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Abstract. In this paper we show that we can use a modified version of the h-p spec-
tral element method proposed in [6,7,13,14] to solve elliptic problems with general
boundary conditions to exponential accuracy on polygonal domains using nonconform-
ing spectral element functions. A geometrical mesh is used in a neighbourhood of the
corners. With this mesh we seek a solution which minimizes the sum of a weighted
squared norm of the residuals in the partial differential equation and the squared norm
of the residuals in the boundary conditions in fractional Sobolev spaces and enforce
continuity by adding a term which measures the jump in the function and its derivatives
at inter-element boundaries, in fractional Sobolev norms, to the functional being min-
imized. In the neighbourhood of the corners, modified polar coordinates are used and
a global coordinate system elsewhere. A stability estimate is derived for the functional
which is minimized based on the regularity estimate in [2]. We examine how to par-
allelize the method and show that the set of common boundary values consists of the
values of the function at the corners of the polygonal domain. The method is faster than
that proposed in [6,7,14] and the h-p finite element method and stronger error estimates
are obtained.

Keywords. Geometrical mesh; stability estimate; least-squares solution;
precondi- tioners; condition numbers; exponential accuracy.

1. Introduction

In [6,7,13,14] h-p spectral element methods for solving elliptic boundary value problems
on polygonal domains using parallel computers were proposed. For problems with Dirich-
let boundary conditions the spectral element functions were nonconforming. For prob-
lems with Neumann and mixed boundary conditions the spectral element functions had
to be continuous at the vertices of the elements only. In this paper we propose a modified
version of this method using nonconforming spectral element functions which works for
general boundary conditions.

For simplicity of exposition we restrict ourselves to scalar problems although the
method applies to elliptic systems too.

A method for obtaining a numerical solution to exponential accuracy for elliptic prob-
lems with analytic coefficients posed on a curvilinear polygon whose boundary is piece-
wise analytic with mixed Neumann and Dirichlet boundary conditions was first proposed
by Babuska and Guo [3] within the framework of the finite element method. They were
able to resolve the singularities which arise at the corners by using a geometrical mesh.
This problem has also been examined by Karniadakis and Spencer in [11].
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We also use a geometrical mesh to solve the same class of problems to exponential
accuracy using h-p spectral element methods. In a neighbourhood of the corners modified
polar coordinates (T, 6;) are used, where Ty = In r and (7, 6;) are polar coordinates with
the origin at the vertex A;. Away from sectoral neighbourhoods of the corners a global
coordinate system is used consisting of (x1,x;) coordinates.

We now seek a solution which minimizes the sum of the squares of a weighted squared
norm of the residuals in the partial differential equation and the sum of the squares of the
residuals in the boundary conditions in fractional Sobolev norms and enforce continuity
by adding a term which measures the sum of the squares of the jump in the function
and its derivatives in fractional Sobolev norms to the functional being minimized. These
computations are done using modified polar coordinates in sectoral neighbourhoods of
the corners and a global coordinate system elsewhere in the domain. The spectral element
functions are nonconforming. For the modified version of the h-p spectral element method
examined here a stability estimate is proved which is based on the regularity estimate of
Babuska and Guo in [2]. The proof is much simpler than that of the stability estimate in
[6,7]. Moreover the error estimates are stronger.

The set of common boundary values for the numerical scheme consists of the values
of the function at the vertices of the polygonal domain. Since the cardinality of the set of
common boundary values is so small we can compute a nearly exact approximation to the
Schur complement. Let M denote the number of corner layers and W denote the number of
degrees of freedom in each independent variable of the spectral element functions, which
are a tensor product of polynomials, and let W be proportional to M. Then the method is
faster than the h-p spectral element method in [6,7,14] by a factor of O(Wl/ 2) and faster
than the h-p finite element method by a factor of O(W).

We now outline the contents of this paper. In §2 function spaces are defined and differ-
entiability estimates are obtained. In §3 we state and prove stability estimates. In §4 the
numerical scheme, which is based on these estimates, is described and in §5 error esti-
mates are obtained. In §6 we examine the issues of parallelization and preconditioning.
Finally §7 contains technical results which are needed to prove the stability theorem.

2. Function spaces and differentiability estimates

Let Q be a curvilinear polygon with vertices A1,A,...,A, and corresponding sides
I,M2,...,I, where I'; joins the points A;_{ and A;. We shall assume that the sides T;are
analytic arcs, i.e.

Fi={(9:(&). wi(§))IE eT=[-1,1]}

with ¢;(&) and (&) being analytic functions on 7 and |¢!(&)|*> + |@/(&)]* > a > 0. By
I'; we mean the open arc, i.e. the image of / = (—1,1).

Let the angle subtended at A; be w,;. We shall denote the boundary dQ of Q by
. Further, let [ = F[O}Urm, ro = Uieo T, ril = Uiey Ti where 2 is a sub-
set of the set {ili=1,...,p} and A = {ili=1,...,p} \ Z. Let x denote the vector
x = (x1,x2).

