
Computers and Mathematics with Applications 70 (2015) 47–65

Contents lists available at ScienceDirect

Computers and Mathematics with Applications

journal homepage: www.elsevier.com/locate/camwa

Nonconforming Least-Squares Spectral Element Method for
European Options✩

Arbaz Khan a,∗, Pravir Dutt a, Chandra Shekhar Upadhyay b

a Department of Mathematics & Statistics, Indian Institute of Technology Kanpur, UP, 208016, India
b Department of Aerospace Engineering, Indian Institute of Technology Kanpur, UP, 208016, India

a r t i c l e i n f o

Article history:

Received 20 July 2014

Received in revised form 4 February 2015

Accepted 19 April 2015

Available online 12 May 2015

Keywords:

Black–Scholes equation

Hermite mollifier

Least-Squares method

Domain decomposition

Parallel preconditioners

Exponential accuracy

a b s t r a c t

Several methods have been proposed in the literature for solving the Black–Scholes

equation for EuropeanOptions. Themethodproposed in the current study achieves spectral

accuracy in both space and time. The method is based on minimization of a functional

given in terms of the sum of squares of the residuals in the partial differential equation

and initial condition in different Sobolev norms, and a term which measures the jump in

the function and its derivatives across inter-element boundaries in appropriate fractional

Sobolev norms. To obtain values of the solution and its derivatives the initial condition is

mollified and the computed solution is post processed. Error estimates are obtained for this

method. Specific numerical examples are given to show the efficiency of this method.

© 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Consider the Black–Scholes (BS) equation [1,2] for European Option

Vτ + 1

2
σ 2S2VSS + rSVS − rV = 0 in (0,∞)× [0, T ] (1.1)

where V , S, r and σ are respectively Option price, underlying asset price, risk-free interest rate and volatility.

Now, we define the European Call Option and the European Put Option.

Definition 1.1. In European Call Option the holder has the right, but not the obligation, to buy an asset at a prescribed price

K (strike price) at maturity time T in future. The payoff function for European Call Option is

VC (S, T ) = max(S − K , 0). (1.2)

Definition 1.2. In European Put Option the holder has the right, but not the obligation, to sell an asset at a prescribed price

K (strike price) at maturity time T in future. The payoff function for European Put Option is

VP(S, T ) = max(K − S, 0). (1.3)
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Recently, Spectralmethods [3] have been used to solve Option Pricing problems. In 2000, Bunin et al. [4] proposed Cheby-

shev Collocation methods to solve the European Call Option problem on parallel computers. After this, Greenberg [5] solved

AmericanOptions problemby Chebyshev Taumethod. For smooth initial conditions, De Frutos [6] has presented a Laguerre–

Galerkin Spectral Method to price bonds. More recently, Zhu et al. [7] have used a Spectral element method to price Euro-

pean Options. These methods give quadratic accuracy in time, while being spectrally accurate in space. Schötzau et al. [8]

proposed hp-version of the Discontinuous Galerkin Finite Element Method to solve parabolic problems. In [9], Dutt et al.

proposed Least-Squares Spectral Element Method for parabolic partial differential equations (PDE) on bounded domains

and proved exponential accuracy for analytic data.

In this paper, we develop a Non-Conforming Least-Squares Spectral Element Method (LSSEM) for parabolic initial

value problems with nonsmooth, unbounded initial data and variable coefficients on unbounded domains using parallel

computers. One of the applications of this method is in finance, namely Black–Scholes equation for European Options. It will

be shown that the proposed LSSEM is exponentially accurate in both space and time. Sobolev spaces of different orders in

space and time are used for the results, as presented in [10]. If the data belong to certain Gevrey spaces then the solution

also belongs to a Gevrey space [11].

The proposedmethod is a Least-Squaresmethod as presented in [9]. The space domain is an interval which is divided into

a number of sub-intervals. The functional is the sum of the squares of the residuals in the partial differential equation and

initial condition in different Sobolev norms, and a term which measures the jump in the function and its derivatives across

inter-element boundaries in appropriate fractional Sobolev norms. We minimize the functional on a given time interval.

Hermite mollifiers, as described in [12,13], are used to resolve the difficulty of non-smooth initial data.

Nowwe describe the organization of this paper. In Section 2 the function spaces and a priori estimates for parabolic initial

value problem, as presented in [14,10,11], are given. Discretization of the domain and stability estimates are discussed in

Section 3. In Section 4 we describe the numerical scheme, parallelization and preconditioning for our method. Estimate for

non smooth initial condition, in negative Sobolev norms, is presented in Section 5. In Section 6 error estimates are obtained

for this method. Finally, in Section 7 specific numerical examples are provided to show the effectiveness of the method.

2. Function spaces

We consider Ω = R as the domain of the logarithmic price x = log(S/K) and define t = T−τ
T

on the time interval

I = [0, 1]. We shall focus here on the Black–Scholes equation for the European call with the assumption that the rate of

interest r and volatility σ are smooth (or even analytic) functions of x and t with bounded derivatives. The coefficients a, b
and c belong to D2,1(Ω × I) as defined in [11] and satisfy

∥Di
xD

j
ta(x, t)∥L∞(Ω×I) ≤ ABi+j i!(j!)2,

where A and B are positive numbers.

The price u(x, t) has to satisfy the BS equation

Lu = ut − auxx − bux − cu = 0 inΩ × I,

u(x, 0) = f (x) inΩ × {0}. (2.1)

Note that f (x)may not be in L2(Ω), for example

f (x) = (Kex − K)+.

To resolve this difficulty, let us define

v(x, t) = u(x, t) sech(ηx), (2.2)

where η > 0 is sufficiently large so that the initial data

v(x, 0) = u(x, 0) sech(ηx), (2.3)

is such that veµx, ve−µx ∈ L2(Ω) for some µ > 0.

