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Nonlinear normal mode solutions of the β-FPUT chain with fixed boundaries are presented in
terms of the Jacobi sn function. Exact solutions for the two particle chain are found for arbitrary
linear and nonlinear coupling strengths. Solutions for the N-body chain are found for purely non-
linear couplings. Three distinct solution types presented: a linear analogue, a chaotic amplitude
mapping, and a localized nonlinear mode. The relaxation of perturbed modes are also explored
using l1-regularized least squares regression to estimate the free energy functional near the non-
linear normal mode solution. The perturbed modes are observed to decay sigmoidally towards a
quasi-equilibrium state and a logarithmic relationship between the perturbation strength and mode
lifetime is found.

I. INTRODUCTION

Systems of coupled nonlinear oscillators are known
to be capable of collective oscillations analogous to the
modes in a linear system, termed nonlinear normal modes

(NNMs) [1], which can display behavior that cannot be
modeled by an extension of linear theory [2]. Much of
the difficulty in studying the behavior of nonlinear sys-
tems arises from their non-integrability; therefore requir-
ing numerical integration to find a solution to the equa-
tions of motion. Although a numerical solution is useful
for solving a system’s dynamics given a preconceived set
of parameters, it is generally not obvious how the system
parameters govern the form of the dynamics and whether
there exists combinations of tuned parameters leading to
novel solutions. This is where attaining an analytical
solution for the equations of motion is most beneficial.

There is already significant literature contrasting the
unique behavior of NNMs with linear normal modes [2–8]
as well as their analytic descriptions in discrete systems
[1, 9–14]. In [10], the form of a recursive NNM solu-
tion was discussed for a power law potential, but the
exact solution was not developed. In [13], five non-trivial
NNM solutions where found for the β-Fermi-Pasta-Ulam-
Tsingou (β-FPUT) system in terms of the Jacobi cn func-
tion. Here, we will extend the set of Jacobi function NNM
solutions for the β-FPUT chain and characterize their
relaxation towards the quasi-equilibrium state [15, 16].
These solutions showcase interesting configurations of the
β-FPUT system in both their shape and infinite relax-
ation time when unperturbed. Furthermore, knowledge
of integrable solutions such as NNMs and the relaxation
of their perturbations towards equilibrium may be rele-
vant to developing a complete understanding of the dy-
namics of the FPUT chain.

The equation of motion for the ith oscillator in the
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β-FPUT system is

miẍi = βi+1 (xi+1 − xi)
3
+ βi (xi−1 − xi)

3

+ki+1 (xi+1 − xi) + ki (xi−1 − xi) .
(1)

The parameters k and β are the linear and nonlinear
spring constants respectively, mi is the mass of the ith
oscillator, and xi is the displacement from equilibrium of
the ith oscillator. Throughout this work, we will focus on
the modes of the β-FPUT system with fixed boundaries.

II. THE DUAL MODE β-FPUT SYSTEM

When searching for solutions of Eq. (1), it is natural
to begin with a system having the fewest number of cou-
pled differential equations possible. In particular, the two
mass system or dual mode system is constrained by just
two simultaneous differential equations and represents a
good starting point for examining Eq. (1). To find the
NNMs supported by the dual mode system, we note that
similar NNM solutions cause the equations of motion to
decouple [1]. Since the one particle equivalent of the sym-
metric β-FPUT system is simply a Duffing oscillator, we
assume the free response of the Duffing equation as the
solution: [17]

xi(t) = Ai sn (µt | κ) . (2)

Here, sn (z | κ) is one of the Jacobi elliptic functions with
parameter κ (not to be confused with the modulus

√
κ).

Ai is the amplitude ith oscillator’s displacement and the
frequency parameter µ is related to the oscillation period
T by T = 4K(κ)/µ [17] where K(κ) is the complete
elliptic integral of the first kind.

