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Abstract. In this paper we show that we can use a modified version of the h-p spec-
tral element method proposed in [6,7,13,14] to solve elliptic problems with general
boundary conditions to exponential accuracy on polygonal domains using nonconform-
ing spectral element functions. A geometrical mesh is used in a neighbourhood of the
corners. With this mesh we seek a solution which minimizes the sum of a weighted
squared norm of the residuals in the partial differential equation and the squared norm
of the residuals in the boundary conditions in fractional Sobolev spaces and enforce
continuity by adding a term which measures the jump in the function and its derivatives
at inter-element boundaries, in fractional Sobolev norms, to the functional being min-
imized. In the neighbourhood of the corners, modified polar coordinates are used and
a global coordinate system elsewhere. A stability estimate is derived for the functional
which is minimized based on the regularity estimate in [2]. We examine how to par-
allelize the method and show that the set of common boundary values consists of the
values of the function at the corners of the polygonal domain. The method is faster than
that proposed in [6,7,14] and the h-p finite element method and stronger error estimates
are obtained.

Keywords. Geometrical mesh; stability estimate; least-squares solution;
precondi- tioners; condition numbers; exponential accuracy.

1. Introduction

In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems

on polygonal domains using parallel computers were proposed. For problems with Dirich-

let boundary conditions the spectral element functions were nonconforming. For prob-

lems with Neumann and mixed boundary conditions the spectral element functions had

to be continuous at the vertices of the elements only. In this paper we propose a modified

version of this method using nonconforming spectral element functions which works for

general boundary conditions.

For simplicity of exposition we restrict ourselves to scalar problems although the

method applies to elliptic systems too.

A method for obtaining a numerical solution to exponential accuracy for elliptic prob-

lems with analytic coefficients posed on a curvilinear polygon whose boundary is piece-

wise analytic with mixed Neumann and Dirichlet boundary conditions was first proposed

by Babuska and Guo [3] within the framework of the finite element method. They were

able to resolve the singularities which arise at the corners by using a geometrical mesh.

This problem has also been examined by Karniadakis and Spencer in [11].
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We also use a geometrical mesh to solve the same class of problems to exponential

accuracy using h-p spectral element methods. In a neighbourhood of the corners modified

polar coordinates (τk,θk) are used, where τk = ln rk and (rk,θk) are polar coordinates with

the origin at the vertex Ak. Away from sectoral neighbourhoods of the corners a global

coordinate system is used consisting of (x1,x2) coordinates.

We now seek a solution which minimizes the sum of the squares of a weighted squared

norm of the residuals in the partial differential equation and the sum of the squares of the

residuals in the boundary conditions in fractional Sobolev norms and enforce continuity

by adding a term which measures the sum of the squares of the jump in the function

and its derivatives in fractional Sobolev norms to the functional being minimized. These

computations are done using modified polar coordinates in sectoral neighbourhoods of

the corners and a global coordinate system elsewhere in the domain. The spectral element

functions are nonconforming. For the modified version of the h-p spectral element method

examined here a stability estimate is proved which is based on the regularity estimate of

Babuska and Guo in [2]. The proof is much simpler than that of the stability estimate in

[6,7]. Moreover the error estimates are stronger.

The set of common boundary values for the numerical scheme consists of the values

of the function at the vertices of the polygonal domain. Since the cardinality of the set of

common boundary values is so small we can compute a nearly exact approximation to the

Schur complement. Let M denote the number of corner layers and W denote the number of

degrees of freedom in each independent variable of the spectral element functions, which

are a tensor product of polynomials, and let W be proportional to M. Then the method is

faster than the h-p spectral element method in [6,7,14] by a factor of O(W 1/2) and faster

than the h-p finite element method by a factor of O(W ).
We now outline the contents of this paper. In §2 function spaces are defined and differ-

entiability estimates are obtained. In §3 we state and prove stability estimates. In §4 the

numerical scheme, which is based on these estimates, is described and in §5 error esti-

mates are obtained. In §6 we examine the issues of parallelization and preconditioning.

Finally §7 contains technical results which are needed to prove the stability theorem.

2. Function spaces and differentiability estimates

Let Ω be a curvilinear polygon with vertices A1,A2, . . . ,Ap and corresponding sides

Γ1,Γ2, . . . ,Γ p where Γi joins the points Ai−1 and Ai. We shall assume that the sides Γi are

analytic arcs, i.e.

Γi = {(ϕi(ξ ),ψi(ξ ))|ξ ∈ I = [−1,1]}

with ϕi(ξ ) and ψi(ξ ) being analytic functions on I and |ϕ ′
i (ξ )|2 + |ψ′

i (ξ )|2 ≥ α > 0. By

Γi we mean the open arc, i.e. the image of I = (−1,1).
Let the angle subtended at A j be ωj. We shall denote the boundary ∂Ω of Ω by

Γ. Further, let Γ = Γ[0]⋃Γ[1], Γ[0] =
⋃

i∈D Γi, Γ[1] =
⋃

i∈N Γi where D is a sub-

set of the set {i|i = 1, . . . , p} and N = {i|i = 1, . . . , p} \D . Let x denote the vector

x = (x1,x2).
Let L be a strongly elliptic operator

L (u) =−
2

∑
r,s=1

(ar,s(x)uxs)xr +
2

∑
r=1

br(x)uxr + c(x)u, (2.1)
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where as,r(x) = ar,s(x),br(x),c(x) are analytic functions on Ω and for any ξ1,ξ2 ∈ R and

any x ∈ Ω,

2

∑
r,s=1

ar,sξrξs ≥ µ0(ξ 2
1 + ξ 2

2 ) (2.2)

with µ0 > 0. In this paper we shall consider the boundary value problem

L u = f on Ω,

u = g[0] on Γ[0],
(

∂u

∂N

)

A

= g[1] on Γ[1], (2.3)

where (∂u/∂N)A denotes the usual conormal derivative which we shall now define. Let

A denote the 2× 2 matrix whose entries are given by

Ar,s(x) = ar,s(x)

for r,s = 1,2. Let N = (N1,N2) denote the outward normal to the curve Γi for i ∈ N .
Then

( ∂u
∂N

)

A
is defined as follows:

(

∂u

∂N

)

A

(x) =
2

∑
r,s=1

Nrar,s
∂u

∂xs

. (2.4)

Moreover let the bilinear form induced by the operator L satisfy the inf–sup conditions.

It shall be assumed that the given data f is analytic on Ω and g[l], l = 0,1 is analytic on

every closed arc Γi and g[0] is continuous on Γ[0].

By Hm(Ω) we denote the Sobolev space of functions with square integrable derivatives

of order≤ m on Ω furnished with the norm

‖u‖2

Hm(Ω)
= ∑

|α |≤m

‖Dα u‖2

L2(Ω)
.

Define ri(x) to be the Euclidean distance between x and the vertex Ai of Ω. Let β =
(β1,β2, . . . ,βp) denote a p-tuple of real numbers, 0 < βi < 1, i = 1, . . . , p. For any integer

k, let β + k = (β1 + k,β2 + k, . . . ,βp + k). Further, we denote

Φβ (x) =
p

∏
i=1

r
βi

i and Φβ+k(x) =
p

∏
i=1

r
βi+k
i .

Let H
m,l

β
(Ω),m ≥ l ≥ 0, l an integer, denote the completion of the set of all infinitely

differentiable functions under the norm

‖u‖2

H
m,l
β (Ω)

= ‖u‖2

Hl−1(Ω)
+

m

∑
|α |=k,k=l

‖Dα uΦβ+k−l‖
2

L2(Ω)
, l ≥ 1

‖u‖2

H
m,0
β (Ω)

=
m

∑
|α |=k,k=0

‖Dα uΦβ+k−l‖
2

L2(Ω)
, l = 0.

For m = l = 0 we shall write H
0,0
β (Ω) = Lβ(Ω).
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Let γ be part of the boundary Γ of Ω. Define H
m− 1

2
,l− 1

2

β
(γ), m ≥ l, l ≥ 0 to be the set of

all functions φ on γ such that there exists f ∈ H
m,l

β
(Ω) with φ = f |γ and

‖φ‖
H

m− 1
2
,l− 1

2
β (γ)

= inf
f∈H

m,l
β (Ω)

{‖ f‖
H

m,l
β (Ω)

}.

For l an integer 0 ≤ l ≤ 2, let

ψl
β(Ω) = {u(x)|u ∈ H

m,l
β (Ω),m ≥ l}

and

B
l
β (Ω) = {u(x)|u ∈ ψl

β (Ω),‖|Dα u|Φβ+k−l‖L2(Ω) ≤Cdk−l(k− l)!

for |α |= k = l, l + 1, . . . ;d ≥ 1, C independentofk}.

Let Q ⊆ R
2 be an open set with a piecewise analytic boundary ∂Q and γ be part or

whole of the boundary ∂Q. Finally B
l− 1

2

β (γ),0 ≤ l ≤ 2, denotes the space of all functions

ϕ for which there exists f ∈B
l
β (Q) such that f = ϕ on γ.

Next as in [3] we introduce the space C2
β :

C
2
β(Ω) = {u ∈ H

2,2
β (Ω)| |Dα u(x)| ≤Cdkk!(Φk+β−1(x))

−1,

|α |= k = 1,2, . . . ;C ≥ 1;d ≥ 1 independentofk}.

The relationship between C
2
β and B

2
β is given by Theorem 2.2 of [3] which can be stated

as follows:

B
2
β (Ω)⊆ C

2
β(Ω).

We need to state our regularity estimates in terms of local variables which are defined on

a geometrical mesh imposed on Ω as in §5 of [3]. Ω is first divided into subdomains. Thus

we divide Ω into p subdomains S1, . . . ,Sp, where Si denotes a domain which contains the

vertex Ai and no other, and on each Si we define a geometrical mesh. Let Sk = {Ωk
i, j, j =

1, . . . ,Jk, i = 1, . . . , Ik, j} be a partition of Sk and let S =
⋃p

k=1S
k. The geometrical mesh

imposed on Ω is as shown in figure 1.

We now put some restrictions on S. Let (rk,θk) denote polar coordinates with center

at Ak. Let τk = lnrk. Choose ρ so that the curvilinear sector Ωk with sides Γk and Γk+1

bounded by the circular arc Bk
ρ , center at Ak and radius ρ satisfies

Ωk ⊆
⋃

Ωk
i, j∈S

k

Ωk

i, j.

Ωk may be represented as

Ωk = {(x1,x2) ∈ Ω: 0 < rk < ρ }. (2.5)
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Figure 1. Geometrical mesh with M layers in the radial direction.