Substituting v(x, t) in Eq. (2.1), we get the partial differential equation that v satisfies, as:

Lv = vt − α vxx − β vx − γ v = 0 inΩ × I,

v(x, 0) = f (x) sech(ηx) = g(x) inΩ × {0}. (2.4)

We assume the coefficients a, b and c in (2.1) are smooth or even analytic and all derivatives are bounded. Clearly the same

assumption will continue to hold for the coefficients α = a, β = 2 a η tanh ηx + b and γ = η2a + bη tanh ηx + c , since

tanh ηx has bounded derivatives of all orders. Moreover the coefficients belong to D2,1(Ω̄ × [0, 1]).
However, the initial data g(x) = f (x) sech ηx is not smooth. To resolve this difficulty we use the Hermite mollifiers [12]:

Φ(x) = e− x2

2

P

j=0

(−1)j

4jj! H2j


x√
2



. (2.5)
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Let us further define the following scaled functions:

Φδ(x) = 1

δ
Φ

 x

δ



, (2.6)

and

θN/δ(x) = N

2π
Φδ(Nx) = N

2πδ
Φ


Nx

δ



. (2.7)

Using Eqs. (2.5) and (2.6), we get:

Φδ(Nx) = e
− (Nx)2

2δ2

δ

P

j=0

(−1)j

4jj! H2j


Nx√
2δ



,

where δ =
√
β1N, β1 = θ1dx and P = θ21 dxN . Here

dx = 1

π
dist{x, {c1, . . . , cj}}[modπ ].

Further 0 < θ1 < 1 and c1, . . . , cj are points around x where the initial function is not regular and (x − πdx, x + πdx) is a
neighborhood of analyticity around x.

We use the above mollifier to replace the initial function g(x) by its mollified version gδ(x) as:

gδ(x) = (g ∗ θN/δ)(x) =


|y|≤πdx
g(x − y)θN/δ(y)dy ∀ x ∈ Ω. (2.8)

Then we define vδ(x, t) to be the solution of the following mollified IVP:

L vδ = 0 inΩ × I, (2.9)

vδ = gδ onΩ × {0}.
Wemust nowdefine some required Sobolev spaces. Lettingω(x, t)be a smooth function, the followingnorms canbedefined:

∥ω∥2
Hr,s(Ω×I) =



I



Ω





α≤r

|∂αx w|2 +


0<β≤s

|∂βt w|2


dx dt. (2.10)

Now, if h(x) is a smooth function, with

∥h∥2
Hr (Ω) =



Ω



α≤r

|∂αx h|2 dx. (2.11)

Then for smooth F and h, the following initial value problem can be defined:

Lω = F inΩ × I,

ω = h onΩ × {0}. (2.12)

The solution ω(x, t) of Eq. (2.12), then satisfies the a-priori estimate:

∥ω∥2

H2r+2,r+1(Ω×I)
+ ∥ω∥2

H2r+1(Ω×{1}) ≤ Cr(∥Lω∥2

H2r,r (Ω×I)
+ ∥ω∥2

H2r+1(Ω×{0})), (2.13)

where Cr is a constant which depends on r .
We now introduce the negative Sobolev norm onΩ as:

∥ω∥H−m(Ω) = sup
Φ∈Hm(Ω)

|(ω,Φ)Ω |
∥Φ∥Hm(Ω)

. (2.14)

Similarly, over (Ω × I) the negative Sobolev norm is given as:

∥ω∥H−r,−s(Ω×I) = sup
Φ∈Hr,s(Ω×I)

|(ω,Φ)Ω×I |
∥Φ∥Hr,s(Ω×I)

. (2.15)

We further define some Gevrey Spaces, which are needed in the error analysis.

Definition 2.1. Let Φ(x) ∈ D1(Ω̄), then Φ is an infinitely differentiable function in Ω̄ such that there exist two positive

numbers A1 and B1 with:

∥DαxΦ(x)∥L2(Ω̄) ≤ A1(B1)
i i!, |α| = i, i = 0, 1, 2, . . . .

Definition 2.2. Let ψ(x, t) ∈ D2,1(Ω̄ × [0, 1]), then ψ(x, t) is an infinitely differentiable function in Ω̄ × [0, 1] such that

there exist two positive numbers A1 and B1 with:

∥Dαx D
j
tψ(x, t)∥L2(Ω̄×[0,1]) ≤ A1(B1)

i+j i!(j!)2, |α| = i, for all i, j ≥ 0.
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Fig. 1. Inter element boundary.

3. Discretization and stability estimates

3.1. Discretization

Let N and p be integers and p be proportional to N . We solve the initial value problem (2.9) for IN = [−N,N]. First we

divide the interval IN = [−N,N] into a number of sub-intervals {Ωl}N−1
l=−N , whereΩl = (l, l + 1) and IN =



{Ω̄l}N−1
l=−N . Each

of these intervals {Ωl}N−1
l=−N is mapped to the standard element S = (0, 1) by a set of smooth maps {M−1

l }N−1
l=−N , where Ml is

a map from S = (0, 1) toΩl = (l, l + 1). The map Ml is affine and has the form:

Ml(ξ) = l + ξ,

where ξ ∈ (0, 1).
The discretization uses results in a uniformmesh of interval size h = 1 and the corresponding time step k is proportional

to h2 (that is of order 1 here). Let {xl}l=−N,N be the inter-element boundaries and boundary of IN =


{Ω̄l}l=−N,N−1, which

means that xl = l. In all the results that follow, this nomenclature for the spatial and temporal discretization will be needed

(see Fig. 1).

3.2. Stability estimates

Let v̌
p

l (ξ , t) be the spectral element function which is defined to be a polynomial of degree p in the space variable ξ and

of degree q in the time variable t , and is given by:

v̌
p

l (ξ , t) =
p

i=0

q

j=0

δli,jξ
it j

for ξ ∈ (0, 1), t ∈ [0, 1]. Here δli,j are the coefficients and q is proportional to p2. The corresponding function on the physical

domain (x, t) is given by:

v
p

l (x, t) = v̌
p

l (M
−1
l (x), t).

vp(x, t) can thus be defined piecewise, as:

vp(x, t) = v
p

l (x, t), for (x, t) ∈ Ωl × I, for all − N ≤ l ≤ N − 1,

= 0, for (x, t) ∈ (IN)c × I. (3.1)

Thus vp(x, t) = 0 for |x| ≥ N . Using the chain rule, we can write the derivative as:

∂v
p

l

∂x
= (v̌

p

l )ξ (ξ)x. (3.2)

Assume (ξ̂ )x to be the polynomial of orthogonal projection of (ξ)x into the space of polynomials of degree pwith respect to

the inner product in H2(0, 1). Then the polynomial approximation of Eq. (3.2) at an interior point is defined by


∂v

p

l

∂x

a

= (v̌
p

l )ξ (ξ̂ )x. (3.3)

Let xl be the common interior point of the subintervalsΩl−1 andΩl, which are the image of ξ = 1 under the mapMl−1 and

the image of ξ = 0 under the mapMl respectively. Nowwe define the jump in the derivative at the inter element boundary

xl as follows:







∂vp

∂x

a




2

Hs({xl}×I)