Let .Z be a strongly elliptic operator

2 2
L(u)=— Z (@rs(x)uty, )x, + Z br(x)uy, + c(x)u, (2.1)

rs=1 r=1
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where ay,(x) = ay,5(x),by(x),c(x) are analytic functions on Q and for any &;,& € R and
any x € Q,

2

Z ar,ssrés > IJO(Elz + 522) (2.2)

rs=1

with g > 0. In this paper we shall consider the boundary value problem

ZLu=f onQ,
u= g[o] on [,
<g—;’l) =gl onrlY (2.3)
A

where (Ju/0N), denotes the usual conormal derivative which we shall now define. Let
A denote the 2 x 2 matrix whose entries are given by

Ars(x) = ars(x)

for r,s = 1,2. Let N = (N;,N,) denote the outward normal to the curve I'; for i € 4.
Then (gT’f[)A is defined as follows:

(a”) z Nrtrs 5= ou. (2.4)

rs=1

Moreover let the bilinear form induced by the operator . satisfy the inf—sup conditions.
It shall be assumed that the given data f is analytic on Q and gm ,1 =0,1 is analytic on
every closed arc T'; and g[o] is continuous on I

By H™(Q) we denote the Sobolev space of functions with square integrable derivatives
of order < m on Q furnished with the norm

[ull?,.0 = || D%u|?
HM(Q)

ofz 12(Q)

Define r;(x) to be the Euclidean distance between x and the vertex A; of Q. Let 8 =
(Bi,B2,--.,Bp) denote a p-tuple of real numbers, 0 < ; < 1,i=1,..., p. For any integer
k,let B+k= (Bi+k,B+k,...,B,+k). Further, we denote

p p
Dp(x) = rl rfi and ®pi(x) = r! r?"+k.
Let H;’I(Q),m > 1 >0, [ an integer, denote the completion of the set of all infinitely

differentiable functions under the norm

m

2 a 2
u = D udg, [>1
g =Vl 3 ID° 0@l 12
m
2 2
al?,, = Y DUl =0

Hg @ la|=kk=0

For m = [ = 0 we shall write Hg’O(Q) =Lg(Q).
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m—x,l—

Let y be part of the boundary I' of Q. Define H, >~ *(y), m > 1,1 > 0 to be the set of
all functions @ on y such that there exists f € H:’l (Q) with ¢ = f|, and

el = inf {7 ,, }-

Rl @)

W remgl@ B
For [ an integer 0 <1 <2, let

Wp(Q) = {u(x)|u € Hy'(Q),m > 1}

and
Bl (Q) = {u()lu € W (Q). | ID"ul®p 4 2@ < Ca(k—1)!
forla|=k=1,1+1,...;d > 1, Cindependentof k}.

Let Q C R? be an open set with a piecewise analytic boundary dQ and y be part or
whole of the boundary Q. Finally %;% (y),0 <1< 2, denotes the space of all functions
¢ for which there exists f € EB% (Q) such that f =@ on y.

Next as in [3] we introduce the space C%:

C3(Q) = {u € Hy*(Q)] D u(x)| < Cdk!(Ppipi (x)) ",
la|=k=1,2,...;C > 1;d > 1independentofk}.

The relationship between C% and %’23 is given by Theorem 2.2 of [3] which can be stated
as follows:

B (Q) C €3(Q).

We need to state our regularity estimates in terms of local variables which are defined on
a geometrical mesh imposed on Q as in §5 of [3]. Q is first divided into subdomains. Thus
we divide Q into p subdomains S',...,S”, where S’ denotes a domain which contains the

vertex A; and no other, and on each S we define a geometrical mesh. Let Gk = {Qf i j=

1,....Jii =1,....I ;} be a partition of $* and let & = [ J{_, &F. The geometrical mesh
imposed on Q is as shown in figure 1.

We now put some restrictions on &. Let (ry, 6;) denote polar coordinates with center
at Ag. Let T, = Inrg. Choose p so that the curvilinear sector QF with sides ', and Mir1
bounded by the circular arc BX, center at A and radius p satisfies

odc U @

ij:
Qf ek
Q* may be represented as

QF ={(x,0) €Q:0<r<p}. (2.5)
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Figure 1. Geometrical mesh with M layers in the radial direction.

Let ){( j1+1 <1< 4be the side of the quadrilateral Qf ; € &. Then it is assumed that

X :hk¢lk (5)7
Vi A E £ NVE R (2.62)
xy = hi @ (&),

X1 :hk lk (n)a

Vi A _1<n<l1, =24 (2.6b)
P e = k()
L,j il )

and that for some C > 1 and L > 1 independent of i, j, k and /,

d

dl
o) Ew{fﬂ(s) <cr't!, t=1.2,.... @2.7)

)

We shall place further restrictions on the geometric mesh imposed on QF later. Some of
the elements may be curvilinear triangles.