Let γk
i, j,l ,1 ≤ l ≤ 4 be the side of the quadrilateral Ωk

i, j ∈S. Then it is assumed that

γk
i, j,l :







x1 = hk
i, jϕ k

i, j,l(ξ ),

x2 = hk
i, jψk

i, j,l(ξ ),
− 1 ≤ ξ ≤ 1, l = 1,3 (2.6a)

γk
i, j,l :







x1 = hk
i, jϕ k

i, j,l(η ),

x2 = hk
i, jψk

i, j,l(η ),
− 1 ≤ η ≤ 1, l = 2,4 (2.6b)

and that for some C ≥ 1 and L ≥ 1 independent of i, j,k and l,

∣

∣

∣

∣

dt

dst
ϕ k

i, j,l(s)

∣

∣

∣

∣

,

∣

∣

∣

∣

dt

dst
ψk

i, j,l(s)

∣

∣

∣

∣

≤CLt t!, t = 1,2, . . . . (2.7)

We shall place further restrictions on the geometric mesh imposed on Ωk later. Some of

the elements may be curvilinear triangles.

Let (rk,θk) be polar coordinates with center at Ak. Then Ωk is the open set bounded

by the curvilinear arcs Γk, Γk+1 and a portion of the circle rk = ρ. We divide Ωk into

ρ =σρ =ρ

ψ
φ

ψ

kk

k

k

k

A

θ

Γ
θ

k

k

k

(rk , θ )   k

Ak

 ΩkΩk

r = ρ k

 0

(ρ
k
 ,φ

k
)

  ^

k )=f  ( r k

u

l

ψ
k

u

ψ
k

l

Γk+1

θk =f
 k

 1 (r  )k

 k

Figure 2. Curvilinear sectors.
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curvilinear rectangles by drawing M circular arcs rk = σk
j = ρµM+1− j

k , j = 2, . . . ,M + 1,
where µk < 1 and Ik − 1 analytic curves C2, . . . ,CIk whose exact form shall be prescribed

in what follows. Let σk
1 = 0. Thus Ik, j = Ik for j ≤ M; in fact, we shall let Ik, j = Ik for

j ≤ M+ 1. Moreover Ik, j ≤ I for all k, j where I is a fixed constant. Let

Γk+ j = {(rk,θk)|θk = f k
j (rk), 0 < rk < ρ},

j = 0,1 in a neighbourhood of Ak in Ωk. Then the mapping

rk = ρk,θk =
1

(ψk
u −ψk

l )
[(φk −ψk

l ) f k
1 (ρk)− (φk −ψk

u) f k
0 (ρk)], (2.8)

where f k
j is analytic in ρk for j = 0,1, maps locally the cone

{(ρk,φk): 0 < ρk < σ ,ψk
l < φk < ψk

u}

onto a set containing Ωk as in §3 of [3]. The functions f k
j satisfy f k

0 (0) = ψk
l , f k

1 (0) = ψk
u

and ( f k
j )

′(0) = 0 for j = 0,1. It is easy to see that the mapping defined in (2.8) has two

bounded derivatives in a neighbourhood of the origin which contains the closure of the

open set

Ω̂k = {(ρk,φk): 0 < ρk < ρ,ψk
l < φk < ψk

u}.

We choose the Ik − 1 curves C2, . . . ,CIk as

Ci: φk(rk,θk) = ψk
i

for i = 2, . . . , Ik. Here

ψk
l = ψk

1 < ψk
2 < · · ·< ψk

Ik+1 = ψk
u .

Let ∆ψk
i = ψk

i+1 −ψk
i . Then {ψk

i }i,k are chosen so that

max
i,k

(∆ψk
i )< λ (min

i,k
(∆ψk

i )) (2.9)

for some constant λ . Another set of local variables (τk,θk) is needed in a neighbourhood

of Ωk where

τk = lnrk.

In addition, we need one final set of local variables (νk,φk) in the cone

{(ρk,φk): 0 ≤ ρk ≤ ρ,ψk
l ≤ φk ≤ ψk

u},

where

νk = lnρk.

Let Sk
µ = {(rk,θk): 0 ≤ rk ≤ µ}∩Ω. Then the image Ŝk

µ in (νk,φk) variables of Sk
µ is given

by

Ŝk
µ = {(νk,φk): −∞ ≤ νk ≤ lnµ ,ψk

l ≤ φk ≤ ψk
u}.
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Now the relationship between the variables (τk,θk) and (νk,φk) is given by (τk,θk) =
Mk(νk,φk), viz.

τk = νk,

θk =
1

(ψk
u −ψk

l )
[(φk −ψk

l ) f k
1 (e

νk)− (φk −ψk
u) f k

0 (e
νk)]. (2.10)

Hence it is easy to see that Jk(νk,φk), the Jacobian of the above transformation, satisfies

C1 ≤ |Jk(νk,φk)| ≤C2 for all (νk,φk) ∈ Ŝk
µ , for all 0 < µ ≤ ρ.

We now need the fundamental regularity result from [2], viz. Theorem 2.1 which we

state as follows:

If f ∈ H
m,0
β (Ω), g[ j] ∈ H

m+ 3
2− j, 3

2− j

β (Γ[ j]), j = 0,1, 0 < βi < 1, βi > β ⋆

i and m ≥ 0, then

the solution of (2.3) exists in H
m+2,2
β (Ω) and

‖u‖
H

m+2,2
β (Ω)

≤Cm



‖ f‖
H

m,0
β (Ω)

+
1

∑
j=0

‖g[ j]‖
H

m+ 3
2
− j, 3

2
− j

β (Γ[ j] )



 .

Let us define αi = 1−β ⋆

i .

We now state the differentiability estimates for the solution u of (2.3) which will be

needed in this paper.

PROPOSITION 2.1.

Let 1−αk > 0. Then for λk < αk,

∫ ψk
u

ψk
l

∫ ln µ

−∞
∑

|ε|≤m

|Dε1
νk

D
ε2
φk
(u− u(Ak))|

2e−2λkνk dνkdφk

≤ µ2γk (C dm−2(m− 2)!)2 (2.11)

for 0 < µ ≤ ρ with γk < αk −λk. If 1−αk < 0 then for λk < 1/2, (2.11) remains valid for

0 < µ ≤ ρ with γk = 1/2.

The proposition can be proved in the same way as Theorem 2.1 of [6].

3. The stability estimate

Let

L (u) =−
2

∑
i, j=1

(ai, jux j
)xi

+
2

∑
i=1

biuxi
+ cu (3.1)

be a strongly elliptic operator. We now consider the following mixed boundary value

problem:

L u = f in Ω,

γ0u = u|Γ[0] = g[0] and

γ1u =

(

∂u

∂N

)

A

∣

∣

∣

∣

Γ[1]
= g[1]. (3.2)
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Here the conormal derivative γ̄1u is defined as follows. Let γi ⊆ Γ[1] and let N = (N1,N2)
T

denote the unit outward normal at a point on γi. Then

γ̄1u =

(

∂u

∂N

)

A

=
2

∑
i, j=1

Ni ai, j ux j
. (3.3)

Moreover, let the bilinear form induced by the operator L satisfy the inf–sup conditions.

We can now state the regularity result Theorem 2.1 of [2] as follows:

Let u be the solution to (3.2). Then

‖u‖
H

k+2,2
β (Ω)

≤Ck



‖ f‖
H

k,0
β (Ω)

+
1

∑
j=0

‖g[ j]‖
H

k+ 3
2
− j, 3

2
− j

β (Γ[ j] )



 . (3.4)

The above estimate for k = 0 is used to prove the stability estimate Theorem 3.1.

We remark that in Theorem 5.2 of [9], Guo and Babuska have extended the above

regularity result to elliptic systems. Hence the method applies to elliptic systems too.

Divide the polygonal domain Ω into p sectors Ω1,Ω2, . . . ,Ωp and a remaining portion

Ωp+1. Further divide each of these subdomains into still smaller elements

{Ωk
i, j, 1 ≤ i ≤ Ik, j, 1 ≤ j ≤ M, 1 ≤ k ≤ p}.

Let

Ωp+1 = {Ωk
i, j: 1 ≤ k ≤ p,M < j ≤ Jk,1 ≤ i ≤ Ik, j}.

We shall relabel the elements of Ωp+1 and write

Ωp+1 = {Ωp+1
l : 1 ≤ l ≤ L}.

Now define the space of spectral element functions ΠM,W = {{uk
i, j(νk,φk)}i, j,k,

{u
p+1

l (ξ ,η )}l}, where uk
i,1 = hk a constant for all i and

uk
i, j(νk,φk) =

Wj

∑
r=1

Wj

∑
s=1

gr,s ν r
k φs

k , 1 < j ≤ M.

Here 1 ≤ Wj ≤ W. Moreover there is an analytic mapping M
p+1
l from the master square

S = (−1,1)2 to Ωp+1
l . We define

u
p+1
l (Mp+1

l (ξ ,η )) =
W

∑
r=1

W

∑
s=1

gr,s ξ r η s.

Let w ∈ H
2,2

β
(Ω). Now for 1 ≤ j ≤ M,

∫

Ωk
i, j

r2βk
k

|L w|2dx =

∫

Ω̃k
i, j

r2(−1+βk)
k

|L̃ kw|2 dτkdθk. (3.5)

Here Ω̃k
i, j is the image of Ωk

i, j in (τk,θk) coordinates and L̃ kw= r2
k
L w. It has been shown

in [7] that if we let y1 = τk and y2 = θk then

L̃
kw =−

2

∑
i, j=1

∂
∂yi

(

ãk
i, j

∂w

∂y j

)

+
2

∑
i=1

b̃k
i wyi

+ c̃kw. (3.6)
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Let Ok denote the matrix

Ok =

[

cosθk −sinθk

sinθk cosθk

]

and

Ãk =

[

ãk
1,1 ãk

1,2

ãk
2,1 ãk

2,2

]

.

Then Ãk = (Ok)T AOk.

Let Jk(ν
k
,φ

k
) denote the Jacobian of the map Mk(νk,φk) defined in §2. Then for 1 <

j ≤ M,

∫

Ωk
i, j

r2βk
k

|L w|2dx =

∫

Ω̂k
i, j

e−2(1−βk)νk |L k
i, jw(νk

,φ
k
)|2 dνkdφk. (3.7)

Here Ω̂k
i, j is the image of Ωk

i, j in (νk,φk) variables and

L
k
i, jw =

√

Jk L̃
kw.

Now

L
k
i, jw(νk,φk) = Ak

i, jwνkνk
+ 2Bk

i, jwνkφk
+Ck

i, jwφkφk

+Dk
i, jwνk

+Ek
i, jwφk

+Fk
i, jw.

Let Âk
i, j be the polynomial approximation of Ak

i, j, of degree Wj in νk and φk separately,

as defined in Theorem 4.46 of [12]. Now we define a differential operator with polynomial

coefficients (L k
i, j)

a
, which is an approximation to L k

i, j as follows:

(L k
i, j)

aw = Âk
i, jwνkνk

+ 2B̂k
i, jwνkφk

+ Ĉk
i, jwφkφk

+ D̂k
i, jwνk

+ Êk
i, jwφk

+ F̂k
i, jw.