=







∂v̌

p

l

∂x

a

(0, t)−

∂v̌

p

l−1

∂x

a

(1, t)







2

Hs({xl}×I)

.
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Also, the corresponding H1-norm of v
p

l at initial time (t = 0) of each sub-intervals (Ωl) is given by:

∥vpl ∥2

H1(Ωl×{0}) =


(0,1)×{0}
|v̌pl |2dξ +



(0,1)×{0}
|Dv̌pl |2dξ = ∥v̌pl ∥2

H1((0,1)×{0}), (3.4)

and the L2-norm of the residual in the PDE with zero data is as follow:


Ωl×(0,1)
∥L v

p

l ∥2dxdt =


(0,1)×(0,1)
∥Llv̌

p

l ∥2dξdt, (3.5)

where Ll is the differential operator L in ξ and t coordinates. Now we take the orthogonal projection of the coefficients of

the differential operator Ll into the space of polynomials with respect to the usual inner product in H2,1((0, 1) × (0, 1))
and define a new differential operator L

a
l . The coefficients of the differential operator L

a
l are polynomials of degree p in ξ

and of degree q in t . Hence


Ωl×(0,1)
∥L v

p

l ∥2dxdt ≈


(0,1)×(0,1)
∥L

a
l v̌

p

l ∥2dξdt, (3.6)

up to a negligible error term (see [15,9] for details).
We now state the stability theorem which is needed to formulate the numerical scheme. Define the quadratic form

V
p({v̌pl (ξ , t)}−N≤l≤N−1) =

N−1

l=−N

∥(L a
l v̌

p

l )∥2

L2((0,1)×I)
+



xl∈int(IN )

(∥[v̌p]∥2

H3/4({xl}×I)
+ ∥[(v̌px )a]∥2

H1/4({xl}×I)
)

+


xl∈∂ IN
(∥v̌p∥2

H3/4({xl}×I)
+ ∥(v̌px )a∥2

H1/4({xl}×I)
)+

N−1

l=−N

∥v̌pl ∥2

H1((0,1)×{0}). (3.7)

Here int(IN) denotes the interior of IN and ∂ IN denotes the boundary of IN , where IN = [−N,N].
Then, from Theorem 11 in [9], the following result holds.

Theorem 3.1. There exists a constant C such that the estimate

N−1

l=−N

∥v̌pl ∥2

H2,1((0,1)×I)
≤ C (ln p)2 V

p({v̌pl (ξ , t)}−N≤l≤N−1) (3.8)

holds.

We now define a modified version of the quadratic form, W p(v̌
p

l ), which is given by:

W
p({v̌pl (ξ , t)}−N≤l≤N−1) =

N−1

l=−N

∥(L a
l v̌

p

l )∥2

L2((0,1)×I)
+



xl∈int(IN )∪∂ IN
(∥[v̌p]∥2

H3/4({xl}×I)
+ ∥[(v̌px )a]∥2

H1/4({xl}×I)
)

+
N−1

l=−N

∥v̌pl ∥2

H1((0,1)×{0}). (3.9)

Then, from Theorem 3.1, the following result follows immediately.

Theorem 3.2. There exists a constant C such that the estimate

N−1

l=−N

∥v̌pl ∥2

H2,1((0,1)×I)
≤ C (ln p)2 W

p({v̌pl (ξ , t)}−N≤l≤N−1) (3.10)

holds.

4. Numerical scheme and parallelization

Let (gδ)l(ξ) = gδ(Ml(ξ)), where gδ is as defined in (2.9) and let (g̃δ)l(ξ) be the orthogonal projection of gδ(ξ) into the

space of polynomials of degree p in ξ with respect to the usual inner product in H1(S).
Following definition (3.1), we define our approximate solution to be the unique ωp (where ωp = {ωp

l }N−1
l=−N inΩl × I and

zero for (IN)
c × I) which minimizes the functional

R
p({v̌pl (ξ , t)}−N≤l≤N−1) =

N−1

l=−N

∥(L a
l v̌

p

l )∥2

L2((0,1)×I)
+

N

l=−N

(∥[v̌p]∥2

H3/4({xl}×I)
+ ∥[(v̌px )a]∥2

H1/4({xl}×I)
)

+
N−1

l=−N

∥(v̌pl − (g̃δ)l)∥2

H1((0,1)×{0}), (4.1)

over all {v̌pl }−N≤l≤N−1.
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The mollified IVP, which is defined in Eq. (2.9), is as follows:

L vδ = 0 inΩ × I, (4.2)

vδ = gδ onΩ × {0}. (4.3)

Clearly, gδ ∈ D1(Ω × {0}). Hence vδ ∈ D2,1(Ω × I). Now, for t = 0, we get

vδ(x, 0) = gδ(x) = g(x) ∗ θN/δ(x), (4.4)

with the following boundedness property:

∥vδ∥Hs(Ω×{0}) = ∥g(x) ∗ θN/δ(x)∥Hs(Ω) ≤ ∥g∥L1(Ω)∥θN/δ(x)∥Hs(Ω). (4.5)

Lemma 4.1. The estimate

|θN/δ|s ≤ BN s! (4.6)

holds. Here θN/δ(x) is the Hermite mollifier which is defined in (2.7) and BN = N
√
e (N e3/β1)

(
√

N e/β1)

4 ∼ KNda
√
N logN , where

K , d and a are constants.

Proof. From Eq. (2.7), we know that

θN/δ(x) = N

2π
Φδ(Nx) = N

2πδ
Φ


Nx

δ



,

where δ =
√
β1N .

Let φ(ζ ) be the Fourier transform ofΦ(x), which is given by:

Φ̂(ζ ) = φ(ζ ) = e− ζ2

2


N

j=0

ζ 2j

2jj!



. (4.7)

φ(ζ ) satisfies:

|φ(ζ )|s ≤
N

j=0





e− ζ2

2
ζ 2j+s

2jj!





L2(R)

. (4.8)

The right hand side of Eq. (4.8) is given by:





e− ζ2

2
ζ 2j+s

2jj!





L2(R)

= 1

2jj!

 ∞

−∞
e−ζ 2 ζ 4j+2s dζ

1/2

. (4.9)

Substituting η = ζ 2, we obtain,





e− ζ2

2
ζ 2j+s

2jj!





L2(R)

= 1

2jj!

 ∞

0

e−η η2j+s−1/2 dη

1/2

, (4.10)

= 1

2jj!


Γ (2j + s + 1/2). (4.11)

The maximum of
√
Γ (2j+s+1/2)

2jj! is achieved when
√
(2j+s−1/2)

2j
∼ 1. This happens when

j ∼
√
s

2
.