Let (ry, 6;) be polar coordinates with center at A;. Then QF is the open set bounded
by the curvilinear arcs [y, [, and a portion of the circle r, = p. We divide Q¥ into

0, :fll((rk)
L (T, 8)
P =0
. X . rn=p
K (pk ¢k) \.0
! u 0,=f
v, Vi T, 0 (1)
Ay A,

Figure 2. Curvilinear sectors.
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curvilinear rectangles by drawing M circular arcs ry = Oj’.‘ =p /.1,1(” A J=2,... . M+1,
where iy < 1 and [y — 1 analytic curves C,,...,C; whose exact form shall be prescribed

in what follows. Let 0{‘ = 0. Thus [; ; = I; for j < M; in fact, we shall let I} ; = I; for
J <M +1. Moreover Iy ; <1 for all k, j where [ is a fixed constant. Let

Cij = {(r, 8016 = £ (re), 0 <re <p},

j=0,1 in a neighbourhood of A; in QX. Then the mapping

1
o= Pr, B = W= (@ — W) (o) — (@ — W) 15 (0e)], (2.8)

where fJ’.‘ is analytic in pg for j = 0, 1, maps locally the cone

{(o6@): 0 < p < O, < @ < Y}

onto a set containing Q* as in §3 of [3]. The functions f} satisfyf5(0) = @y, f{(0) = Wy
and (fjk)’(O) =0 for j =0,1. It is easy to see that the mapping defined in (2.8) has two
bounded derivatives in a neighbourhood of the origin which contains the closure of the
open set

O = (P, @): 0 < pe < .Y < @ < Y}
We choose the I, — 1 curves Gy, ...,Cy, as
Ci: @(re, B) = Wf
fori=2,...,I;. Here
W= << <l = W
Let Ayt = l,llﬁl — k. Then {F};  are chosen so that
max(Ag) < A(min(Ayy)) 2.9)
for some constant A. Another set of local variables (T, 6;) is needed in a neighbourhood
of QF where
T, = Inrg.
In addition, we need one final set of local variables (Vi, ) in the cone
{(P@): 0<pe < p.tf <@ < Y},
where
Vi = In pg.

tet Sk = {(r,6¢): 0 < re < u} NQ. Then the image S¥ in (Vi, @) variables of S¥ is given
y

= {(vi,@): —o0 < v <Inp, g < @ < W},



Nonconforming h-p spectral element methods 115

Now the relationship between the variables (Tx,6;) and (i, @) is given by (T, 6;) =
MK (v, @), viz.

Tk = Vi,
1

O = m[(@ — WA E) = (@ — W) f (). (2.10)

Hence it is easy to see that J*(V, @), the Jacobian of the above transformation, satisfies
C1 < [T5(vi, @)| < G for all (vi, @) € 8, forall 0 < < p.

We now need the fundamental regularity result from [2], viz. Theorem 2.1 which we
state as follows:

. 3 3 . «
IffeH['g”’O(Q),g[-/]eHZlﬂ P2(rll, j=0,1,0< B < 1, B > B; and m > 0, then

the solution of (2.3) exists in HELH’Z(Q) and

1
u <q + g
[ IIHEM,z@_ m IIfHHE,,o(Q) JZOIIg Hﬁg%*ﬂ%*/(rm)

Let us define a; = 1 — B:
We now state the differentiability estimates for the solution u of (2.3) which will be
needed in this paper.

PROPOSITION 2.1.

Let 1 — oy > 0. Then for A, < ay,
"IJLC iy 1 e 2 —2Av
/wk / IDELDE (u— u(Ag)) Pe ¥ dvdep
TR e <m

< pM(Cd™ 2 (m—2)1)? (2.11)
Sfor0 < u < pwithy, <ty —Ap. If 1 — oy < 0 then for Ay < 1/2, (2.11) remains valid for
0O<u<pwithy,=1/2.

The proposition can be proved in the same way as Theorem 2.1 of [6].

3. The stability estimate

Let
2 2
L) ==Y (ijux)x,+ Y bittx; +cu 3.1
i,j=1 i=
be a strongly elliptic operator. We now consider the following mixed boundary value
problem:

ZLu=f in Q,
Vou = ulpo =g and
— au) [1]
u=|—-— =gl (3.2)
g (‘9N Alrf] 8
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Here the conormal derivative yju is defined as follows. Let y; C 1 andlet N = (M ,NZ)T
denote the unit outward normal at a point on ;. Then

_ Jdu

Viu= <W> ljle aj jly;- 3.3)

Moreover, let the bilinear form induced by the operator . satisfy the inf-sup conditions.
We can now state the regularity result Theorem 2.1 of [2] as follows:

Let u be the solution to (3.2). Then

el n <G (1A, +z||g : . (3.4)

Hﬁ Q) ﬁ (Q) k+2 —h3 ](r[j])

The above estimate for k = 0 is used to prove the stability estimate Theorem 3.1.
We remark that in Theorem 5.2 of [9], Guo and Babuska have extended the above
regularity result to elliptic systems. Hence the method applies to elliptic systems too.