Let λk = 1−βk. Then for 1 < j ≤ M,

∣

∣

∣

∣

∣

∫

Ω̂k
i, j

|L k
i, j w(νk,φk)|

2e−2λkνk dνkdφk

−

∫

Ω̂k
i, j

|(L k
i, j)

a

w(νk,φk)|
2e−2λkνk dνkdφk

∣

∣

∣

∣

∣

≤ ε
W
((ρµM+1− j

k )−2λk‖w(νk,φk)−w(Ak)‖
2

2,Ω̂k
i, j

+(ρµM+1− j
k )4−2λk |w(Ak)|

2). (3.8a)

Here ε
W
→ 0 as W→∞ and, in fact, ε

W
is exponentially small in W.



118 P K Dutt, N Kishore Kumar and C S Upadhyay

Moreover, if w(νk,φk) = w(Ak), a constant in Ωk
i,1 for 1 ≤ i ≤ Ik, then

Ik

∑
i=1

∫

Ω̂k
i,1

|L k
i,1w(νk,φk)|

2e−2λkνk dνkdφk ≤ ε
M
|w(Ak)|

2.

Here ε
M
→ 0 as M → ∞ and ε

M
is exponentially small in M.

Hence we conclude that if w(νk,φk) = w(Ak), a constant in Ωk
i,1 for 1 ≤ i ≤ Ik, then

Ik

∑
i=1

M

∑
j=1

∫

Ω̂k
i, j

|L k
i, jw

k
i, j(νk,φk)|

2e−2λkνk dνkdφk

≤C

(

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk

(

∫

Ω̂k
i, j

|(L k
i, j)

a

wk
i, j(νk,φk)|

2 dνkdφk

))

+ ε
W

(

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖wk

i, j −w(Ak)‖
2

2,Ω̂k
i, j

+ |w(Ak)|
2

)

+ ε
M
|w(Ak)|

2 . (3.8b)

Here C is a constant.

Now
∫

Ωp+1
l

|L w|2dx1dx2 =

∫

S
|L w

p+1
l |2J

p+1
l dξ dη .

Here J
p+1
l (ξ ,η ) is the Jacobian of the mapping M

p+1
l from S to Ωp+1

l . Let L
p+1

l (ξ ,η ) =

L (ξ ,η )
√

J
p+1
l . Once more we can define (L

p+1
l )a, a differential operator which is an

approximation to L
p+1

l in which the coefficients of L
p+1

l are replaced by polynomial

approximations. It can be shown as before that

L

∑
l=1

∫

Ωp+1
l

|L w|2 dx1dx2

≤C
L

∑
l=1

∫

S
|(L p+1

l )
a

w
p+1
l (ξ ,η )|2 dξ dη + ε

W

L

∑
l=1

‖w
p+1
l (ξ ,η )‖2

2,S
.

Here C is a constant and ε
W
→ 0 as W →∞. In fact, ε

W
is exponentially small in W .

We now prove a result which we shall need in the sequel.

Lemma 3.1. Let ω ∈ H
2,2
β (Ω). Then there exists a constant C such that

1

C

(

p

∑
k=1

(

|ω(Ak)|
2 + ∑

|α |≤2

∫

Ω̂k
|Dα

νk,φk
(ω(νk,φk)−ω(Ak))|

2

× e−2λkνk dνkdφk

)

+ ‖ω(x1,x2)‖
2

H2(Ωp+1
)

)



Nonconforming h-p spectral element methods 119

≤ ‖ω‖2

H
2,2
β (Ω)

≤C

(

p

∑
k=1

(

|ω(Ak)|
2 + ∑

|α |≤2

∫

Ω̂k
|Dα

νk,φk
(ω(νk,φk)−ω(Ak))|

2

× e−2λkνk dνkdφk

)

+ ‖ω(x1,x2)‖
2

H2(Ωp+1
)

)

. (3.9)

Here λk = 1−βk.

Proof. Let ψ
k
∈ C

∞
0 (R) such that ψ

k
(rk) = 1 for rk ≤ ρ and ψ

k
(rk) = 0 for rk ≥ ρ1 for

k = 1,2, . . . , p. Here ρ1 > ρ is chosen so that Ωk
ρ1 = {(x1,x2): rk ≤ ρ1} have the property

that Ωk
ρ1 ∩Ωl

ρ1 = /0 if k 6= l. We define ωk = ω ψk for k = 1, . . . , p and ω0 = 1−∑p
k=1 ωk.

Then ωk ∈ H
2,2

β
(Ω) for k = 1, . . . , p.

Now by Lemma 2.1 of [3], H
2,2

β
(Ω)⊆C(Ω̄) with continuous injection. Hence we con-

clude that

p

∑
k=1

|ωk(Ak)|
2 ≤C

p

∑
k=1

‖ωk‖
2

H
2,2
β (Ω)

.

Therefore

p

∑
k=1

|ω(Ak)|
2 ≤C

p

∑
k=1

‖ω‖2

H
2,2
β (Ω)

. (3.10)

We now cite Lemma 2.2 of [4]. Let u ∈ H
2,2

β
(Ω). Then

(i)

∑
|α |=1

‖Dα uΦβ−1‖L2(Ω)
≤C‖u‖

H
2,2
β (Ω)

.

(ii) Let u(Ai) = 0, for i = 1, . . . , p. Then

‖uΦβ−2‖L2(Ω)
≤C‖u‖

H
2,2
β (Ω)

.

From (i) we obtain

p

∑
k=1

∫

Ω̂k
∑

|α |=1

|Dα
νk,φk

ω(νk,φk)|
2e−2(1−βk)νk dνkdφk ≤C(‖ω‖2

H
2,2
β (Ω)

). (3.11)

Here C is a generic constant. Now using (ii) we get

∫

Ω
|ωk(νk,φk)−ω(Ak)ψk|

2e−2(1−βk)νk dνkdφk

≤C(‖ωk‖
2

H
2,2
β (Ω)

+ |ω(Ak)|
2).
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Hence

p

∑
k=1

∫

Ω̂k
|ω(νk,φk)−ω(Ak)|

2e−2(1−βk)νk dνkdφk ≤C‖ω‖2

H
2,2
β (Ω)

. (3.12)

Finally,

p

∑
k=1

∫

Ω̂k
∑

|α |=2

|Dα
νk,φk

ω(νk,φk)|
2e−2(1−βk)νk dνkdφk ≤C‖ω‖2

H
2,2
β (Ω)

. (3.13)

Combining the estimates (3.10)–(3.13) we get (3.9).

We now introduce some notation which is needed to state the stability estimate Theo-

rem 3.1 which is the main result of this section.

Let γs be a side common to the elements Ωp+1
m and Ωp+1

n and let γs ⊆ Ωp+1. We may

assume that γs is the image of η =−1 under the mapping M
p+1
m which maps S to Ωp+1

m and

also the image of η = 1 under the mapping M
p+1
n which maps S to Ωp+1

n . By the chain

rule

(up+1
m )x1

= (up+1
m )ξ ξx1

+(up+1
m )η ηx1

, and

(up+1
m )x2

= (up+1
m )ξ ξx2

+(up+1
m )η ηx2

.

Now let ξ̂x1
denote the polynomial approximation of ξx1

(ξ ,η ), of degree W in ξ and η
separately, as defined in Theorem 4.46 of [12]. In the same way η̂x1

, ξ̂x2
and η̂x2

can be

defined. We now define

(up+1
m )a

x1
= (up+1

m )ξ ξ̂x1
+(up+1

m )η η̂x1
, and

(up+1
m )a

x2
= (up+1

m )ξ ξ̂x2
+(up+1

m )η η̂x2
.

Let

‖[up+1]‖2
0,γs

= ‖up+1
m (ξ ,−1)− up+1

n (ξ ,1)‖2
0,I
,

‖[(up+1
x1

)a]‖2

1/2,γs
= ‖(up+1

m )a
x1
(ξ ,−1)− (up+1

n )a
x1
(ξ ,1)‖2

1/2,I
, and

‖[(up+1
x2

)a]‖2

1/2,γs
= ‖(up+1

m )a
x2
(ξ ,−1)− (up+1

n )a
x2
(ξ ,1)‖2

1/2,I
.

Here I = (−1,1). Next, let γs ⊆ Γ[0] ∩ ∂Ωp+1 and let γs be the image of η = −1 under

the mapping M
p+1
m which maps S to Ωp+1

m . We can define
( ∂u

p+1
m

∂T

)a
, an approximation to

∂up+1

∂T
as before. Let

‖up+1‖2
0,γs

+

∥

∥

∥

∥

(

∂up+1

∂T

)a∥
∥

∥

∥

2

1/2,γs

= ‖up+1
m (ξ ,−1)‖2

0,I
+

∥

∥

∥

∥

∥

(

∂u
p+1
m

∂T

)a

(ξ ,−1)

∥

∥

∥

∥

∥

2

1/2,I

.

In the same way, if γs ⊆ Γ[1]∩∂Ωp+1,
∥

∥

( ∂up+1

∂N

)a

A

∥

∥

2

1/2,γs
can be defined.
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Let γs ⊆ Γ[1]∩∂Ωk for 1 ≤ k ≤ p. Let γ̃s be the image of γs in (τk,θk) coordinates and

γ̂s be the image of γs in (νk,φk) coordinates. Let (n1,n2) be the normal at a point p̃ on γ̃s.
Define

(

∂uk

∂n

)

Ãk

=
2

∑
i, j=1

ni ãk
i, j

∂uk

∂y j

.

Now γ̂s is a portion of the straight line φk = α , where α is a constant. Let
( ∂uk

∂n

)a

Ãk , denote

an approximation to
( ∂uk

∂n

)

Ãk as before, and using this
∥

∥

( ∂uk

∂n

)a

Ãk

∥

∥

2

1/2,γ̂s
can be defined. Let

γs ⊆ Ω̄k. Define

d(Ak,γs) = inf
x∈γs

{distance(Ak,x)}.