Hence

|θN/δ|s
s! ≤ N

2

√
s

2

√
s

2



!

((
√
s + s)!)1/2

s! (


N/β1)
s. (4.12)

Let As = |θN/δ |s
s! . Since, by Stirling’s formula,

n! ∼
√
2πn nn e−n.
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This leads to the estimate

As = |θN/δ|s
s! ∼ N

2

√
s

2

√
s

2


√
s

2
e−

√
s

2

((
√
s + s)(

√
s+s)e−(

√
s+s))1/2

sse−s
(


N/β1)
s.

The above estimate can be rewritten as:

As ∼ N

s

√
s

4 e−
√
s

2



1 + 1√
s


√
s(1+

√
s)

2
e− (

√
s+s)
2

s
s
2
−

√
s

2 e−s

(


N/β1)
s.

Therefore

As ∼ N
√
e (


N e/(β1 s) )
s e

√
s

2 s

√
s

4 . (4.13)

Now the maximum of As is achieved when N e

β1 s
∼ 1 or s ∼ N e

β1
. Hence, we get

As ∼ N
√
e (e)



N e
β1
2 (N e/β1)

(
√

N e/β1)

4 . (4.14)

This gives a bound on As, as:

As ≤ N
√
e (N e3/β1)

(
√

N e/β1)

4 = BN . (4.15)

Hence

|θN/δ|s ≤ BN s!. � (4.16)

Using Lemma 4.1, the estimate for Eq. (4.5) is given by:

∥gδ∥Hs(Ω×{0}) . BN s! = K N da
√
N logN s!, (4.17)

where K , d and a are constants. Here BN . KN da
√
N logN .

Following Lions et al. [10,11], the fundamental results for Gevrey spaces can be written as:

∥Di
x D

j
t vδ∥L2(Ω×I) . C BN i!(j!)2(α1)

i+j, (4.18)

where C and α1 are constants.

Moreover

∥gδ eµx∥H1(Ω×{0}) ≤ C, (4.19)

for some µ > 0. This means that

∥vδ eµx∥H1(Ω×{0}) ≤ C . (4.20)

Further

∥gδ e−µx∥H1(Ω×{0}) ≤ C . (4.21)

Hence, we can conclude that

∥vδ e−µx∥H1(Ω×{0}) ≤ C . (4.22)

Eqs. (4.18), (4.20) and (4.22) lead to the following estimates for the local region and the exterior region:

∥vδeµ|x|∥H2,1(Ω×I) ≤ C and ∥vδ∥H2,1(Ic
N
×I) ≤ Ke−ρN . (4.23)

Here K and ρ are generic constants and IcN = R \ IN , IN = [−N,N].
Let s

p

l (x, t) be the approximate representation of vδ(x, t) onΩl defined in Theorem 13 in [9] and Theorem 4.2.1 in [15].

Then, we obtain the error estimate

N−1

l=−N

∥vδ − s
p

l ∥H2,1(Ωl×I) ≤ K e−ρ N , (4.24)

provided q is proportional to p2 and N is proportional to p.
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Now sp(x, t) = 0 for (x, t) ∈ IcN × I . Then from (4.18) and (4.23),

∥(vδ)x − (s
p

l )x∥H1/4({xl}×I) ≤ K e−ρ N , for xl = ± N,

∥vδ − s
p

l ∥H3/4({xl}×I) ≤ K e−ρ N , for xl = ± N.
(4.25)

Hence

R
p({spl (x, t)}−N≤l≤N−1) ≤ K e−ρ N , (4.26)

provided p is proportional to N and N is large enough.

Moreover, the residual of the approximate solution decays as:

R
p({ωp

l (x, t)}−N≤l≤N−1) ≤ R
p({spl (x, t)}−N≤l≤N−1) ≤ K e−ρ N . (4.27)

Using Eqs. (4.26) and (4.27), we obtain:

R
p({(ωp

l − s
p

l )(x, t)}−N≤l≤N−1) ≤ K e−ρ N . (4.28)

Therefore by Theorem 3.2, we can conclude that


N−1

l=−N

∥ωp

l − s
p

l ∥2

H2,1(Ωl×I)

1/2

≤ K e−ρ N . (4.29)

Moreover, ωp(x, t) = 0 and sp(x, t) = 0 for (x, t) ∈ IcN × I .

Combining the above with (4.23), (4.24) and (4.29) we obtain

N−1

l=−N

∥vδ − ω
p

l ∥H2,1(Ωl×I) + ∥vδ − ωp∥H2,1(Ic
N
×I) ≤ K e−ρ N . (4.30)

Here IcN = R \ IN and IN = [−N,N].

4.1. Symmetric formulation

As defined in (4.1) we choose our approximate solution to be the unique {ωp

l }N−1
l=−N which minimizes the functional

R
p({v̌pl (ξ , t)}−N≤l≤N−1) over all {v̌pl (ξ , t)}−N≤l≤N−1. Let the above overdetermined system [9,16] of Eq. (4.1), be of the form

AW = G. (4.31)

Then the Normal Equations are

ATAW = ATG, (4.32)

whereW is a vector assembled from the values of {v̌pl (ξ , t)}−N≤l≤N−1, and G is assembled from the data. Here A is a matrix.

Since, our method is a Least-Squares method [17], we use the preconditioned conjugate gradient method (PCGM) for

solving the Normal Equations. Now from [16]

Rp(U + ϵW ) = Rp(U)+ 2ϵ(W )T (SU − TG)+ O(ϵ2),

for all W . Here U is the vector assembled from the values of {ωp

l }l=−N,N−1 and S, T are matrices which contain valuation of

integrals in Eq. (4.1) using quadrature rule.

Define

U
p,q

l,(p+1)k+i = ω
p

l (ξ
p

i , t
q

k ) for 0 ≤ i ≤ p, 0 ≤ k ≤ q.

Similarly

U
2p,2q

l,(2p+1)k+i = ω
p

l (ξ
2p

i , t
2q

k ) for 0 ≤ i ≤ 2p, 0 ≤ k ≤ 2q.

The integrals, which arise in the above minimization formulation, are computed by the Gauss–Lobatto–Legendre (GLL)

quadrature formula. Then the minimization formulation is represented as:

(V
2p,2q

l )T O
2p,2q

l , (4.33)

where O
2p,2q

l is a (2p + 1)(2q + 1) vector which can be easily computed. Now we can always find a matrix F
p,q

l such that

V
2p,2q

l = F
p,q

l V
p,q

l .
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Fig. 2. Parallelization.