Divide the polygonal domain Q into p sectors Q', Q?, ..., QP and a remaining portion
QP*1. Further divide each of these subdomains into still smaller elements
{Qtja lélélk‘jv 1§J§Ma ISkSP}

Let

QP ={Qf 11 <k<pM<j<I,1<i<I}.
We shall relabel the elements of Q7*! and write

ol =(art1<i<iLy.

Now define the space of spectral element functions MMW = {{uf (Vs @) b jes
{up+1 (§,n)}i}, where ”{‘(,1 = i a constant for all i and

Vku Zzgrsvk(ﬁ? I<j<M.

r=Ils=

Here 1 < W; < W. Moreover there is an analytic mapping M,P 1 from the master square
S=(-1,1)% to Q""" We define

I’+1 IJ+1 L rns
(M (&) ZZ grs&'n

Letw € H;’Z(Q). Now for 1 < j < M,

/Qk rkaIZWIzdx:/Qk 2R | 2Ry 2 did6y. 3.5)

ij

Here Qk is the image of Q¥ jin (Tx, 6) coordinates and .Z"w PRy = rziﬂ w. It has been shown
in [7] that if welety; = 1t and y2 = B then

. Z 9 ow
Py = — — (d’?. ) bkwl—i—c w. 3.6)
l]zl ayl Z g
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Let OF denote the matrix

of — cosB, —sin6b;
"~ |sinB, cos6;

and
~k o~k
ik ay, ayp
Clak, &
2,1 @2

Then AF = (O%)TAO*.
Let J*(v,,@,) denote the Jacobian of the map M*(Vy, @) defined in §2. Then for 1 <
J<M,

[ P zwPan= [ e 2B 2y, )P duda. 37

i ij
Here Qf‘j is the image of Qﬁ-"j in (Vg, @) variables and
Z{‘jw =Tk P,
Now
Ligw (Vi @) = Al o+ 2B] Wy + G jwag
+ Dﬁjka + E{fjwq% + I’}Ifjw.
Let Af‘ ; be the polynomial approximation of Af j» of degree Wj in v, and ¢ separately,

as defined in Theorem 4.46 of [12]. Now we define a differential operator with polynomial
coefficients (aiﬂi’fj)a, which is an approximation to .ijj as follows:

kNa. _ Ak Ak Ak Ak
(L)) w = Aj jwyy +2B; jwyq +Ci waeq + Di jwy,
+ El-lfjw@( + F,kjw

Let Ay=1—f. Thenfor1 < j <M,

‘/Qk |°%]fjw(vka(ﬁc)|zeinkvk dvidex
Jok,

- [ ) W g)e P dvidg

i.J
<& (o) M wvi, @) —wAanl?
o)

+ (e M (A 2). (3.82)

Here g, — 0 as W— and, in fact, &, is exponentially small in W.
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Moreover, if w(Vi, @) = w(Ag), a constant in inl for 1 <i<I, then
I

[, 1w @)Pe 2 dudg < &, (A

=179,

Here ¢, — 0 as M — o and €,, is exponentially small in M.
Hence we conclude that if w(Vg, @) = w(Ay), a constant in Qiﬁ | for 1 <i <1, then

/ 1Lk (v, @) e M dvd g
i= lj 1

Ik M .
<Oy S out Iy [ ) W (v )P dviday
(iz‘jzi ¢ Qf; R

(zzpué”“’ k= wlA)I?, +|w<Ak>|2>

i=1j=2 lJ
+&, WA (3.8b)

Here C is a constant.
Now

/ | ZwPdxdn = / w2 agdn.

Here JIPH(E, 1) is the Jacobian of the mapping M,P+1 from S to Qf’“. Let ‘,%ZPH(E, n)=
Z(&,n)y/ le *1 Once more we can define (.,2”1” +1)“, a differential operator which is an

approximation to fl” ™! in which the coefficients of .,S!j" 1 are replaced by polynomial
approximations. It can be shown as before that

L
Z/QPH |ZW|2d)C1d)C2
=17

L
<cy [l wt @ nPagan+e, znw"“ EmIE,
=1

Here C is a constant and &, — 0 as W —o. In fact, &, is exponentially small in W.
We now prove a result which we shall need in the sequel.

Lemma 3.1. Let w € Hé’z(Q). Then there exists a constant C such that

p

é(z <|w<Ak>|2+ s |

= la[<2

Ve (@(Vi, @) — w(A)?

% GZAkaded(”{> —|— Hw(-xlu-XZ)Hz n+1 )
H2(QPT)
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< |lwl|?
_HH%%

- C< i1 (lw(Ak)lz ! G%}/Qk |ng7<0k(w(vk7 @) - w(Ak))|2

=

erAk"kdvkd(pk> +llwCe,x)l? ) (3.9)
H2(QPT)

Here Ay = 1— .
Proof. Let Y, € Cy (R) such that g () = 1 for r, < p and ,(rx) = 0 for r, > p' for
k=1,2,...,p. Here p! > p is chosen so that Q’;l = {(x1,x2): rx < p'} have the property
thatQ’;lﬂQfDl =0if k#1. We define & = w ) fork=1,....pand ay =1—37_, .
Then 6 € H,” (Q) fork=1,....p.