Let

V
M,W

vertices
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

=
p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j
k )−2λk‖(L k

i, j)
a

uk
i, j(νk,φk)‖

2

0,Ω̂k
i, j

+
p

∑
k=1

∑
γs⊆Ωk∪B

k
ρ ,µ(γ̂s)<∞

d(Ak,γs)
−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
l∈D

l

∑
k=l−1

(|hk|
2 + ∑

γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞
d(Ak,γs)

−2λk

× (‖uk − hk‖
2
0,γ̂s

+ ‖uk
νk
‖2

1/2,γ̂s
))

+ ∑
l∈N

l

∑
k=l−1

∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

d(Ak,γs)
−2λk

∥

∥

∥

∥

∥

(

∂uk

∂n

)a

Ãk

∥

∥

∥

∥

∥

2

1/2,γ̂s

. (3.14)

Here {{uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l} ∈ ΠM,W and uk
i,1 = hk for 1 ≤ i ≤ Ik. Moreover

µ(γ̂s) denotes the measure of γ̂s. Next, we define

V
M,W

interior
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

=
L

∑
l=1

‖(L p+1
l )

a

u
p+1
l (ξ ,η )‖2

0,S

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)
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+ ∑
l∈D

∑
γs⊆∂Ωp+1

∩Γl

(

‖up+1‖2
0,γs

+

∥

∥

∥

∥

(

∂up+1

∂T

)a∥
∥

∥

∥

2

1/2,γs

)

+ ∑
l∈N

∑
γs⊆∂Ωp+1

∩Γl

∥

∥

∥

∥

(

∂up+1

∂N

)a

A

∥

∥

∥

∥

2

1/2,γs

.

Let

V
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l)

= V
M,W

vertices
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

+V
M,W

interior
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l). (3.15)

We can now state the main result of this section.

Theorem 3.2. For M and W large enough the estimate

p

∑
k=1

(

|hk|
2 +

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

)

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

≤C(lnW )2
V

M,W
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l) (3.16)

holds. Here C is a constant.

Proof. By Lemma 7.1 there exist {{vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l} such that w defined

as w = u+ v ∈ H
2,2

β
(Ω). Moreover vk

i,1 = 0 for all i and k. Hence by Theorem 2.1 of [2],

‖w‖2

H
2,2
β

(Ω)

≤C











‖L w‖2

Lβ (Ω)
+ ‖w‖2

H

3
2
, 3
2

β (Γ[0])

+

∥

∥

∥

∥

(

∂w

∂N

)

A

∥

∥

∥

∥

2

H

1
2
, 1
2

β (Γ[1])











.

(3.17)

Now vk
i,1(νk,φk) = 0 for 1 ≤ i ≤ Ik. Hence by (3.8),

‖L w‖2

Lβ (Ω)

≤ 2

(

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

‖(L k
i, j)

a

uk
i, j(νk,φk)‖

2

0,Ω̂k
i, j

+
L

∑
l=1

‖(L p+1
l )

a

u
p+1
l (ξ ,η )‖2

0,S

)
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+C

(

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖vk

i, j(νk,φk)‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖v
p+1
l (ξ ,η )‖2

2,S

)

+ ε
W

(

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

+
p

∑
k=1

|hk|
2

)

+ ε
W

(

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

+ ε
M

(

p

∑
k=1

|hk|
2

)

. (3.18)

Now using Lemma 7.2,

‖w‖2

H
3
2
, 3
2

β
(Γ[0])

+

∥

∥

∥

∥

(

∂w

∂N

)

A

∥

∥

∥

∥

2

H
1
2
, 1
2

β
(Γ[1])

≤C (ln W )2





p

∑
k: ∂Ωk∩Γ[0] 6= /0

|hk|
2 + ∑

l∈D

l

∑
k=l−1

× ∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

d(Ak,γs)
−2λk(‖uk − hk‖

2
0,γ̂s

+ ‖uk
νk
‖2

1/2,γ̂s
)

+ ∑
l∈N

l

∑
k=l−1

∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

d(Ak,γs)
−2λk

∥

∥

∥

∥

∥

(

∂uk

∂n

)a

Ãk

∥

∥

∥

∥

∥

2

1/2,γ̂s

+ ∑
l∈D

∑
γs⊆∂Ωp+1

∩Γl

(

‖up+1‖2
0,γs

+

∥

∥

∥

∥

(

∂up+1

∂T

)a∥
∥

∥

∥

2

1/2,γs

)

+ ∑
l∈N

∑
γs⊆∂Ωp+1

∩Γl

∥

∥

∥

∥

(

∂up+1

∂N

)a

A

∥

∥

∥

∥

2

1/2,γs

+
p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞
d(Ak,γs)

−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
))

+ ε
W

(

p

∑
k=1

|hk|
2 +

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j

k )−2λk‖uk
i, j(νk,φk)

−hk‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

. (3.19)
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Combining (3.17)–(3.19) we obtain

‖w‖2

H
2,2
β (Ω)

≤C (lnW )2
V

M,W
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

+C

(

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j

k )−2λk‖vk
i, j(νk,φk)‖

2

2,Ω̂k
i, j

+
L

∑
l=1

‖v
p+1
l (ξ ,η )‖2

2,S

)

+ ε
W

(

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j

k )−2λk‖uk
i, j(νk,φk)− hk‖

2

2,Ω̂k
i, j

+
p

∑
k=1

|hk|
2

)

+ ε
W

(

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

+ ε
M

(

p

∑
k=1

|hk|
2

)

. (3.20)

Now using (3.9),

p

∑
k=1

(

|hk|
2 +

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

)

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

≤ K

(

‖w‖2

H
2,2
β (Ω)

+
p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖vk

i, j(νk,φk)‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖v
p+1
l (ξ ,η )‖2

2,S

)

. (3.21)

Combining (3.20) and (3.21) gives

p

∑
k=1

(

|hk|
2 +

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

)

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

≤C (lnW )2
V

M,W
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

+C

(

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j

k )−2λk‖vk
i, j(νk,φk)‖

2

2,Ω̂k
i, j

+
L

∑
l=1

‖v
p+1
l (ξ ,η )‖2

2,S

)

+ ε
W

(

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j

k )−2λk‖uk
i, j(νk,φk)− hk‖

2

2,Ω̂k
i, j

+
p

∑
k=1

|hk|
2

)

+ ε
W

(

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

+ ε
M

(

p

∑
k=1

|hk|
2

)

. (3.22)
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Now by Lemma 7.1,

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j

k )−2λk‖vk
i, j(νk,φk)‖

2

2,Ω̂k
i, j

+
L

∑
l=1

‖v
p+1
l (ξ ,η )‖2

2,S

≤C (lnW )2





p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞
d(Ak,γs)

−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)





+ ε
W

(

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j

k )−2λk‖uk
i, j(νk,φk)− hk‖

2

2,Ω̂k
i, j

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

. (3.23)

Combining (3.22) and (3.23) we get the result.

4. The numerical scheme

As in §3,

Ω̂k
i, j = {(νk,φk): ν k

j < νk < ν k
j+1,ψ

k
i < φk < ψk

i+1}

for 1 ≤ j ≤ M,1 ≤ i ≤ Ik, j,1 ≤ k ≤ p in νk and φk variables.

We now define a nonconforming spectral element representation on each of these sub-

domains as follows:

uk
i, j(νk,φk) = hk, if j = 1,1 ≤ i ≤ Ik,1 ≤ k ≤ p

and

uk
i, j(νk,φk) =

Wj

∑
m=1

Wj

∑
n=1

am,nνm
k φn

k

for 1 < j ≤ M,1 ≤ i ≤ Ik, j,1 ≤ k ≤ p. Here 1 ≤Wj ≤W . Let

Ωp+1 = {Ωp+1
l ,1 ≤ l ≤ L}.

We define the analytic map M
p+1
l from the master square S = (−1,1)2 to Ωp+1

l and let

u
p+1
l (Mp+1

l (ξ ,η )) =
W

∑
m=1

W

∑
n=1

am,nξ mη n.
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Let f
p+1
l (ξ ,η ) = f (X p+1

l (ξ ,η ),Y p+1
l (ξ ,η )) for 1 ≤ l ≤ L and J

p+1
l (ξ ,η ) denote the

Jacobian of the mapping M
p+1
l . Define F

p+1
l (ξ ,η ) = f

p+1
l (ξ ,η )

√

J
p+1
l (ξ ,η ) and

let F̂
p+1

l (ξ ,η ) denote the unique polynomial which is the orthogonal projection of

F
p+1

l (ξ ,η ) into the space of polynomials of degree 2W in ξ and η with respect to the

usual inner product in H2(S).
Next, let the vertex Ak = (xk,yk). As defined in §2 we have the following relationship

between (τk,θk): and (νk,φk) coordinates:

νk = τk,

θk =
1

(ψk
u −ψk

l )
[(φk −ψk

l ) f k
1 (e

νk)− (φk −ψk
u) f k

0 (e
νk)].

Define f k(τk,θk) = e2τk f (xk + eτk cosθk,yk + eτk sinθk) for 1 ≤ k ≤ p, and Fk
i, j(νk,φk) =

f k(τk,θk) for (νk,φk) ∈ Ω̂k
i, j. Let F̂k

i, j(νk,φk) denote the polynomial of degree 2Wj in νk

and φk variables which is the orthogonal projection of Fk
i, j(νk,φk) into the space of poly-

nomials of degree 2Wj in νk and φk variables with respect to the usual inner product in

H2(Ω̂k
i, j). Here 2 ≤ j ≤ M.

We now consider the boundary condition u = gk on Γk for k ∈ D and let
( ∂u

∂N

)

A
= gk

on Γk for k ∈ N . Define

lk
1(νk) =























u = gk(xk + eνk cos( f k
0
(eνk)) , yk + eνk sin( f k

0
(eνk))), for k ∈ D ,

(

∂u

∂n

)

Ãk

= eνk gk(xk + eνk cos( f k
0
(eνk)) , yk + eνk sin( f k

0
(eνk))),

for k ∈ N .

Let l̂k
1, j(νk) be the orthogonal projection of lk

1(νk) into the space of polynomials of degree

2Wj with respect to the usual inner product on H2(ν k
j ,ν k

j+1) for 2 ≤ j ≤ M.

Consider the boundary condition u = gk on Γk ∩∂Ωk−1. Define

lk
2(νk−1) =



































u = gk(xk−1
+ eνk−1 cos( f k−1

1
(eνk−1)) , y

k−1
+ eνk−1 sin( f k−1

1
(eνk−1))),

for k ∈ D ,
(

∂u

∂n

)

Ãk

= eνk−1gk(xk−1
+ eνk−1 cos( f k−1

1
(eνk−1)) , y

k−1

+eνk−1 sin( f k−1
1

(eνk−1))) for k ∈ N .

Let ak = u(Ak) if γk or γk+1 ∈ D . We define l̂k
2, j(νk−1) to be the orthogonal projection

of lk
2(νk−1) into the space of polynomials of degree 2Wj with respect to the usual inner

product on H2(ν k−1
j ,ν k−1

j+1 ) for 2 ≤ j ≤ M.

Finally, let Γk

⋂

∂Ωp+1
t = Ck

t be the image of the mapping M
p+1
t of S̄ onto Ωp+1

t

corresponding to the side ξ = −1. Let ok
t (η ) = gk(X

p+1
t (−1,η ),Y p+1

t (−1,η )), where

−1 ≤ η ≤ 1. Define ôk
t (η ) to be the polynomial of degree 2W which is the orthogonal

projection of ok
t (η ) with respect to the usual inner product in H2(−1,1).
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Now we formulate the numerical scheme for problems with mixed boundary condi-

tions.