Thus, expression (4.33) can be rewritten as:

(V
2p,2q

l )T O
2p,2q

l = (V
p,q

l )T (F
p,q

l )TO
2p,2q

l . (4.34)

Hence the residuals satisfy the relation

Rp = (F
p,q

l )TO
2p,2q

l .

Note that, neither is a need to compute any mass and stiffness matrices, (as we can calculate the residuals in the normal

equations inexpensively and efficiently) nor do we need to filter the coefficients and data. A detailed description can be

found in [15,16].

4.2. Parallelization and preconditioning

From (3.9) and (4.1), we can conclude that the quadratic form W
p({v̌pl (ξ , t)}N−1

l=−N) (which is defined in (3.9)) is obtained

from the functional R
p({v̌pl (ξ , t)}−N≤l≤N−1) with zero data. For the quadratic form W

p({v̌pl (ξ , t)}−N≤l≤N−1), we define the

preconditioner which is denoted by U
p({v̌pl (ξ , t)}−N≤l≤N−1), as:

U
p({v̌pl (ξ , t)}−N≤l≤N−1) =

N−1

l=−N

∥v̌pl ∥2

H2,1((0,1)×I)
. (4.35)

Then from [9] the following result holds:

W
p({v̌pl (ξ , t)}−N≤l≤N−1) ≤ K U

p({v̌pl (ξ , t)}−N≤l≤N−1), (4.36)

where K is a constant. By Theorem 3.2, we get the following result:

1

C(log p)2
U

p({v̌pl (ξ , t)}−N≤l≤N−1) ≤ W
p({v̌pl (ξ , t)}−N≤l≤N−1). (4.37)

By (4.36) and (4.37), we conclude that the condition number of the preconditioned system is O((log p)2). Assume that v̌
p

l is

defined in terms of Legendre polynomials in ξ , of degree p, and in t , of degree q, for each element Ωl, −N ≤ l ≤ N − 1.

Then v̌
p

l can be written as:

v̌
p

l (ξ , t) =
p

i=0

q

j=0

ai,jLi(2ξ − 1)Lj(2t − 1), (4.38)

where the coefficients ai,j are arranged lexicographically in i and j.

Therefore, we obtain a ((p + 1)(q + 1) × (p + 1)(q + 1)) matrix corresponding to the quadratic form ∥v̌pl ∥2

H2,1((0,1)×I)
.

Using separation of variables technique this preconditioner can be diagonalized in a new set of basis functions which is

given in [18]. In Section 3.1, the discretization of the domain has already been discussed. Each element is mapped to a single

processor for ease of parallelism. During the PCGM process, communication between neighboring processors is confined

to the interchange of information of the value of function and its derivatives at inter-element boundaries on which v̌
p

l is

defined. Moreover we need to compute two global scalars to update the approximate solution and the search direction.

Hence inter-processor communication is quite small [15,16,19] (see Fig. 2).

5. Estimates in negative norms

Lemma 5.1. Assume g is piecewise analytic inΩ and gδ is the mollified representation of g such that

gδ(x) = (g ∗ θN/δ)(x)
with

θN/δ(x) = N

2π
Φδ(Nx) = N

2πδ
Φ(Nx/δ),
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where δ =
√
β1N. Then the estimate

∥g − gδ∥H−2N−2(Ω) ≤ C βN+1
1

2N+1(N + 1)!NN+1
(5.1)

holds, where C is a positive constant.

Proof. Let φ(ζ ) be the Fourier Transform ofΦ(x), which is given by:

Φ̂(ζ ) = φ(ζ ) = e− ζ2

2


N

j=0

ζ 2j

2jj!



. (5.2)

Now

⟨g − gδ, ψ⟩ = ⟨ĝ − ĝδ, ψ̂⟩. (5.3)

Using the Convolution Theorem for Fourier transforms, we deduce that

ĝδ = g ∗ θN/δ = ĝ θ̂N/δ. (5.4)

Substituting Eq. (5.4) in Eq. (5.3) and using the property of inner product, we obtain the relation

⟨g − gδ, ψ⟩ = ⟨ĝ − ĝ θ̂N/δ, ψ̂⟩ = ⟨ĝ, (1 − θ̂N/δ)ψ̂⟩. (5.5)

Here θ̂N/δ(ζ ) = φ(δζ/N). To estimate Eq. (5.5), we use the Taylor expansion of exponential function, which is given by:

eµ = 1 + µ+ · · · + µN

N! + eη
µN+1

(N + 1)! ,

where 0 ≤ η ≤ µ. Hence





1 − e−µ



1 + µ+ · · · + µN

N!





≤ µN+1

(N + 1)! . (5.6)

From Eqs. (5.2) and (5.6), we obtain

|1 − θ̂N/δ(ζ )| ≤ βN+1
1 ζ 2(N+1)

2N+1(N + 1)!NN+1
. (5.7)

Now, Eqs. (5.5) and (5.7) lead to the following estimate

|⟨g − gδ, ψ⟩| = |⟨ĝ, (1 − θ̂N/δ)ψ̂⟩| ≤ ∥ĝ∥L2
βN+1
1 ∥ζ 2(N+1)ψ̂∥L2

2N+1 (N + 1)! NN+1
≤ C βN+1

1 |ψ |H2N+2

2N+1(N + 1)!NN+1
. (5.8)

Using the above estimate, we obtain the desired result

∥g − gδ∥H−2N−2(Ω) ≤ sup
ψ∈H2N+2(Ω)

|(g − gδ, ψ)|Ω
∥ψ∥H2N+2(Ω)

≤ C βN+1
1

2N+1(N + 1)!NN+1
. �

6. Error estimates

In this section we recover point-wise values with spectral accuracy. We use the exponentially accurate mollifier which

was proposed by Tanner in his seminal paper [13] and obtain the error estimate for the solution at a point (x0, 1). Tadmor

has also examined the exponentially accurate mollifier in his erudite exposition [12].