Now by Lemma 2.1 of [3], H;’z (Q) C C(Q) with continuous injection. Hence we con-
clude that

M~

P
A)E<C 2
| (Ar) ]~ < k;llwkﬂﬁégm

Ja )

Il
a

Therefore

14
w(A)F <C wl|?. .
1|()| k;HH%%)

(3.10)

M~

=~
Il

We now cite Lemma 2.2 of [4]. Let u € H;'z (Q). Then
®

a
> D gyl o < Cllull 5, o -
=1 P

(ii) Letu(A;) =0, fori=1,...,p. Then

lu®p_sl p <C

2@ = HuHﬁé’z(Q)'

From (i) we obtain

ki /Qk

Here C is a generic constant. Now using (ii) we get

DY o @(Vi, @)[Pe 2P dyd < C(wlP,, ). GBaD)
' Hp™(Q)

lal=1

[ 16 (vi @) — 040w e 20 v

< C(llaxl?,, +lwAP).
(@
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Hence
p
> [ 1ot @) - elanPe 2B anda < clal?,, (12
=/ HE™ (@)

Finally,
14
S [ 3 DG g X P dvag < clal?,, . (313
— Q ‘a ) HB (Q)

Combining the estimates (3.10)—(3.13) we get (3.9).

We now introduce some notation which is needed to state the stability estimate Theo-
rem 3.1 which is the main result of this section.
Let V; be a side common to the elements anﬂ and QZH and let y; C QP! We may

assume that Y; is the image of N = —1 under the mapping M which maps S to Qb and

also the image of f = 1 under the mapping M} *1 Which maps S to Qﬁ“. By the chain
rule

(uh )y = (g & + (Wh™)n Ny, and
() = (g &oy + (™) Ny

Now let fxl denote the polynomial approximation of &, (&, n), of degree W in & and n

separately, as defined in Theorem 4.46 of [12]. In the same way fjy,, &y, and f),, can be
defined. We now define

(b8 = (uh™)g & + (uh™)n Ay, and
(b, = (uh™)e &, + (h ™)y Ay
Let

I 2, = ek (&, =) = (DR,

HGDE = Nh DS (8 =1 = @i Dg (8. D1, and

1/2,s 1/2,1°
T, D2, = 1 (8, =1) = @l 8 (€, D1
X2 1/2.,s m. Jxp AN n SN0 1/2,1°

Here I = (—1,1). Next, let y; C TN QP! and let y; be the image of n = —1 under

auglﬂ
aT

the mapping M2 which maps S to Q%,"'. We can define ( )“, an approximation to

‘9’37;1 as before. Let
a2
ez ]| (2
0.y orT
1/2,y5
2
oult! ¢
= luf & =D, + ( o) €
1/2.1

In the same way, if y; € T naQrt!, H (%)Z HT/Z , can be defined.
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Let y; C M NAQF for 1 <k < p. Let ¥, be the image of y; in (T¢, 6;) coordinates and
¥ be the image of V; in (Vg, @) coordinates. Let (n1,n;) be the normal at a point 5 on .
Define

)= I

i,j=1

Now ¥, is a portion of the straight line ¢ = o, where  is a constant. Let ( ) k> denote

an approximation to (a” )Ak as before, and using this H (a” )Ak H ~ can be defined. Let
2,0
y; C QF. Define

d(Ag,¥s) = inf{distance(Ag,x)}.

XEYs

Let

<

P
+ Z z d(Ag, v5) N
!y QkUB () <o0

< (55, + I )N, + 1) )
1

+> > (Ihe* + > d(Ag, v5) N

lezk=i-1 YsCOQKNT,p(fs) <oo

(=2, + s 1P, )

1
‘YOS )3 d(Ar, vo) M
IeEN k=I—1y,CAQFNT ()<

2
(3.14)

on Ak

Here {{uf ;(Vie, @) }ijuc {u] "' (§,n)}1} € MW and uf| = hy for 1 < i < I. Moreover
U (V) denotes the measure of ;. Next, we define

1/2.%

P (Ve @) i (™ (€0 1)

[[EZan BT AR ¢ N DI

MIN

[

Y R, R, IR,

VSCQ1J+1

1
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1
S
ycﬁQ”“mr

(gupﬂ )a 2
ON ),

auerl)

1/2, Vv)

2

leV vcoalP™nr, 1/2.%

Let
7 Qv @) Y (€. )
=, e (Vi @) Y L™ (8. )
e (0 (Ve @) i (™ (&), G3.15)
We can now state the main result of this section.