Let {{vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l} ∈ ΠM,W , the space of spectral element functions.

Define the functional

r
M,W

vertices
({vk

i, j(νk,φk)}i, j,k,{v
p+1

l (ξ ,η )}l)

=
p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j
k )−2λk‖(L k

i, j)
a

vk
i, j(νk,φk)− F̂k

i, j(νk,φk)‖
2

0,Ω̂k
i, j

+
p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞
d(Ak,γs)

−2λk

× (‖[vk]‖2
0,γ̂s

+ ‖[(vk
νk
)a]‖2

1/2,γ̂s
+ ‖[(vk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
m∈D

m

∑
k=m−1

∑
γs⊆∂Ωk∩Γm,µ(γ̂s)<∞

d(Ak,γs)
−2λk(‖(vk − hk)

− (l̂m
m−k+1 − ak)‖

2
0,γ̂s

+ ‖vk
νk
− (l̂m

m−k+1)νk
‖2

1/2,γ̂s
)

+ ∑
m∈D

m

∑
k=m−1

(hk − ak)
2 + ∑

m∈N

m

∑
k=m−1

× ∑
γs⊆∂Ωk∩Γm,µ(γ̂s)<∞

d(Ak,γs)
−2λk‖

(

∂vk

∂n

)a

Ãk

− l̂m
m−k+1‖

2

1/2,γ̂s
. (4.1)

In the above µ(γ̂s) denotes the measure of γ̂s.
Next, define

r
M,W

interior
({vk

i, j(νk,φk)}i, j,k,{v
p+1

l (ξ ,η )}l)

=
L

∑
l=1

‖(L p+1
l )

a

v
p+1
l (ξ ,η )− F̂

p+1
l (ξ ,η )‖2

0,S

+ ∑
γs⊆Ωp+1

(‖[vp+1]‖2
0,γs

+ ‖[(vp+1
x1

)a]‖2

1/2,γs
+ ‖[(vp+1

x2
)a]‖2

1/2,γs
)

+ ∑
l∈D

∑
γs⊆∂Ωp+1

∩Γl



‖vp+1− ôl‖2
0,γs

+

∥

∥

∥

∥

∥

(

∂vp+1

∂T

)a

−

(

∂ ôl

∂T

)a
∥

∥

∥

∥

∥

2

1/2,γs





+ ∑
l∈N

∑
γs⊆∂Ωp+1

∩Γl

∥

∥

∥

∥

(

∂vp+1

∂N

)a

A

− ôl

∥

∥

∥

∥

2

1/2,γs

. (4.2)
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Let

r
M,W

({vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l)

= r
M,W

vertices
({vk

i, j(νk,φk)}i, j,k,{v
p+1

l (ξ ,η )}l)

+ r
M,W

interior
({vk

i, j(νk,φk)}i, j,k,{v
p+1

l (ξ ,η )}l). (4.3)

We choose as our approximate solution the unique {{zk
i, j(νk,φk)}i, j,k,{z

p+1

l (ξ ,η )}l} ∈

ΠM,W , the space of spectral element functions, which minimizes the functional

r
M,W

({vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l) over all {{vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l}.

A brief description of the solution procedure is now given; a more detailed examination

is provided in §6. The above method is essentially a least-squares method and the solu-

tion can be obtained by using preconditioned conjugate gradient techniques (PCGM) to

solve the normal equations. To be able to do so we must be able to compute the residuals

in the normal equations inexpensively. In [5,14] it has been shown how to compute these

efficiently on a distributed memory parallel computer, without having to filter the coef-

ficients of the differential operator and the data. The evaluation of the residuals on each

element requires the interchange of boundary values between neighbouring elements.

The values of the spectral element functions at the vertices of the polygonal domain

constitute the set of common boundary values UB. Since the dimension of the set of com-

mon boundary values is so small a nearly exact approximation to the Schur Complement

matrix can be computed. Now on the subspace of spectral element functions which van-

ish at the set of common boundary values it is possible to define a preconditioner for the

matrix in the normal equations such that the condition number of the preconditioned sys-

tem is O((lnW )2). Moreover, the preconditioner is a block diagonal matrix such that each

diagonal block corresponds to a different element, and so can be easily inverted.

Hence an exponentially accurate approximation S
a to the Schur Complement matrix S

can be computed using O(W lnW ) iterations of the PCGM. To solve the normal equations

the residual in the equations for the Schur Complement SUB = hB must be computed to

exponential accuracy and this can be done using O(W lnW ) iterations of the PCGM. The

common boundary values UB are then given by UB = (Sa)−1hB. The remaining values can

then be obtained using O(W lnW ) iterations of the PCGM.

5. Error estimates

Let {{zk
i, j(νk,φk)}i, j,k,{z

p+1

l (ξ ,η )}l} minimize r
M,W

({vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l)

over all {{vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l} ∈ ΠM,W , the space of spectral element func-

tions. Here zk
i,1 = bk for all i, zk

i, j(νk,φk) is a polynomial in νk and φk of degree Wj,

Wj ≤ W and z
p+1

l (ξ ,η ) is a polynomial in ξ and η of degree W as defined in §3. We

choose W proportional to M. Then we have the following error estimate.

Theorem 5.1. Let ak = u(Ak). Let Uk
i, j(νk,φk) = u(νk,φk) for (νk,φk) ∈ Ω̂k

i, j and

U
p+1
l (ξ ,η ) = u(ξ ,η ) for (ξ ,η ) ∈ S. Let α j ≤ Wj ≤ W for some positive α for j > 2.

Then there exists positive constants C and b such that for W large enough the estimate

p

∑
k=1

|bk − ak|
2 +

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j

k )−2λk
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×‖(zk
i, j −Uk

i, j)(νk,φk)− (bk − ak)‖
2
2,Ω̂k

i, j

+
L

∑
l=1

‖(zp+1
l −U

p+1
l )(ξ ,η )‖2

2,S ≤C e−bW (5.1)

holds.

We use the differentiability estimates stated in Proposition 2.1 to prove the result. The

proof of the above Theorem is very similar to the proof of Theorem 3.1 in [14] and hence

is omitted.

Remark. We can construct a set of corrections {{ck
i, j(νk,φk)}i, j,k,{c

p+1

l (ξ ,η )}l}∈ΠM,W ,

the set of spectral element functions, so that corrected solution {{ẑk
i, j(νk,φk)}i, j,k,

{ẑ
p+1

l (ξ ,η )}l} defined by

{{ẑk
i, j(νk,φk)}i, j,k,{ẑ

p+1

l (ξ ,η )}l}

= {{zk
i, j(νk,φk)}i, j,k,{z

p+1

l (ξ ,η )}l}+ {{ck
i, j(νk,φk)}i, j,k,{c

p+1

l (ξ ,η )}l}

is conforming and belongs to H1(Ω). These corrections are defined in §3.5 of [14]. Then

the error estimate

‖(u− ẑ)(x,y)‖1,Ω ≤C e−bW

holds for W large enough. Here C and b denote constants. These constructions are similar

to Lemma 4.57 in [12].

6. Parallelization and preconditioning

Let U be a vector assembled from {gk}
p
k=1, where uk

i,1 = gk for all i, and the val-

ues of {{uk
i, j(νk,φk)}i, j,k,{u

p+1
l (ξ ,η )}

l
} at the Gauss–Lobatto–Legendre points

are arranged in lexicographic order for 1 ≤ k ≤ p, 2 ≤ j ≤ Jk, 1 ≤ i ≤ Ik, j. Let

{{zk
i, j(νk,φk)}i, j,k,{z

p+1

l (ξ ,η )}l} minimize r
M,W

({vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l) over

all {{vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l} ∈ ΠM,W , the space of spectral element functions.

Let UB denote the values {gk}
p
k=1 and UI the remaining values of U . We now define a

quadratic form

Z
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l)

=
p

∑
k=1

|gk|
2 +

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j

k )−2λk‖uk
i, j(ξ ,η )− gk‖

2
2,S

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S. (6.1)

It should be noted that uk
i,1(νk,φk) = gk for 1 ≤ i ≤ Ik. Moreover for j ≤ M, ξ is a linear

function of νk and η is a linear function of φk such that the linear mapping Mk
i, j(ξ ,η )

maps the master square S onto Ω̂k
i, j.
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To solve the minimization problem we have to solve a system of equations of the form

AZ = h. (6.2)

Here A is a symmetric positive definite matrix and

V
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l) =UT AU, (6.3)

where V
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l) is as defined in (3.15) in §3.

Now A has the form

A =

[

AII AIB

ABI ABB

]

(6.4)

corresponding to the decomposition of U as

U =

[

UI

UB

]

,

and h has the form

h =

[

hI

hB

]

.

To solve the matrix equation (6.2) we use the block L-U factorization of A, viz.

A =

[

I 0

AT
IBA−1

II I

]

[

AII 0

0 S

]

[

I A−1
II AIB

0 I

]

, (6.5)

where the Schur Complement matrix S is defined as

S= ABB −AT
IBA−1

II AIB. (6.6)

To solve the matrix equation (6.2) based on the L-U factorization of A given in (6.5)

reduces to solving the system of equations

SZB = h̃B, (6.7)

where

h̃B = hB −AT
IBA−1

II hI . (6.8)

The feasibility of such a process depends on our being able to compute AIBVB, AIIVI and

ABBVB for any VI,VB efficiently and this can always be done since AV can be computed

inexpensively as explained in ch. 3 of [14].

However in addition to this it is imperative that we should be able to construct effective

preconditioners for the matrix AII so that the condition number of the preconditioned

system is as small as possible. If this can be done then it will be possible to compute A−1
II VI

efficiently using the preconditioned conjugate gradient method (PCGM) for any vector VI .

Consider the space of spectral element functions ΠM,W
0 , such that for {{uk

i, j(νk,φk)}i, j,k,

{u
p+1

l (ξ ,η )}l} ∈ ΠM,W
0 we have uk

i,1 = 0 for all i and k. Let U be the vector corresponding
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to the spectral element function {{uk
i, j(νk,φk)}i, j,k ,{u

p+1

l (ξ ,η )}l}. Then UB = 0 and U =
[

UI

0

]

and so

V
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l) =UT
I AII UI. (6.9)

Now using Theorem 3.1 we have the following result.

Let {{uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l} ∈ ΠM,W
0 . Then the estimate

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j

k )−2λk‖uk
i, j(ξ ,η )‖

2
2,S +

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

≤C(lnW )2
V

M,W
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l) (6.10)

holds for W large enough. In the above, uk
i,1 = 0 for 1 ≤ k ≤ p and 1 ≤ i ≤ Ik.