Lemma 6.1. Let ϵ = √
γ1N, where γ1 = ϵ1dx. Here 0 < ϵ1 < 1 and dx = 1. The estimate

|(v − v ∗ θN/ϵ)(x0, 1)| ≤ Ce−ρN (6.1)

holds. Here C and ρ are constants and θN/ϵ(x) is the Hermite mollifier which is defined in (2.7).
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Proof. Note that v(x, t) is analytic for t > 0 and satisfies [8]

D
j
tD
α
x v(x, t) ≤ K

(
√
t)α+2j

(j!)2α!,

where K , j and α are positive numbers.
From Eqs. (2.2) and (2.3), we have

∥v(x, t)eµ|x|∥L2(Ω×{to}) ≤ C, (6.2)

for some µ > 0 and all t0.
We rewrite the left hand side of Eq. (6.1) and apply the triangle inequality, to obtain

|v − v ∗ θN/ϵ | =




v(x0, 1)−

 ∞

−∞
v(x0 − y, 1)ΨN/ϵ(y)dy





, (6.3)

≤




v(x0, 1)−

 π

−π
v(x0 − y, 1)θN/ϵ(y)dy






  

J1

+







|y|≥π
v(x0 − y, 1)θN/ϵ(y)dy






  

J2

. (6.4)

Adding and subtracting
 π

−π v(x0 − y, 1)θN/ϵ(y)dy in J1, we get

J1 = v(x0, 1)−
 π

−π
v(x0 − y, 1)ΨN/ϵ(y)dy

  

L1

+
 π

−π
v(x0 − y, 1)ΨN/ϵ(y)dy −

 π

−π
v(x0 − y, 1)θN/ϵ(y)dy

  

L2

. (6.5)

Here as in [12], we define

ΨN/ϵ(x) = N

2π

+∞

j=−∞
Φϵ(N(x + 2π j)). (6.6)

Applying the triangle inequality in (6.5), the following estimate holds:

|J1| ≤ |L1| + |L2|.
Using the bound on the regularization error (I1 + I2), in Theorem 11.6 of [12], with

I1 =







ϵ1dx≤|y|≤π
ΨN/ϵ(y) (v(x0, 1)− v(x0 − y, 1)) dy





≤ Ce−ηN

and

I2 =







|y|≤ϵ1dx
ΨN/ϵ(y) (v(x0, 1)− v(x0 − y, 1)) dy





≤ Ce−ηN ,

we get:

|L1| . Ce−ηN , (6.7)

where η is a positive constant.
Similarly, L2 in Eq. (6.5), can be estimated by the process given below.

L2 =
 π

−π
v(x0 − y, 1)ΨN/ϵ(y)dy −

 π

−π
v(x0 − y, 1)θN/ϵ(y)dy,

=
 π

−π
v(x0 − y, 1)


j=+∞

j=−∞,j≠0

N

2πϵ
Φ(N(y + 2π j)/ϵ)



dy. (6.8)

Following Eq. (2.14a) of Lemma 2.2 in [12], we can deduce that:

j=+∞

j=−∞,j≠0






N

2πϵ
Φ(N(y + 2π j)/ϵ)






.
2P

ϵ

∞

j=1

e
− ((2j−1)πN)2

4ϵ2 .

Moreover, we obtain

j=+∞

j=−∞,j≠0






N

2πϵ
Φ(N(y + 2π j)/ϵ)






.
2P

√
γ1N

e−η2N/γ1 , |x| ≤ π.
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Here P = ϵ21dxN = ϵ21N . Hence we have 2P ≤ exp(κϵ21N)with κ := log(2). Then

j=+∞

j=−∞,j≠0






N

2πϵ
Φ(N(y + 2π j)/ϵ)






.
1√
γ1N

e



κϵ2
1
N− η2N

γ1



, |x| ≤ π.

Substituting for γ1 = ϵ1dx = ϵ1, we get

j=+∞

j=−∞,j≠0






N

2πϵ
Φ(N(y + 2π j)/ϵ)






.
1√
γ1N

e



κϵ2
1
− η2
ϵ1



N
, |x| ≤ π. (6.9)

For sufficiently small ϵ1 < 1, the above estimate is exponentially accurate.

Eqs. (6.8) and (6.9) lead to the result:

|L2| . Ce−η′N , (6.10)

where η′ is a positive constant.

Choose ρ1 = min{η, η′}. Then, the bound for |J1| . |L1| + |L2| satisfies

|J1| . Ce−ρ1N . (6.11)

By (2.14b) in [12], we have

|θN/ϵ(y)| .
2P

√
γ1N

e−η1N for |y| ≥ π, (6.12)

where η1 is a positive constant. Further, it can be shown that:

∥v(x, t)∥L1(Ω×{t0}) ≤ ∥v(x, t)eµ|x|∥L2(Ω×{t0})∥e
−µ|x|∥L2(Ω×{t0}) ≤ C . (6.13)

Now from (6.12) and (6.13), an estimate for J2 is obtained as

|J2| . Ce−ρ2N , (6.14)

with ρ2, a positive constant.

Choosing ρ = min{ρ1, ρ2} and combining Eqs. (6.3), (6.11) and (6.14), the final estimate is as follows:

|v − v ∗ θN/ϵ | . Ce−ρN . � (6.15)

Lemma 6.2. The estimate

|(v ∗ θN/ϵ − vδ ∗ θN/ϵ)(x0, 1)| ≤ Ce−ρN , (6.16)

holds. Here C and ρ are constants and θN/ϵ(x) is the Hermite mollifier which is defined in (2.7) and ϵ = √
γ1N.

Proof. To verify the above bound, we define

I2 = v ∗ θN/ϵ − vδ ∗ θN/ϵ = (v − vδ) ∗ θN/ϵ .
Hence, we get

|I2| ≤ ∥v − vδ∥H−2N−2∥θN/ϵ∥H2N+2 . (6.17)

Now, consider the adjoint problem

L∗ψ = 0 inΩ × I, (6.18)

with initial condition

ψ = θN/ϵ(x) = N

2πϵ
Φ


Nx

ϵ



onΩ × {1}.

Then, the following result follows immediately:

(v ∗ ψ)(x0, 1) = (v ∗ ψ)(x0, 0).
Moreover, we have the relation

((v − vδ) ∗ ψ)(x0, 1) = ((g − gδ) ∗ ψ)(x0, 0). (6.19)
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From Lemma 4.1, the following estimate holds:

∥ψ∥Hs(Ω×{1}) ≤ BN s! αs
1.

Here BN = C N
√
e (N e3/γ1)

(
√

N e/γ1)

4 ∼ K ′Nd′a′
√
N logN .