Note that the second derivative of Eq. (2) can
be put in the form ẍi = −Aiµ

2 (κ+ 1) sn (µt | κ) +
2Aiµ

2κ sn3 (µt | κ) [17]. Substituting the expressions for
xi and ẍi into the equations of motion leads to the fol-
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lowing algebraic system of equations:

2A1m1µ
2κ = β2 (A2 −A1)

3 − β1A
3
1, (3a)

−A1m1µ
2 (κ+ 1) = k2 (A2 −A1)− k1A1, (3b)

2A2m2µ
2κ = β2 (A1 −A2)

3 − β3A
3
2, (3c)

−A2m2µ
2 (κ+ 1) = k2 (A1 −A2)− k3A2. (3d)

By first eliminating the variables µ2 and κ, and with a
bit of algebra, it is possible to show that the system of
equations (3a-3d) yields a non-trivial solution only if

β2 (m1 +m2ζ) (ζ − 1)
3 − β1m2ζ + β3m1ζ

3 = 0, (4)

is satisfied, where we have introduced the dimensionless
parameter

ζ = −1

2

[

m1

m2

(

k3
k2

+ 1

)

−
(

k1
k2

+ 1

)]

± 1

2

{

4
m1

m2

+

[

m1

m2

(

k3
k2

+ 1

)

−
(

k1
k2

+ 1

)]2
}1/2

.

(5)

Having a constraint on the parameters of the system
is not surprising since similar normal modes are only ex-
pected for the tuned system [2, 5]. Assuming Eq. (4) is
satisfied, the amplitudes of the two oscillators follow the
relation

A2 = ζA1, (6)

while the frequency and parameter in terms of A1 are

µ =





2 [k1 − k2 (ζ − 1)] +A2
1

[

β1 − β2 (ζ − 1)
3
]

2m1





1/2

,

(7)

κ = −





2 [k1 − k2 (ζ − 1)]

A2
1

[

β1 − β2 (ζ − 1)
3
] + 1





−1

. (8)

Thus, given a particular amplitude of the first oscilla-
tor A1, the amplitude of the second oscillator A2, the
frequency µ, and the parameter κ can be immediately
computed.
To illustrate the solution of a two particle NNM, we

consider a system where m1 = m2 = m and β1 = β2 =
β3 = β. Under these constraints, the only solutions of
Eq. (4) are ζ = ±1. Then, if k1 = k2 = k, the only posi-
tive solution of k3 allowed by Eq. (5) is k3 = k, leading to
a homogeneous set of masses and spring constants. This
has been predicted previously using a matching criterion
for the tuned system [2, 5]. However, Eq. (4) provides
a more generalized tuning criterion, allowing for the cal-
culation of NNM with non-matching masses, amplitudes,
and spring constants.
According to Eq. (6), the motion of the masses is

either symmetric (ζ > 0) or anti-symmetric (ζ < 0)

for the homogeneous system. The expressions for the
parameters µ and κ become more intuitive when they
are expressed in terms of the total energy of the system

U . These can be written as µ =

(

k+ 1

q

√
1

2
βU

m

)1/2

and

κ = −
(

qk√
1

2
βU

+ 1

)−1

where q = 1 (q = 3) represents

the symmetric (anti-symmetric) case. We see that as the
energy is decreased towards zero, the potential is domi-
nated by the quadratic term as expected; evidenced by
the frequency parameter approaching

√

k/m and the el-
liptic parameter κ approaching zero.

III. THE PURELY NONLINEAR N-BODY

SYSTEM

Solutions of the form given by Eq. (2) can be extended
to a many body system if the interaction terms are either
purely linear (βi = 0) or purely nonlinear (ki = 0) [10].
This constraint appears since the number of algebraic
equations for a N particle system grows as 2N while the
number of free parameters grows as N + 2. This means
that for systems larger than two oscillators, the system
of equations is generally inconsistent, and does not have
a non-trivial solution unless a specific pattern of ampli-
tudes is found [13, 14] or the value of the masses and
spring constants are all precisely tuned. We therefore fo-
cus on the purely nonlinear system, sometimes called an
acoustic vacuum; presenting various forms of the simi-
lar NNMs, some of which lack a proper analogue in the
purely linear system.
Inserting the expressions for xi and ẍi into Eq. (1)

with ki = 0, and noting that κ = −1 since the linear
term is absent, leads to the following recursive formula
for the amplitudes Ai,

Ai = Ai−1







1−
[

2µ2mi−1

βiA2
i−1

+
βi−1

βi

(

Ai−2

Ai−1

− 1

)3
]1/3







.