Let us define the quadratic form

U
M,W ({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

=
p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j
k )−2λk‖uk

i, j(ξ ,η )‖
2
2,S +

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S (6.11)

for all {{uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l} ∈ ΠM,W
0 .

Now using the trace theorems for Sobolev spaces it can be concluded that there exists

a constant K such that

V
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l)

≤ K U
M,W ({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l) (6.12)

for {{uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l} ∈ ΠM,W
0 .

Hence using (6.10) and (6.12) it follows that there exists a constant C such that

1

C
V

M,W
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

≤ U
M,W ({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l)

≤C (lnW )2
V

M,W
({uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l) (6.13)

for all {{uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l} ∈ ΠM,W
0 .

Thus the two forms V
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l) and U
M,W

({uk
i, j(νk,φk)}i, j,k,

{u
p+1

l (ξ ,η )}l) are spectrally equivalent.

We can now use the quadratic form U
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l) which

consists of a decoupled set of quadratic forms on each element as a preconditioner

for AII . This can be done by inverting the block diagonal matrix representation for

U
M,W

({uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l).
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Now from (6.13) we can conclude that if we were to compute (AII)
−1UI using the

PCGM then the condition number of the preconditioned matrix would be O((lnW )2).
Hence, to compute (AII)

−1UI to an accuracy of O(e−bW ) would require O(W lnW ) itera-

tions of the PCGM.

We now return to the steps involved in solving the system of equations (6.2). As a first

step it would be necessary to solve the much smaller system of equations (6.7). Here the

dimension of the vector ZB is p, the number of vertices of the domain Ω. Now to be able

to solve (6.7) to an accuracy of O(e−bW ) using PCGM the residual

RB = SUB − h̃B

needs to be computed with the same accuracy and in an efficient manner. The bottleneck

in computing RB consists in computing (AII)
−1AIBUB to an accuracy of O(e−bW ) and it

has already been seen that this can be done using O(W lnW ) iterations of the PCGM for

computing (AII)
−1AIBUB for a given vector UB.

We now show that it is possible to explicitly construct the Schur Complement matrix S

in O(W lnW ) iterations of the PCGM. S is a p× p matrix. Let ek be a column vector of

dimension p with 1 in the kth place and 0 elsewhere. Let Sk = Sek.
Then the Schur Complement matrix S can be written as

S= [S1,S2, . . . ,Sp].

Now by a well known result on the Schur Complement we have

UT
B SUB = min

V: VB=UB

V T AV

= min
vk

i, j: vk
i,1=gk

V
M,W

({vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l).

Here UB = [g1,g2, . . . ,gp]
T . Hence using Theorem 3.1 we conclude that

UT
B SUB ≥

C

(lnW )2
‖UB‖

2.

And so we obtain

‖S−1‖ ≤C(lnW )2. (6.14)

Here the norm denoted is the matrix norm induced by the Euclidean norm. Now

Sk = Sek = (ABB −AT
IBA−1

II AIB) ek.

Let (Sk)
a be the approximation to Sk computed using O(W lnW ) iterations of the PCGM

to compute A−1
II AIBek. Then

‖Sk −S
a
k‖= O(e−bW ).

Let Sa denote the matrix

S
a = [Sa

1,S
a
2, . . . ,S

a
p].
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Clearly

‖S−S
a‖= O(e−bW ).

Now to compute Sa requires O(W lnW ) iterations of the PCGM since p is a fixed constant.

Hence we can solve (6.7) as

SZB = h̃B

by replacing S by the matrix S
a. Let Za

B be the solution of

S
aZa

B = h̃B.

Since

S
a = S+δS,

we have

(Sa)−1 = (I +S
−1δS)S−1.

Thus

‖S−1 − (Sa)−1‖ ≤ 2‖S−1‖2‖δS‖ ≤ O((lnW )4)‖δS‖

for ‖δS‖ small enough.

Hence

‖S−1 − (Sa)−1‖= O(e−bW ).

Therefore

‖Za
B −ZB‖= O(e−bW ).

Having solved for ZB we obtain ZI by solving

AIIZI = hI −AIBZB

using O(W lnW ) iterations of the PCGM. Hence the solution Z can be obtained to expo-

nential accuracy using O(W lnW ) iterations of the PCGM.

We shall now briefly examine the complexity of the solution procedure for the h-p

finite element method. Since finite elements have to be continuous along the sides of the

elements, the cardinality of the set of common boundary value is large in the h-p finite

element method. Let S denote the Schur Complement matrix for the h-p finite element

method. In [1,10] it has been shown that an approximation S
a to S can be obtained such

that the condition number χ of the preconditioned system satisfies

χ ≤C(1+(lnW )2),

where C denotes a constant. Then to solve SUB = hB to an accuracy O(e−bW ) will require

O(W lnW ) iterations of the PCGM using S
a as a preconditioner. Now to compute the

residual in the Schur Complement system to an accuracy of O(e−bW ) requires O(W ) iter-

ations of the PCGM to compute A−1
II AIBVB. Hence we would need to perform O(W 2 lnW )

iterations of the PCGM for computing A−1
II VI , where VI will vary after every sequence of

O(W lnW ) steps. So the h-p finite element method requires O(W 2 lnW ) iterations of the

PCGM to obtain the solution.

Hence the proposed method is faster than h-p finite element method by a factor of

O(W ).
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7. Technical results

Lemma 7.1. Let {{uk
i, j(νk,φk)}i, j,k,{u

p+1

l (ξ ,η )}l} ∈ ΠM,W . Then there exists {{vk
i, j

(νk,φk)}i, j,k, {v
p+1

l (ξ ,η )}l} such that vk
i,1 = 0 for all i,k, vk

i, j ∈ H2(Ω̂k
i, j) for 2 ≤ j ≤ M

and all i and k, v
p+1
l ∈ H2(S) for l = 1,2, . . . ,L and w = u+ v ∈ H

2,2
β (Ω). Moreover the

estimate

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖vk

i, j(νk,φk)‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖v
p+1
l (ξ ,η )‖2

2,S

≤C(lnW )2

(

p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞

d(Ak,γs)
−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)

)

+ ε
W

(

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

(7.1)

holds. Here ε
W

is exponentially small in W .

We first make a correction {{rk
i, j(νk,φk)}i, j,k,{r

p+1

l (ξ ,η )}l} such that rk
i,1 = 0 for all i

and k and at the vertices Q̂l for l = 1, . . . ,4 of Ω̂k
i, j,

(uk
i, j + rk

i, j)(Q̂l) = ū(Q̂l),

((uk
i, j)νk

+(rk
i, j)νk

)(Q̂l) = ūνk
(Q̂l),

((uk
i, j)φk

+(rk
i, j)φk

)(Q̂l) = ūφk
(Q̂l), (7.2a)

provided Ql is not a vertex of Ωk
i,1 for all i,k. If Ql is a vertex of Ωk

i,1 choose rk
i,2 such that

(uk
i,2 + rk

i,2)(Q̂l) = uk
i,1(Q̂l),

((uk
i,2)νk

+(rk
i,2)νk

)(Q̂l) = (uk
i,1)νk

(Q̂l),

((uk
i,2)φk

+(rk
i,2)φk

)(Q̂l) = (uk
i,1)φk

(Q̂l). (7.2b)

Here s(Q̂l) denotes the average of the values of s at Q̂l over all the elements which have

Q̂l as a vertex.

We can find a polynomial rk
i, j(νk,φk) on Ω̂k

i, j such that rk
i, j(Q̂l) = al ,(r

k
i, j)νk

(Q̂l) =

bl ,(r
k
i, j)φk

(Q̂l) = cl for l = 1, . . . ,4. Here the values al ,bl ,cl are defined by (7.2). More-

over rk
i, j is a polynomial of degree less than or equal to four and the estimate
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‖rk
i, j(νk,φk)‖

2

2,Ω̂k
i, j

≤C

(

4

∑
l=1

|al |
2 + |bl|

2 + |cl|
2

)

(7.3)

holds for j ≥ 2 and all i and k. Next consider Ωp+1
l ∈ Ωp+1. Now

(up+1
l )x1

= (up+1
l )ξ ξx1

+(up+1
l )η ηx1

, and

(up+1
l )x2

= (up+1
l )ξ ξx2

+(up+1
l )η ηx2

.

Let ξ̂x1
, ξ̂x2

, η̂x1
and η̂x2

denote the polynomials of degree W in ξ and η separately which

are the approximations to ξx1
, ξx2

, ηx1
and ηx2

in the space of polynomial of degree W as

defined in Theorem 4.46 of [12].

Let Pj, j = 1, . . . ,4 denote the vertices of S.Then ξ̂xi
(Pj) = ξxi

(Pj) and η̂xi
(Pj)= ηxi

(Pj)
for i = 1,2 and j = 1, . . . ,4. Now

(up+1
l )a

x1
= (up+1

l )ξ ξ̂x1
+(up+1

l )η η̂x1
, and

(up+1
l )a

x2
= (up+1

l )ξ ξ̂x2
+(up+1

l )η η̂x2
.

Hence (up+1
l )a

xi
(Pj) = (up+1

l )xi
(Pj), for i = 1,2 and j = 1, . . . ,4. Therefore we can find a

polynomial r
p+1
l

(ξ ,η ) on S = (Mp+1
l

)−1(Ωp+1
l

) such that for j = 1, . . . ,4,

(up+1
l

+ r
p+1
l

)(Pj) = ū(Pj),

((up+1
l )x1

+(rp+1
l )x1

)(Pj) = ūx1
(Pj), and

((up+1
l )x2

+(rp+1
l )x2

)(Pj) = ūx2
(Pj).

Now let q(y) be a polynomial of degree W defined on I = (−1,1). Then by Theorem 4.79

of [12]

‖q‖2

L∞(Ī)
≤C (lnW )‖q‖2

1/2,I
. (7.4)

Here C is a constant. Hence using (7.3) and (7.4) we obtain

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j

k )−2λk‖rk
i, j(νk,φk)‖

2
2,Ω̂k

i, j
+

L

∑
l=1

‖r
p+1

l (ξ ,η )‖2

2,S

≤ K(lnW )

(

p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞
d(Ak,γs)

−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)

)
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+ ε
W

(

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

. (7.5)

Let

yk
i, j(νk,φk) = uk

i, j(νk,φk)+ rk
i, j(νk,φk) and

y
p+1
l (ξ ,η ) = u

p+1
l (ξ ,η )+ r

p+1
l (ξ ,η ).

Now we define a correction {{sk
i, j(νk,φk)}i, j,k,{s

p+1

l (ξ ,η )}l} such that sk
i,1 = 0 for all

i and k, sk
i, j ∈ H2(Ω̂k

i, j) for 2 ≤ j ≤ M and all i and k, s
p+1
l ∈ H2(S) for l = 1, . . . ,L and

w = y+ s ∈ H
2,2

β
(Ω).