Theorem 3.2. For M and W large enough the estimate

14
M+1 j —2A
k; <|hk| +z z lucf (Vi @) — k”m,k,,)

1=1j=2
+ z a1 (& m)I2,
Cnw)> 7™ ({u;(vio @) i L™ (€. 1) (3.16)

holds. Here C is a constant.

Proof. By Lemma 7.1 there exist {{v§;(Vi, @) }ijx,{v]"' (§,n)};} such that w defined

asw=u+ve H;’z (Q). Moreover vﬁl =0 for all i and k. Hence by Theorem 2.1 of [2],

2

ow
2
P N2 e ()
Hg™ (@) Hz z(r[o] A
B H
Now v 1 (Vk, @) =0 for 1 <i <. Hence by (3.8),

12wl

Lg(@)

) eI +z|| L e, n>|>

A
\)
U
™M=

T
M=
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I

Z (or ) I e @I, +2|\v”“£n|\ )
i=1=

Mu

ot
ol
(Z (& )12 ) <Ii |hk|2>. (3.18)

Now using Lemma 7.2,

(@)
’% (r[()]) 0N A

p
<C(nWw)? Sy P+

1

M Ik

M+1 j 2)\kHu (Vk7 hk||2 + Z |hk| )
1:21:1

-
M-~

2

2
[l
H

Vo

22 (1l

=

l

k2 aaknr(0l o €D k=I-1
-2
X > d(Ap o) M (luk = el g, + N 13 200)
Vs COQKNT () <o
2
I Auk\“
f3Ss e ™ |(5h)
IEN k=I=1y, COQkNT p(f) <o A1 g
Aurt1\ 4 |*
+% > <||uf’+1|§‘yY+H( " >
€Y p+1 ’
%CoQ" Ny 12
Aur I\ |*
"3 (%+)
/GJVVSgﬁQpHm_I A g
S 22
Z > d(Ag,ys) "
k=1 ycatus () <e
< (NAIZ, + 1065)E p, + 10Ge)IR,,)
+ 05 U0, + I ]Ill/zy + Il Y ]IIW))
ngPﬁ»l
L& M+1 A
Z LUEDW Z Y (v @)
=li=1j=

—hll? +Z|\u”“ (&) ) (3.19)
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Combining (3.17)—(3.19) we obtain

wl?,, < W)™ (G (v @) Yija ™ (E.m) 1)

14 M
+c<z S (PH" ) ) I2, +Z|v”“€nll>
k=1i=1j=2 lJ /A

P I
(z M (v ) = a7 +z|hk|2>
L
<Z| rEMI ) (Z |th2> (3.20)

Now using (3.9),

p M

M+1—
> <|hk| + Z 2, (PH DT (v, @) — )
k=1 i= T

+2|Iu”+1 (&2,
<k [ £S5 S (ou P v )
- 3% (@) k:u; ,Zz ¢ " 26},
+Z v E I (3.21)
Combining (3.20) and (3.21) gives
2 R VIR T YA 2 - e
> | +ZZZ(PHk )" Jug j (Vies @) th Z (& ml3,
= fo : ]
sc<1nw>27/”<{uii,,-<vk, Vi L (E,m)h)
Lok Ml 1
cls G (@) +z|\v"+ EmiE,
k=1i=1j=

~

p M I
vl D D ) A (v @) — hk||2 of +Z|hk|2>

k=1 1:21:1

+£w< (& m)|2 ) (Z || ) (3.22)
1 k=1

M =~

I}
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Now by Lemma 7.1,

L VIR R N 2 +1
> Z (o) 2 VK vk, H +z v E I
=1i=1 /=
P
C(lnw)? z d(Ag, y5) M

Ly, cQ¥UBE, u(f) <o

< (IR + NG ), + G )01, )

+0 5 U+ G, I I3,,)
peaht!
2l M M+1—j 2611,k h 2
tar | X3 3 (ou" ) v @) - il
=1i=1 j=2 T
+Z|\u”“ (&) ) (3.23)

Combining (3.22) and (3.23) we get the result.

4. Thenumerical scheme
As in §3,
Qfj = {(ve, @): Vi <ve < Vi U < @< g}
for1 <j<M,1<i<I;1<k<pinVand ¢ variables.
We now define a nonconforming spectral element representation on each of these sub-
domains as follows:
i (Vie @) = i, ifj=1,1<i<l1<k<p
and

W W
uﬁj(vku(ﬁc) = Z Z am,nvlznw

m=1n=1
for1 <j<M,1<i<I;1<k<p Herel<W;<W.Let
1
ortt={Qr1<i1<L}.

We define the analytic map Mlp from the master square S = (—1,1)% to Qf 1 and let

u;ﬂrl( p+1 E ’7 Z Zamnsm n

=1n=1
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Let S (&.n) = FXP"1(&m). ¥/ (&) for 1 <1< Land JP'(&,n) denote the
Jacobian of the mapping M. Define F*'(&,n) = 771 (&,n) /I (E,n) and

let Flp H(E,n) denote the unique polynomial which is the orthogonal projection of

F,P + (&,n) into the space of polynomials of degree 2W in & and n with respect to the
usual inner product in H>(S).