(9)
Since we are considering a system with fixed boundaries,

A2 = A1

[

1 +

(

β1

β2

− 2µ2m1

β2A2
1

)1/3
]

. (10)

If the amplitude of the first oscillator A1 and the fre-
quency µ are known, the amplitudes can be successively
computed for the rest of the chain. In order to enforce the
fixed boundary condition after the Nth oscillator, itera-
tion over Eq. (9) must lead to AN+1 = 0. This condition
can be satisfied by using a simple root finding algorithm
to solve AN+1(A1, µ) = 0 for either A1 or µ: we used the
matlab function fzero for this purpose.
We check the validity of the analytic solution by com-

paring it to the numerical result from the mass-spring
chain solver pulsedyn [18]. There are three particu-
lar types of NNM we wish to present. One type looks
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FIG. 1: The amplitude of each oscillator is shown for a system
with A) βi = 10, mi = 1, & µ ≈ 0.774140, B) βi = 1, mi = 1,
& µ ≈ 2.33330, and C) βi = 10, mi = 1, & µ ≈ 0.694531.
Panel D shows the time trace of the 20th and 25th oscillators
for the localized mode in panel C.

quite similar to the mode of a purely linear chain. The
other two NNMs however, are unique to nonlinear sys-
tems and appear quite different from the familiar linear
normal modes.
When the system is made to oscillate at lower frequen-

cies and the standing mode has a wavelength of at least
several particles, the NNM appears similar to the nor-
mal mode of a linear chain. To show a specific example,
we choose a system consisting of 100 oscillators and set
βi = 10, mi = 1, and A1 = 1. The aforementioned
root finding algorithm is used to adjust µ with an initial
guess of µ◦ = 0.8; this converges to the closest root at
µ ≈ 0.774140.
The entire set of amplitudes found from Eqs. (9 &

10) is plotted in panel A of Fig. 1. The mode profile is
reminiscent of a mode from a linear chain but is nonethe-
less an analytical solution of the purely nonlinear system.
This is verified by comparing the analytical solution to
the numerical result from pulsedyn. The disagreement
between the two solutions is less than 1.4 × 10−5 for all
particle motions, indicating that the proposed solution is
indeed a mode of the system. These modes are similar to
those discussed in [13] except that the constraints on the
amplitudes are much more relaxed and the wavelength of
the mode can be many particles long.
When the purely nonlinear system is made to oscillate

at higher frequencies, the familiar sinusoidal like modes
are replaced with a set of amplitudes which chaotically
oscillate. This results from the transition into chaos of
the nonlinear map given by Eq. (9). To illustrate this, we
consider a uniform chain of 100 oscillators with βi = 1,
mi = 1, and A1 = 1. We initially guess a frequency
of µ◦ = 2.4, which converges to µ ≈ 2.33330 using the
root finding algorithm mentioned at the beginning of this
section.

The set of amplitudes computed using Eq. (9) is shown
in panel B of Fig. 1. To the authors’ knowledge, modes
of this type have not been previously shown for a mass-
spring system. The set of amplitudes appear random,
but have been computed almost exactly, with the only
approximation entering from numerically computing µ.
Still, it is questionable whether such a peculiar looking
mode is an admissible solution. Therefore, we again com-
pare this to the numerical result and find the disagree-
ment to be less than 1.5 × 10−5; reassuring us of the
analytical solution’s validity.
If the amplitude of the first oscillator in the chain A1

is chosen to be a very small but nonzero number, the suc-
cessive computations of A2, A3, etc. may also be com-
parably small. Eventually however, the nonlinear nature
of Eq. (9) can lead to abrupt changes in the computed
amplitudes by many orders of magnitude. This behav-
ior suggest the presence of localized nonlinear modes or
breathers.
To construct a breather from Eq. (9), we start with a

small system of six oscillators with βi = 10 and mi = 1.
We set A1 = 10−30 and pick the initial guess for the fre-
quency µ◦ = 1, which converges to µ ≈ 0.694531. The
first two amplitudes A1 = 10−30 and A2 ≈ 10−11 are
exceedingly small; so the force acting on the first parti-
cle is several orders of magnitude smaller than the forces
throughout the rest of the chain. Thus we suppose that
energy transmission through the first particle is likewise
weak, and extending the chain backwards from the first
particle would not significantly change the overall solu-
tion. We also take advantage of the symmetry of Eq. (1)
to extend the breather solution in the other direction.
This gives the localized mode shown in panel C of Fig. 1
where we extended the system size to 40 oscillators. The
13 amplitudes from A20 to A32 are computed to construct
the breather, the rest of the amplitudes in the chain are
set to zero.
The energy localization is illustrated in panel D of Fig.