Consider Ω̂k
i, j with 2 ≤ j < M. Let

F1(φk) =−
1

2
(yk

i, j − yk
i, j+1)

∣

∣

γ̂1
,

G1(φk) =−
1

2
(yk

i, j − yk
i, j+1)νk

∣

∣

γ̂1
, and

H1(φk) =−
1

2
(yk

i, j − yk
i, j+1)φk

∣

∣

γ̂1
. (7.6)

In the same way we define Fl ,Gl and Hl for l = 1, . . . ,4. If γl ⊆ ∂Ω for some l, Fl ,Gl and

Hl are defined to be identically zero on γ̂l . Now Fl , Gl and Hl are polynomials of degree

W that vanish at the end points Q̂l and Q̂l+1 of γ̂l . If γ3 ⊆ ∂Ωk
i,1 ∩∂Ωk

i,2 for some i,k then

the factor of 1
2

will be missing in the definition of F3(φk), G3(φk) and H3(φk). We wish

to define sk
i, j(νk,φk) on Ω̂k

i, j such that sk
i, j

∣

∣

γ̂l
= Fl, (s

k
i, j)νk

∣

∣

γ̂l
= Gl and (sk

i, j)φk

∣

∣

γ̂l
= Hl for

l = 1, . . . ,4.
We now cite Theorem 1.5.2.4 of [8]. The mapping u →{{ fk}

m−1
k=0 ,{gk}

m−1
k=0 } defined by

fk = Dk
ξ u
∣

∣

ξ=0
, gl = Dl

η u
∣

∣

η=0
for u ∈ D(R+×R+) has a unique continuous extension as

Q̂

Q̂Q̂
3

Q̂

i

^

^

^

γ

γ

γ

3

ν

1

2

φ k

k

4
γ

j

2

4

1
= (   α , β )

❐❨✑❴
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an operator from W m
p (R+×R+) onto the subspace of

T =
m−1

∏
k=0

W m−k−1/p(R+)×
m−1

∏
l=0

W m−l−1/p(R+)

defined by

(a) Dl
η fk(0) = Dk

ξ gl(0), l + k < m− 2/p for all p 6= 2, and

(b)
∫ δ

0 |Dl
η fk(t)−Dk

ξ gl(t)|
2dt/t < ∞, l + k = m− 1 for p = 2.

Hence using a partition of unity argument it is enough to show that

(i)
∫ δ

0 |Dφk
F1(t +β)−H2(α − t)|2dt/t, and

(ii)
∫ δ

0 |G1(t +β)−Dνk
F2(α − t)|2dt/t, are finite.

Conditions (i) and (ii) follow by applying the above theorem to a neighbourhood of the

vertex Q̂1 = (α ,β) of Ω̂k
i, j.

Now

∫ δ

0
|Dφk

F1(t +β)−H2(α − t)|2dt/t

≤ 2

∫ δ

0
|Dφk

F1(t +β)|2dt/t + 2

∫ δ

0
|H2(α − t)|2dt/t .

Moreover from Theorem 4.82 in [12] we have that if q(y) is a polynomial of degree W

on I = (−1,1) such that q(−1) = q(1) = 0, then

∫ 1

−1

q2(y)

1− y2
dy ≤C lnW‖q‖2

L∞(I)
.

Now by (7.4),

‖q‖2

L∞(I)
≤ K lnW‖q‖2

H1/2(I)
.

Hence we conclude that

(i)
∫ δ

0
|Dφk

F1(t +β)−H2(α − t)|2dt/t ≤C(lnW )2(‖Dφk
F1‖

2

1/2,γ̂1
+ ‖H2‖

2

1/2,γ̂1
).

(7.7)

A similar result holds for (ii).

Hence we can define {{sk
i, j(νk,φk)}i, j,k,{s

p+1

l (ξ ,η )}l} such that sk
i,1 = 0 for all i and k,

sk
i, j ∈ H2(Ω̂k

i, j) for j ≥ 2, s
p+1
l ∈ H2(S) and w = y+ s ∈ H

2,2

β
(Ω).

Let vk
i, j(νk,φk) = rk

i, j(νk,φk)+ sk
i, j(νk,φk) and v

p+1
l (ξ ,η ) = r

p+1
l (ξ ,η )+ s

p+1
l (ξ ,η ).
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Now from (7.7) we conclude that there is a constant K such that

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖sk

i, j(νk,φk)‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖s
p+1
l (ξ ,η )‖2

2,S

≤ K(lnW )2





p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞

d(Ak,γs)
−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)





+ ε
W

(

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

. (7.8)

Combining (7.5) and (7.8) gives the estimate (7.1).

We now prove the last result of this section.

Lemma 7.2. Let w= u+v∈H
2,2

β
(Ω). Here {{uk

i, j(νk,φk)}i, j,k,{u
p+1

l (ξ ,η )}l}∈ΠM,W
and

{{vk
i, j(νk,φk)}i, j,k,{v

p+1

l (ξ ,η )}l} is as defined in Lemma 7.1. Then the estimate

‖w‖2

H
3
2
, 3
2

β
(Γ[0])

+

∥

∥

∥

∥

(

∂w

∂N

)

A

∥

∥

∥

∥

2

H
1
2
, 1
2

β
(Γ[1])

≤C (ln W )2





p

∑
k: ∂Ωk∩Γ[0] 6= /0

|hk|
2 + ∑

l∈D

l

∑
k=l−1

∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

× d(Ak,γs)
−2λk(‖uk − hk‖

2
0,γ̂s

+ ‖uk
νk
‖2

1/2,γ̂s
)

+ ∑
l∈N

l

∑
k=l−1

∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

d(Ak,γs)
−2λk

∥

∥

∥

∥

∥

(

∂uk

∂n

)a

Ãk

∥

∥

∥

∥

∥

2

1/2,γ̂s

+ ∑
l∈D

∑
γs⊆∂Ωp+1

∩Γl

(

‖up+1‖2
0,γs

+

∥

∥

∥

∥

(

∂up+1

∂T

)a∥
∥

∥

∥

2

1/2,γs

)

+ ∑
l∈N

∑
γs⊆∂Ωp+1

∩Γl

∥

∥

∥

∥

(

∂up+1

∂N

)a

A

∥

∥

∥

∥

2

1/2,γs

+
p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞
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× d(Ak,γs)
−2λk(‖[uk]‖2

0,γ̂s
+ ‖[(uk

νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)





+ ε
W

(

p

∑
k=1

|hk|
2 +

p

∑
k=1

Ik

∑
i=1

M

∑
j=2

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

+
L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

(7.9)

holds. Here ε
W

is exponentially small in W. Now

‖w‖
H

3
2
, 3
2

β (Γ[0])

= inf
q|

Γ[0]
=w

{‖q‖
H

2,2
β (Ω)

}.

Let θk ∈ C2(R) such that θk = 1 for rk ≤ ρµk and θk = 0 for rk ≥ ρ. Let qk = qθk and

q0 = 1−∑p
k=1 qk. Let θ0 = 1−∑p

k=1 θk. Define Ωk

ρµk
= {x: d(Ak,x)< ρµk} for k = 1, . . . , p

and let Ω̃p+1 = Ω\
⋃p

k=1 Ω̄k
ρµk

. Then it can be concluded that

‖w‖2

H

3
2
, 3
2

β (Γ[0])

≤C



 ∑
k: ∂Ωk∩Γ[0] 6= /0

inf
qk |∂Ωk∩Γ[0]

=wθk

{‖qk‖
2

H
2,2
β (Ωk )

}+ inf
q

0
|
∂ Ω̃p+1

∩Γ[0]
=wθ0

{‖q0‖
2

H2(Ω̃p+1
)

}



 .

(7.10)

Now using (3.9) we have

‖qk‖
2

H
2,2
β

(Ωk )
≤C(|hk|

2 + ‖(qk(νk,φk)− hk)e
−2(1−βk)νk‖2

2,Ω̂k
). (7.11)

Let us choose the cut-off function θk to be a piecewise polynomial such that

θk(νk) = 1 for νk ≤ ln(ρµk),

θk(ln(ρµk)) = 1,θ(1)
k (ln(ρµk)) = 0,θ(2)

k (ln(ρµk)) = 0,

θk(lnρ) = 0,θ(1)
k (lnρ) = 0,θ(2)

k (lnρ) = 0, and

θk(νk) = 0 for νk ≥ lnρ.

Here θ(l)
k denotes the lth derivative of θk with respect to νk. Then θk is a polynomial of

degree five in νk for ln(ρµk)≤ νk ≤ lnρ. Now using (7.10) and (7.11) we have
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∑
k: ∂Ωk∩Γ[0] 6= /0

inf
qk |∂Ωk∩Γ[0]

=wθk

{‖qk‖
2

H
2,2
β

(Ωk )
}

≤C







 ∑
k: ∂Ωk∩Γ[0]

|hk|
2 + ∑

k: Γk∩Γ[0] 6= /0

‖(qk(νk,ψk
l )− hk)e

−2(1−βk)νk‖2

3/2,(−∞,lnρ)





+ ∑
k: Γk+1∩Γ[0] 6= /0

‖(qk(νk,ψk
u)− hk)e

−2(1−βk)νk‖2

3/2,(−∞,lnρ)



 .

Let η k
j = ln ρ +(M+ 1− j) ln µk and Ik

j = (η k
j−1,η

k
j ). Then

‖(q
k
(ν

k
,ψk

u)− h
k
)e−2(1−βk)νk‖2

3/2,(−∞,lnρ)

≤C

{

M+1

∑
j=2

‖(qk(νk,ψk
u)− h

k
)e

−2(1−βk)νk ‖
2

0,(ηk
j−1

,ηk
j
)

+
M+1

∑
j=2

‖((qk(νk,ψk
u)− h

k
)e

−2(1−βk)νk )νk
‖

2

1/2,(ηk
j−1

,ηk
j
)

+
M+1

∑
j=2

∫ δ

0

∣

∣

∣

∣

d

ds
((q

k
(s,ψk

u)− h
k
)e

−(1−βk)s
)(η k

j +σ)

−
d

ds
((q

k
(s,ψk

u)− h
k
)e

−(1−βk)s
)(η k

j −σ)

∣

∣

∣

∣

2
dσ
σ

}

. (7.12)

Here δ > 0. Now

∫ δ

0

∣

∣

∣

∣

d

ds
((qk(s,ψk

u)− hk)e
−(1−βk)s)(η k

j +σ)

−
d

ds
((qk(s,ψk

u)− hk)e
−(1−βk)s)(η k

j −σ)

∣

∣

∣

∣

2
dσ
σ

≤ K

(

1

∑
l=0

∫ δ

0

∣

∣

∣

∣

dl

dsl
(qk − hk)(η k

j +σ ,ψk
u)

−
dl

dsl
(qk − hk)(η k

j −σ ,ψk
u)

∣

∣

∣

∣

2

e
−2(1−βk)(η k

j +σ) dσ
σ

+
1

∑
l=0

∫ δ

0

∣

∣

∣

∣

dl

dsl
(qk − hk)(η k

j −σ ,ψk
u)

∣

∣

∣

∣

2

×(e−2(1−βk)(η k
j +σ)− e

−2(1−βk)(η k
j −σ))

dσ
σ

)

.
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Hence

‖(qk(νk,ψk
u)− hk)e

−2(1−βk)νk‖2

3/2,(−∞,lnρ)

≤C



 ∑
γs⊆Γ[0]∩Γk+1,µ(γ̂s)<∞

d(Ak,γs)
−2λk

×

(

‖(qk − hk)‖
2
0,γ̂s

+

∥

∥

∥

∥

dqk

dνk

∥

∥

∥

∥

2

1/2,γ̂s

+ ln W‖(qk − hk)‖
2
1,∞,γ̂s

))

. (7.13)

This follows from Theorem 4.82 in [12] which states that if p(y) is a polynomial of degree

N in y such that p(1) = p(−1) = 0, then

∫ 1

−1

p2(y)

1− y2
dy ≤ C lnN‖p‖2

L∞(Ī)
.