Next, let the vertex Ay = (xy,yx). As defined in §2 we have the following relationship
between (Ty, 6;): and (Vg, @) coordinates:

Vi = Tk,

1
O = ——— (@ — WS (%) — (@ — W) f (%))
(wi—wh) . ’
Define f*(1;,6;) = e*™ f(x; + e cos 6, y; +e%sin 6;) for 1 <k < p, and Fi’fj(vk, @) =
F5(1i.,6) for (vi, ) € f)k Let F k (Vi @) denote the polynomial of degree 2W; in v,

and @, variables which is the orthogonal projection of F (Vk, @) into the space of poly-
nomials of degree 2W; in Vi and ¢, variables with respect to the usual inner product in
Hz(Qf]). Here2 < j <M.

We now consider the boundary condition u = g; on ', for k € & and let (g—l‘\’/) A= 8k
on Iy for k € 4. Define

1 = g(xi + e cos(f (")) , yi + eV sin(f (e%))), fork € 2,

HOE <j—) — Vg (xe + ¥ cos(£E(e%)) , i+ e% sin(f4(e%)),
Ak

forke 4.

Let fk (Vi) be the orthogonal projection of 1¥(vy) into the space of polynomials of degree
, J+1)f0r2<J<M
Consider the boundary condition u = g; on [N 0(2" I Define

2W; W1th respect to the usual inner product on H 2(vk

u=gr(x,_, +e%-tcos(ff 1 (e%1)),y,_, +evtsin(ff!(e%1))),
fork e 9,

B(Vie)) =1 /9
( u> = e’ lgr(x,_, et Cos(fki1 (%)), vy
an Ak 1

+eV-tsin(ff ! (e%-1))) forke ..

Let a; = u(Ay) if y; or Y1 € 2. We define 12 _j(Vk—1) to be the orthogonal projection

of 1% 5(Vk_1) into the space of polynomials of degree 2W; with respect to the usual inner
productonHz( =1y /+1) for2<j<M.

Finally, let FkﬂﬁQtpH = C* be the image of the mapping M,”+1 of S onto ﬁlpﬂ
corresponding to the side & = —1. Let of(n) = g (X" (=1,n),¥"" (=1,n)), where
—1 < n < 1. Define 6¥(n) to be the polynomial of degree 2W which is the orthogonal
projection of 0¥(n) with respect to the usual inner product in H?(—1, 1).
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Now we formulate the numerical scheme for problems with mixed boundary condi-

tions.
Let {{v%;(vi, @) }i.jue- 1) (E,m) 11} € MMV the space of spectral element functions.

Define the functional
MW p+1
tvertices({v{ij(vk’ )}l /I”{v]+ (57’7)}1)

r M I
_ M1y =2 kN k £k 2
= PU 175 vij (Ve @) = B (Vi @)
33 3iou ), '

ij

P
Z z d(Ag,ys) ™M™
k=1y,cokuBh,u(fs) <o

< (I35, + OB, + TG I L)

32 > A 0
meP k=m—1y.CoQkAT,,, u(Ps)<oo

n 2 K _ (jm 2
= U1 = @)l g + vy, = Gnir vl )

+> % (i — a)* + 2

meP k=m—1 meN k=m—1

v
x S (A, ve) M| < an> — Il (4.1)
Vs COQKNT 1 (Y5) <00

In the above p(¥;) denotes the measure of ¥.
Next, define

O v @)Y 07 (€)1

It & m) — B E )2,

MIN

[

+ 0% PR, +ITOEAIR,,, + ITOEDIE,,,)
VSQQPH

1

2
avPtINY 0\
£y Y (Ier-a, + - (%2
% = ¥ oT oT
CoQ" NIy /2,
AvPrIN“ g
+y (a—N) & (4.2)
leV ycoaPt' ar A 1/2,%
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Let
O v @) e 0 (Em) )
= (O v @) b O (6 m )
e (O (v @) Y 07 (81 B). 3)

We choose as our approximate solution the unique {{z ;(Vi, @& Vil (Enh) e

MMW  the space of spectral element functions, Wthh minimizes the functional

e (Ve @)Y 07 (8. ) ) over all {{](vie @)} {7 (€M) 1)

A brief description of the solution procedure is now given; a more detailed examination
is provided in §6. The above method is essentially a least-squares method and the solu-
tion can be obtained by using preconditioned conjugate gradient techniques (PCGM) to
solve the normal equations. To be able to do so we must be able to compute the residuals
in the normal equations inexpensively. In [5,14] it has been shown how to compute these
efficiently on a distributed memory parallel computer, without having to filter the coef-
ficients of the differential operator and the data. The evaluation of the residuals on each
element requires the interchange of boundary values between neighbouring elements.