1 where the motion of the 20th oscillator, which is just
outside the breather, and the 25th oscillator, which is
within the breather, is plotted from the numerical so-
lution. The oscillatory motion of the breather remains
uniform while the nearby oscillators remain at rest. We
again see good agreement between the numerical and an-
alytical results as the absolute error for any oscillator is
less than 4× 10−7.

IV. RELAXATION OF ORGANIZED STATES

The β-FPUT solutions discussed thus far are noner-
godic by virtue of their integrability and hence will never
evolve to an equilibrium state. These purely nonlinear
solutions are not stable however [13]. Small perturba-
tions of a NNM in a purely nonlinear system will cause
the highly organized structure to eventually collapse into
a collection of solitary waves, as has been similarly shown
for the Korteweg-deVries equation [19]. The system will
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exist in a quasi-equilibrium state where the system still
has not reached equipartition but has a Boltzmann like
velocity distribution [15, 16]. The system can remain
in this state for possibly very long times until the sec-
ondary emissions from solitary wave collisions eventually
bring the system to equipartition [20, 21].
What is less clear is how these modes relax to quasi-

equilibrium. We found that perturbations of the NNMs
appear to relax sigmoidally, in that the system remains
organized for some time before rapidly transitioning to
quasi-equilibrium. This indicates that the relaxation may
be governed by relatively simple relation. In determining
this relation, we note that both a particular NNM and
the quasi-equilibrium state it decays into represent fixed
points in the free energy landscape. The derivative of
the free energy is exactly zero in a NNM configuration
and nearly zero in a quasi-equilibrium state. If we can
choose a proper parameter to represent the free energy
functional, the relaxation dynamics of perturbed NNM
can be predicted.
We first define the quantity,

R(t) =

[

N
∑

i=1

(

Ã2
i −

〈

x2
i

〉 ∣

∣

t

)2

]1/2

, (11)

representing the distance in configuration space between
the mean squared configuration of a NNM and the system
at time t. Here, Ã2

i represents the mean squared position
of the ith oscillator of a NNM over the oscillation pe-

riod T , and is given by Ã2
i =

A2

i

T

∫ T

0
dt sn2 (µt | − 1) ≈

0.45695A2
i . Next, we define a normalized parameter

φ(t) = R(t)/R∗ to represent the free energy functional
as F [φ]. R∗ is the value of R in the quasi-equilibrium
state. Defining φ(t) in this way gives the useful prop-
erties that it washes out oscillations on the scale of the
NNMs, condenses the dynamics in N dimensions down
to a single dimension with the simple interpretation of
a distance in configuration space, and sets the two fixed
points to φ(t) = 0 for the NNM and φ(t) = 1 for the
quasi-equilibrium state.
We expect the evolution of φ to be governed by the

equation,

∂φ(t)

∂t
= −λ

δF [φ]

δφ
+ η

= −λ
(

a1φ+
a2
2
φ2 +

a3
6
φ3 + · · ·

)

+ η,

(12)

where η is a noise term resulting from fluctuations not
captured by φ due to the averaging in R(t). Because
of the simple sigmoidal relaxation character mentioned
earlier, it is reasonable to assume that only a few terms
dominate Eq. (12) and that the noise term η is small
compared to the change in φ during the relaxation.

To determine the relevant terms, we use the least ab-
solute shrinkage and selection operator (LASSO) to per-
form an l1-regularized least squares regression of data
from a numerical model with the polynomial in Eq. (12).

FIG. 2: The initial perturbation to a NNM φT/2 is plotted
against the mode lifetime τ on a horizontal log scale. This is
done for 32 randomly generated perturbations. A linear fit is
done, giving λ = 0.073± 0.011 and b = 7.0± 15.2.

