activelv associated with

the research work carried out at ‘the Centre for Robotics, BITS, Pilani. His
areas of interests are intelligent robotics, neural networks, adaptive fuzzy
control, and evolutionary computation.

Madan Gopal is a Professor in the Department
of Electrical Engineering at the Indian Institute

of Technology, Delhi. He has approximately 60
research publications to his credit. He has guided
many research projects leading to the award of
Ph.D. degrees. His cunent research interests are in
the areas of robotics, neural networks, and fuzzy
control. He is the author of four books in control
engineering. He is the author of a video course in
control engineering, distributed through the Founda-

’ ~ tion for Innovation and Technology Transfer, Delhi.
Dr Gopal is a Fellow of the Institution of Engineers, India

Santanu Chaudhury received the B Tech degree in
electronics and electrical communication engineer-
ing and the Ph D In degree in computer science and
engineering from the Indian Institute of Technology,
Kharagpur, in 1984 and 1989, respectively

He is currently an Associate Professor in the
Department of Electrical Engineering at the Indian
Institute of Technology, Delhi HIS research interests
are neural networks, pattern recognition, and com-
puter vision

Dr Chaudhury was a recipient of the INSA
(Indian National Science Academy) Young Scientist’s Medal in 1993