Now qk(νk,ψk
u)− hk = θk w(νk,ψk

u)− hk = θk(w(νk,ψk
u)− hk)+ (θk − 1)hk.

Moreover w = r+ s+ u, as has been defined in Lemma 7.1. Here w(νk,ψk
u) is a poly-

nomial of degree W, s(νk,ψk
u) = 0 and r(νk,ψk

u) is a polynomial degree four.

Hence using (7.4) and (7.13) we conclude that

‖(qk(νk,ψk
u)− hk)e

−2(1−βk)νk‖2

3/2,(−∞,lnρ)

≤C



 ∑
γs⊆Γk+1

⋂

∂Ωk

d(Ak,γs)
−2λk((lnW )2(‖(u(νk,ψk

u)− hk)‖
2

3/2,γ̂s

+|hk|
2)+ lnW‖r(νk,ψk

u)‖
2

3/2,γ̂s
)
)

. (7.14)

Hence using (7.5) and (7.14) it can be concluded that

∑
k: ∂Ωk∩Γ[0] 6= /0

inf
qk |∂Ωk∩Γ[0]

=wθk

{‖qk‖
2

H
2,2
β

(Ωk )
}

≤C(lnW )2





p

∑
k=1

|hk|
2 + ∑

l∈D

l

∑
k=l−1

∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

d(Ak,γs)
−2λk

×(‖uk − hk‖
2
0,γ̂s

+ ‖uk
νk
‖2

1/2,γ̂s
)+

p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞
d(Ak,γs)

−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)




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+ ε
W

(

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

+
p

∑
k=1

|hk|
2 +

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

. (7.15)

In the same way we can show that

inf
q

0
|
∂ Ω̃p+1∩Γ[0]

=wθ0

(‖q0‖
2

H2(Ω̃p+1)
)

≤C(lnW )2





p

∑
k: ∂Ωk∩Γ[0] 6= /0

|hk|
2 + ∑

l∈D

l

∑
k=l−1

∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

×d(Ak,γs)
−2λk(‖uk − hk‖

2
0,γ̂s

+ ‖uk
νk
‖2

1/2,γ̂s
)+

p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞

× d(Ak,γs)
−2λk(‖[uk]‖2

0,γ̂s
+ ‖[(uk

νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)

+ ∑
l∈D

∑
γs⊆∂Ωp+1

∩Γl

(

‖up+1‖2
0,γs

+

∥

∥

∥

∥

(

∂up+1

∂T

)a∥
∥

∥

∥

2

1/2,γs

)





+ ε
W

(

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2

2,Ω̂k
i, j

+
p

∑
k=1

|hk|
2 +

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

. (7.16)

Now

∥

∥

∥

∥

(

∂w

∂N

)

A

∥

∥

∥

∥

2

H

1
2
, 1
2

β (Γ[1])

= inf

q|
Γ[1]

=

(

∂w
∂N

)

A

(‖q‖2

H
1,1
β (Ω)

).

Here

‖q‖2

H
1,1
β (Ω)

= ‖q‖2

L2(Ω)
+ ∑

|α |=1

‖Φβ Dα q‖2

L2(Ω)
.
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Let θk ∈C2(R) be as defined earlier and qk = qθk. Let q0 = 1−∑p
k=1 qk. Then, as before

∥

∥

∥

∥

(

∂w

∂N

)

A

∥

∥

∥

∥

2

H

1
2
, 1
2

β (Γ[1])

≤C



 inf
qk|∂Ωk∩Γ[1]

=
(

∂w
∂N

)

A
θk

(‖qk‖
2

H
1,1
β (Ωk )

)+ inf
q0|∂ Ω̃p+1∩Γ[1]

=
(

∂w
∂N

)

A
θ0

(‖q0‖
2

H1(Ω̃p+1)
)



 .

Now
∫

Ω̂k
e2βkνk |q(νk,φk)|

2dνkdφk ≤ K ‖q‖2

H
1,1
β (Ωk )

for βk > 0. And so

∫

Ω̂k
e2βkνk |qk(νk,φk)|

2dνkdφk ≤ K ‖qk‖
2

H
1,1
β (Ωk )

.

Hence for 0 < βk < 1, there exists a constant C such that

1

C





p

∑
k=1

inf
qk|∂ Ω̂k∩Γ[1]

=e−νk

(

∂w
∂n

)

Ãk θk

×

(

∫

Ω̂k
e2βkνk ∑

|α |≤1

|Dα
νk,φk

qk(νk,φk)|
2dνkdφk

))

≤
p

∑
k=1

inf
qk|∂ Ω̂k∩Γ[1]

=e−νk

(

∂w
∂n

)

Ãk θk

(‖qk‖
2

H
1,1
β (Ωk)

)

≤C





p

∑
k=1

inf
qk|∂ Ω̂k∩Γ[1]

=e−νk

(

∂w
∂n

)

Ãk θk

×

(

∫

Ω̂k
e2βkνk ∑

|α |≤1

|Dα
νk,φk

qk(νk,φk)|
2dνkdφk

))

.

Thus by similar arguments as before it can be shown that

∥

∥

∥

∥

(

∂w

∂N

)

A

∥

∥

∥

∥

2

H

1
2
, 1
2

β
(Γ[1])

≤C(lnW )2



 ∑
l∈N

l

∑
k=l−1

∑
γs⊆∂Ωk∩Γl ,µ(γ̂s)<∞

d(Ak,γs)
−2λk
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×

∥

∥

∥

∥

∥

(

∂uk

∂n

)a

Ãk

∥

∥

∥

∥

∥

2

1/2,γ̂s

+ ∑
l∈N

∑
γs⊆∂Ωp+1

∩Γl

∥

∥

∥

∥

(

∂up+1

∂N

)a

A

∥

∥

∥

∥

2

1/2,γs

+
p

∑
k=1

∑
γs⊆Ωk∪Bk

ρ ,µ(γ̂s)<∞
d(Ak,γs)

−2λk

× (‖[uk]‖2
0,γ̂s

+ ‖[(uk
νk
)a]‖2

1/2,γ̂s
+ ‖[(uk

φk
)a]‖2

1/2,γ̂s
)

+ ∑
γs⊆Ωp+1

(‖[up+1]‖2
0,γs

+ ‖[(up+1
x1

)a]‖2

1/2,γs
+ ‖[(up+1

x2
)a]‖2

1/2,γs
)





+ ε
W

(

p

∑
k=1

M

∑
j=2

Ik

∑
i=1

(ρµM+1− j
k )−2λk‖uk

i, j(νk,φk)− hk‖
2
2,Ω̂k

i, j

+
p

∑
k=1

|hk|
2 +

L

∑
l=1

‖u
p+1
l (ξ ,η )‖2

2,S

)

(7.17)

Combining (7.15)–(7.17) we obtain the required result.

Acknowledgement

This research is partly supported by CDAC (Center for Development of Advanced Com-

puting, Pune).

References

[1] Babuska I, Craig A, Mandel J and Pitkaranta J, Efficient preconditioning for the p version

of the finite element method in two dimensions, SIAM J. Num. Anal. 28 (1991) 624

[2] Babuska I and Guo B Q, Regularity of the solution of elliptic problems with piecewise

analytic data, Part-I, SIAM J. Math. Anal. 19 (1988) 172–203

[3] Babuska I and Guo B Q, The h-p version of the finite element method on domains with

curved boundaries, SIAM J. Num. Anal. 25 (1988) 837–861

[4] Babuska I and Guo B Q, Regularity of the solution of elliptic problems with piecewise

analytic data, Part-II, SIAM J. Math. Anal. 20 (1989) 763–781

[5] Dutt P K and Bedekar S, Spectral methods for hyperbolic initial boundary value prob-

lems on parallel computers, J. Comput. Appl. Math. 134 (2001) 165–190

[6] Dutt P, Tomar S and Kumar R, Stability estimates for h-p spectral element methods for

elliptic problems, Proc. Indian Acad. Sci (Math. Sci.) 112(4) (2002) 601–639

[7] Dutt P and Tomar S, Stability estimates for h-p spectral element methods for general

elliptic problems on curvilinear domains, Proc. Indian Acad. Sci (Math. Sci.) 113 (2003)

395–429

[8] Grisvard P, Elliptic problems in non-smooth domains (Pitman Advanced Publishing Pro-

gram) (1985)

[9] Guo B Q and Babuska I, On the regularity of elasticity problems with piecewise analytic

data, Adv. Appl. Math. 14 (1993) 307–347



Nonconforming h-p spectral element methods 145

[10] Guo B and Cao W, A preconditioner for the h-p version of the finite element method in

two dimensions, Num. Math. 75 (1996) 59

[11] Karniadakis G and Spencer Sherwin J, Spectral/hp element methods for CFD, (Oxford

University Press) (1999)

[12] Schwab Ch, p and h-p Finite element methods (Oxford: Clarendon Press) (1998)

[13] Tomar S K, Dutt P and Rathish Kumar B V, An efficient and exponentially accurate

parallel h-p spectral element method for elliptic problems on polygonal domains–The

Dirichlet case, Lecture Notes in Computer Science 2552, High Performance Computing

HiPC (Springer-Verlag) (2002)

[14] Tomar S K, h-p Spectral element methods for elliptic problems on non-smooth domains

using parallel computers, Ph.D. thesis (India: IIT Kanpur) (2001); Reprint available as

Tec. Rep. no. 1631, Department of Applied Mathematics, University of Twente, The

Netherlands. http://www.math.utwente.nl/publications


	Introduction
	Function spaces and differentiability estimates
	The stability estimate
	The numerical scheme
	Error estimates
	Parallelization and preconditioning
	Technical results
	References