This method for discovering important terms in an un-
known differential equation using model data is detailed
in [22]. To generate the data set, we initiate a 40 par-
ticle purely nonlinear oscillator chain with β = 10 and
m = 1 containing a NNM with A1 = 2 and µ ≈ 0.320133.
This is a long wavelength mode with its two nodes at the
boundaries of the chain. The initial positions of the par-
ticles are randomly perturbed such that the initial value
of φ0 ≈ 7.087× 10−5.
The equations of motion are solved numerically using

pulsedyn and the value of φ(t) is calculated at each
time step ti. We use the matlab function lassoglm to
perform the l1-regularized least squares regression since
it utilizes LASSO with good noise rejection. We choose
the expansion in Eq. (12) to contain powers up to n =
10. Regardless of the number of terms chosen however,
lassoglm consistently picked a1 ≈ −a2/2 as the only
non-zero terms. The sign of a1 must be negative since
φ = 0 is an unstable point. Thus, the dynamics of φ can
be approximately modeled by φ̇ = λ

(

φ− φ2
)

where a1
has been absorbed into λ. The solution of which is easily
found to be

φ(t) =

[(

1

φ0

− 1

)

exp (−λt) + 1

]−1

. (13)

To determine the parameter λ in Eq. (13), we will first
relate the strength of the perturbation φ0 to a character-
istic mode lifetime τ . Here, we choose the mode lifetime
such that φ̈(τ) reaches its maximum value, indicating
when the NNM is most rapidly decaying. Applying this
definition to Eq. (13) and simplifying for φ0 ≪ 1, gives
the following scaling relation between φ0 and τ :

τ = − 1

λ
ln (φ0) + b, (14)
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FIG. 3: Numerical and analytic calculations of φ(t) are shown
for four random perturbations of a NNM. Panels A, B, and C

show good agreement between Eq. (13) and the numerical re-
sult, with some deviation occurring as the system approaches
quasi-equilibrium. Panel D shows an example where the nu-
merical solution borders the edge of the calculated uncertainty
range but still follows the functional form of Eq. (13).

where b is an undetermined constant.
By running multiple simulations of the dynamics of the

oscillator chain with random perturbations to the initial
NNM, we can estimate the value of λ. Since φ0 can-
not be directly calculated from the numerical simulation
without negative time data, φT/2 is used instead by time

shifting Eq. (13) by T/2. The value φ(τ) = 2−
√
3

3−
√
3
is used

to determine τ from the numerical integrations. The re-
sults are shown in Fig. 2 where lnφT/2 is plotted against
τ for 32 random perturbations. A linear fit then gives
the relaxation constant λ = 0.073± 0.011.
With the value of λ in hand, Eq. (13) can now be

tested against a numerical solution. Fig. 3 shows the
relaxation of a NNM from four different perturbations.
The predicted relaxation profile and that shown by the
numerical integration agree fairly well for the four simu-
lations shown: following the functional form of Eq. (13)
and only deviating as the system approaches its quasi-
equilibrium state where the noise term η becomes more
important.

V. CONCLUSION

Nonlinear normal mode solutions of the two particle
β-FPUT system and the purely nonlinear N particle sys-
tem are shown in terms of the Jacobi sn function. These
solutions may appear analogous to linear normal modes
or display unique structures such as chaotic amplitude
mappings and localized nonlinear modes. These solu-
tions are unusual for a coupled nonlinear system, in that
they are integrable and cannot achieve equipartition un-
less perturbed. The simple form of these solutions makes
them appealing test functions for studying the relaxation
dynamics of the β-FPUT system. We find that the re-
laxation character of the perturbed mode to a quasi-
equilibrium state can be modeled with a simple sigmoid
like function and that the mode lifetime is logarithmically
related to the perturbation strength.
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[21] E. Ávalos, D. Sun, R. L. Doney, and S. Sen, Phys. Rev.
E 84, 046610 (2011).

[22] S. L. Brunton, J. L. Proctor, and J. N. Kutz, Proceedings
of the National Academy of Sciences 113, 3932 (2016),
ISSN 0027-8424.

5


	I Introduction
	II The Dual Mode -FPUT System
	III The Purely Nonlinear N-Body System
	IV Relaxation of Organized States
	V Conclusion
	 References