From this result, as a consequence, we get:

∥ψ∥Hs(Ω×{0}) ≤ CBN s! αs
1, (6.20)

for some constants C and α1. Substituting Eqs. (6.19) and (6.20) in Eq. (6.17), and applying Lemma 5.1, we can deduce that

|I2| ≤ ∥g − gδ∥H−2N−2∥ψ∥H2N+2 ≤ C βN+1
1

2N+1(N + 1)!NN+1
BN(2N + 2)! α2N+2

1 . (6.21)

Using Stirling’s Formula, we obtain the desired result

|I2| ∼ C(2β1α
2
1)

N+1 BN

2

e(N+1)
∼ C1e

−ρN (6.22)

provided β1 is small enough and satisfies


4β1(α1)

2

e



< 1. Here δ =
√
β1N and ϵ = √

γ1N . �

Theorem 6.3. Define

ωp = ω
p

l inΩl × I for − N ≤ l ≤ N − 1, (6.23)

= 0, otherwise. (6.24)

Let ϵ = √
γ1N, where γ1 = ϵ1dx. Here 0 < ϵ1 < 1 and dx = 1. If vδ ∈ D2,1(Ω̄ × [0, 1]) then the following error estimate holds

|v(x0, 1)− (ωp ∗ ψ)(x0, 1)| ≤ C1 e
−ρ N , (6.25)

for any x0 ∈ IN = [−N,N], provided q is proportional to p2, as p tends to infinity and N is proportional to p. Here C1 and ρ are

constants and ψ = θN/ϵ(x) is the Hermite mollifier which is defined in (2.7).

Proof. Firstly, the left hand side of (6.25) is rewritten as follow:

|(v − ωp ∗ ψ)(x0, 1)| = |((v − v ∗ ψ)
  

I1

+ (v ∗ ψ − vδ ∗ ψ)
  

I2

+ (vδ ∗ ψ − ωp ∗ ψ)
  

I3

)(x0, 1)|. (6.26)

Applying triangle inequality, the above estimate satisfies

|(v − ωp ∗ ψ)(x0, 1)| ≤ |I1| + |I2| + |I3|. (6.27)

Then, from Lemma 6.1, the following result can be established:

|I1| = |(v − v ∗ ψ)(x0, 1)| ≤ C1 e
−ρN . (6.28)

Using Lemma 6.2, we have

|I2| = |(v ∗ ψ − vδ ∗ ψ)(x0, 1)| = |((v − vδ) ∗ ψ)(x0, 1)| ≤ C1e
−ρN . (6.29)

From Eq. (4.30) and Lemma 4.1, the following result holds

|I3| = |((vδ − ωp) ∗ ψ)(x0, 1)| ≤ ∥(vδ − ωp)∥L2∥ψ∥L2 ≤ C1 e
−ρ1N . (6.30)

Combining Eqs. (6.28)–(6.30), we obtain

|(v − ωp ∗ ψ)(x0, 1)| ≤ C1 e
−ρ N . �

Now we want to recover point-wise values at an interior point (x0, t0) with spectral accuracy. Assume that ωp(x, t) ∈
D2,1(O), where the set O is

O = {(x, t) : |x − x0| ≤ δ1, |t − t0| ≤ ϵ1} ⊆ R× (0, 1).

Here we use the Hermite mollifier, which is defined in (2.7), to recover the value in space direction. We use the root

exponential accurate mollifier [12] to recover the value in time direction. Define the root exponential accurate mollifier

ΘQ ,δ2(t) = 1

δ2
η1


t

δ2



DQ


t

δ2



; η2 := e



ct2

t2−π2



1(−π,π)(t), c > 0, (6.31)
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Fig. 3. (Left) Numerical solution and exact solution at t = 1, (Right) Derivative (ux) of numerical solution and exact solution at t = 1.

with adaptive parameterization, δ2 = dt := 1

π
dist{t, {0, 1}}[modπ] and Q ∼ dtN/

√
e. Here DQ (t) denotes the Dirichlet

kernel

DQ (t) :=







sin(Q + 1/2)t

2π sin(t/2)
t ≠ 2mπ,

2Q + 1 t = 2mπ.

(6.32)

Now we define the regularized version of ωp at (x0, t0) as:

Rωp(x0, t0) =
 π

−π

 πdt

−πdt
θN/ϵ(x)ΘQ ,δ2(t)ω

p(x0 − x, t0 − t)dxdt,

and

RDαx D
j
tω

p(x0, t0) = (−1)α+j

 π

−π

 πdt

−πdt
Dαx θN/ϵ(x) D

j
tΘQ ,δ2(t) ω

p(x0 − x, t0 − t)dxdt.

Once again it can be shown that this regularized version ofwp(x0, t0) approximates v(x0, t0)with exponential accuracy.

7. Computational results

The efficacy of the proposed computational strategy is established through numerical examples. All computations have

been done on 372-node HPC cluster which is based on n Intel Xeon Quadcore processors with a total of 2944 cores and high-

speed Infiniband network and it has a peak performance of 34.5 TF. The details of the configuration of Intel Xeon CPU X5570

@ 2.93 GHz are as follows: Number of CPU (Physically)-2, Cores per CPU (Physically and after Hyper-Threading)-4, Total CPU

cores (Physically)-8, Number of CPU (after Hyper-Threading)-4, Total CPU cores (after Hyper-Threading)-16, RAM-24 GB,

HDD Capacity-2 X 500 GB.

Example 7.1 (Nonsmooth Initial Data). Consider the problem

ut − uxx = 0 inΩ × (0, 1), (7.1)

u(x, 0) = f (x) onΩ × {0}, (7.2)

where

f (x) =


1 x ∈ (0, 1),
0 otherwise.

From the numerical results given in Table 1, Figs. 3–5, it can be seen that the point-wise error of the solution and its

derivative decay rapidly with polynomial order p. Further, from Table 1 it is observed that the number of iterations, using

the PCGMmethod, increasesmarginally with p, though the computational time increases due to increasedmatrix size as p is

increased. This example validates the efficacy of the proposed method (i.e. LSSEM). In the next two examples, the European

options problem is dealt with.
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Table 1

Point-wise error as function of p.

p q Error(1, 1) Error(0, 1) Error(−1, 1) Iterations No. of cores CPU (s)

5 25 7.25× 10−5 7.34× 10−5 6.98 × 10−5 144 10 1.9

6 36 1.88× 10−5 1.87× 10−5 9.27 × 10−6 163 12 3.1

7 49 1.22× 10−6 1.14× 10−6 9.35 × 10−7 175 14 26.7

8 64 1.99× 10−7 1.99× 10−7 9.97 × 10−8 186 16 36.9

9 81 9.87× 10−9 9.75× 10−9 8.75 × 10−9 195 18 49.8

10 100 9.92×10−10 9.92×10−10 8.87×10−10 204 20 61.2

Fig. 4. Point-wise error between derivative of numerical solution and exact solution.

Fig. 5. (Left) Second derivative (uxx) of numerical solution and exact solution at t = 1, (Right) Point-wise error between second derivative (uxx) of

numerical solution and exact solution.

Example 7.2 (European Black–Scholes Put Options Problem). Here a problem of the ‘‘European Black–Scholes Put option’’ is

considered. Themethod is used to solve this problem and the results are compared with those due to Zhu et al. [7]. Consider

the problem:

Vτ − 1

2
σ 2S2VSS − rSVS + rV = 0 in (0,∞)× [0, T ],

V (S, 0) = max(K − S, 0) onΩ × {0}.
Here V , S, K , r and σ are respectively option price, underlying asset price, strike price, risk-free interest rate and volatility

(see Table 2).

The results obtained using the proposed method are given in Table 3. From Table 3, it can be observed that:

1. In order to achieve an accuracy of 10−6, LSSEM requires p = 6, q = 36 and the computational time required is only 3.2 s.

2. LSSEM can easily obtain high accuracies. For examples, an accuracy of 10−10 is obtained with only q = 100.

3. From Figs. 7 and 8, we observe that the errors of derivatives also decay exponentially with polynomial order p.
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Table 2

Put option problem: variable value from Zhu et al. [7].

K r σ T

100 0.05 0.15 0.25

Table 3

Put option problem: point-wise error as function of p for LSSEM.

p q Error(0, 1) Error(−1, 1) Error(−2, 1) Iteration No. of cores CPU (s)

5 25 6.81 · 10−5 5.98 · 10−5 5.92 · 10−5 151 10 2.1

6 36 6.12 · 10−6 5.32 · 10−6 5.29 · 10−6 178 12 3.2

7 49 5.87 · 10−7 5.23 · 10−7 5.14 · 10−7 190 14 27.5

8 64 5.96 · 10−8 4.99 · 10−8 4.88 · 10−8 202 16 38.1

9 81 6.67 · 10−9 5.87 · 10−9 5.57 · 10−9 213 18 51.3

10 100 6.24 ·10−10 5.22 · 10−10 5.22 · 10−10 226 20 61.6

Fig. 6. Numerical solution and exact solution at t = 1.

Fig. 7. (Left) Derivative (∆) of numerical solution and exact solution at t = 1, (Right) Point-wise error between derivative (∆) of numerical solution and

exact solution.

4. Number of iterations for PCGM increases marginally with p.

5. LSSEM is exponentially accurate theoretically as well as numerically (see Fig. 6).

Example 7.3 (European Black–Scholes Call Options Problem). Usually, in the literature, the ‘‘European Black–Scholes Put

option’’ problem is solved. Few researchers, e.g. Bunnin et al. [4] have addressed the ‘‘European Black–Scholes Call

option’’ problem. The difficulty is due to an unbounded initial state. In the following the Call option problem is solved and
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Fig. 8. (Left) Second derivative (Γ ) of numerical solution and exact solution at t = 1, (Right) Point-wise error between second derivative (Γ ) of numerical

solution and exact solution.

Fig. 9. Numerical solution and exact solution at t = 1.

Table 4

Call option problem: variable value from Bunnin et al. [4].

K r σ T

10 0.1 0.4 1

the results are compared with those due to Bunnin et al. [4]. Consider the problem

Vτ − 1

2
σ 2S2VSS − rSVS + rV = 0 in (0,∞)× [0, T ],

V (S, 0) = max(S − K , 0) onΩ × {0}.
Here V , S, K , r and σ are respectively option price, underlying asset price, strike price, risk-free interest rate and volatility

(see Table 4).

In Tables 5 and 6 the results are presented. From these results it can be seen that

1. In [4] an accuracy of 10−3 is achieved for N = 100, while LSSEM achieves an accuracy of 10−5 with p = 5, q = 25.
2. LSSEM achieves an accuracy of 10−10 for p = 10, q = 100.
3. In Figs. 10 and 11, the errors of derivatives also decay rapidly.
4. LSSEM achieves exponential accuracy (see Fig. 9).

8. Conclusion

In this paper we have presented a non-conforming least squares spectral element method for Black–Scholes equation.

Hermitemollifier has been used to resolve the difficulty of non-smooth initial conditions. We have provided error estimates
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Table 5

Call option: point-wise error as function of p for LSSEM.

p q Error(1, 1) Error(2, 1) Error(3, 1) Iteration No. of cores CPU (s)

5 25 7.12 · 10−5 7.10 · 10−5 7.03 · 10−5 246 10 2.5

6 36 7.09 · 10−6 7.09 · 10−6 7.14 · 10−6 283 12 3.9

7 49 6.96 · 10−7 6.96 · 10−7 6.98 · 10−7 319 14 29.6

8 64 6.03 · 10−8 6.03 · 10−8 6.06 · 10−8 356 16 40.3

9 81 7.18 · 10−9 7.18 · 10−9 7.23 · 10−9 389 18 54

10 100 7.96 · 10−10 7.96 · 10−10 7.92 · 10−10 412 20 65.7

Table 6

CALL option problem: point-wise error, as reported in Bunnin et al. [4].

N Stock price Error

100 3 −0.1059

100 6 −0.0021

100 9 0.0020

100 12 0.0012

100 15 0.0014

100 20 0.0043

Fig. 10. (Left) Derivative (∆) of numerical solution and exact solution at t = 1, (Right) Point-wise error between derivative (∆) of numerical solution and

exact solution.

Fig. 11. (Left) Second derivative (Γ ) of numerical solution and exact solution at t = 1, (Right) Point-wise error between second derivative (Γ ) of numerical

solution and exact solution.

to establish the exponential accuracy of the method theoretically. Specific numerical examples have been given to validate

the error estimate. In the first example we have shown the point-wise exponential accuracy of the proposed method. The

second example is the European Black–Scholes Put Option problem. LSSEM can easily obtain very high accuracies. European

Black–Scholes Call Option problem has been chosen as the third example. The numerical solution of this problem has been
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compared to that obtained by Bunnin et al. [4]. Bunnin et al. [4] have achieved a maximum accuracy of 10−3 for N = 100,

while LSSEM achieves an accuracy of 10−10 with p = 10, q = 100. From the three examples, and the theoretical results,

it has been demonstrated that LSSEM is an exponentially accurate method in space and time. Further, the method is non-

conforming and hence is parallelizable. The LSSEM seems to be superior to any of the existing methods.

The method can also be used to solve jump diffusion problems and higher dimension problems of Options Pricing. We

intend to study the application of this method to these problems in future work.
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