The values of the spectral element functions at the vertices of the polygonal domain
constitute the set of common boundary values Up. Since the dimension of the set of com-
mon boundary values is so small a nearly exact approximation to the Schur Complement
matrix can be computed. Now on the subspace of spectral element functions which van-
ish at the set of common boundary values it is possible to define a preconditioner for the
matrix in the normal equations such that the condition number of the preconditioned sys-
tem is O((InW)?). Moreover, the preconditioner is a block diagonal matrix such that each
diagonal block corresponds to a different element, and so can be easily inverted.

Hence an exponentially accurate approximation S to the Schur Complement matrix S
can be computed using O(W InW) iterations of the PCGM. To solve the normal equations
the residual in the equations for the Schur Complement SUg = hp must be computed to
exponential accuracy and this can be done using O(W InW) iterations of the PCGM. The
common boundary values Uy are then given by Up = (S%) ! hp. The remaining values can
then be obtained using O(W InW) iterations of the PCGM.

5. Error estimates

Let {{zf;(ve, @)}iin {2 (€)1} minimize ¢ (V8 (v, @) Y 07 (€, )
over all {{v (vk, Vi 7 (E n)}} € MMY  the space of spectral element func-
tions. Here z 1 = by for all i, z (Vk,qq() is a polynomial in V; and ¢ of degree W;,
W; < W and z”+1 (&,n)is a polynonnal in & and n of degree W as defined in §3. We
choose w proportional to M. Then we have the following error estimate.

Theorem5.1. Let a; = u(Ax). Let Ul.’fj(vk,cg() = u(Vg, @) for (Vi,@) € Qfl and

U[’H(E,n) =u(&,n) for (§,n) €S. Let aj <W; <W for some positive d for j > 2.
Then there exists positive constants C and b such that for W large enough the estimate

P M I

Zlbk—ak|2+z 33 (ppy" )2
1/=21=

k=



Nonconforming h-p spectral element methods 129

x| (Zf; - Ui]fj)(vka @) — (bx— Clk)H;Q{;J

+ZH @ —ulthE )Ry < ce ™ .1)

holds.

We use the differentiability estimates stated in Proposition 2.1 to prove the result. The
proof of the above Theorem is very similar to the proof of Theorem 3.1 in [14] and hence
is omitted.

Remark. We can construct a set of corrections {{cf ;(Vi., @) Vi ju, {c] " (&,m) 1} € MY,
the set of spectral element functions, so that corrected solution {{2{‘ (Ve @) bk

2 (E,n)}} defined by
{25 (vi, @) Yo {20 (E) 1
= {{f (Vi @) Yo {20 (&) h + Lk (v, @) Yijun ] (E.m) 1}

is conforming and belongs to H'(Q). These corrections are defined in §3.5 of [14]. Then
the error estimate

[(u—2)(x,y) |l <Ce ™"

holds for W large enough. Here C and b denote constants. These constructions are similar
to Lemma 4.57 in [12].

6. Parallelization and preconditioning

Let U be a vector assembled from {gk},’:zl, where ”5'{,1 = gy for all i, and the val-

ues of {{uﬁj(vk,(g()},-,j,k,{ufﬂ(f,ﬂ)}l} at the Gauss-Lobatto-Legendre points
are arranged in lexicographic order for 1 < k < p, 2 < j < Ji, 1 <i < [ ;. Let

e . MW
{2,V @)}y {21 (E,m) 1} mimimize e ({VF;(Vis @) Yok 77 (€,m) 1) over
all {{vﬁj(vk, ) gk {vlp+1 (&,n)};} € MMV the space of spectral element functions.

Let Up denote the values {gk}f:1 and Uy the remaining values of U. We now define a
quadratic form

2 (v, @) i L (Em) 1)

P I
:zwlzzz ) T (8 ) - gl
k=1

k=1j=2i=

z (&) I35 ©.1)

It should be noted that ufl (Vk, @) = gi for 1 <i < I. Moreover for j < M, & is a linear
function of V; and n is a linear function of ¢, such that the linear mapping M’ (E n)
maps the master square S onto Qi7 i
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To solve the minimization problem we have to solve a system of equations of the form
AZ=h. 6.2)
Here A is a symmetric positive definite matrix and
7 (v @)Y i (€00 }0) = UTAD, (6.3)

where 7" ({u ;(vi, @) }i e, ()" (€,1)}1) is as defined in (3.15) in §3.
Now A has the form

Ay A
A= { B } (6.4)
Apr  App

corresponding to the decomposition of U as

o
U= ,
Up

and / has the form

To solve the matrix equation (6.2) we use the block L-U factorization of A, viz.

I 0 |[A; 0|1 Aj'A
A=| . [ 1 } B (6.5)
ApA 0 S 0 I
where the Schur Complement matrix S is defined as
S =App—AlgA, Asp. (6.6)

To solve the matrix equation (6.2) based on the L-U factorization of A given in (6.5)
reduces to solving the system of equations

SZp = hg, (6.7)
where
hp =hp — Al A hy. (6.8)

The feasibility of such a process depends on our being able to compute A;pVp, AV and
AppVp for any V;, Vp efficiently and this can always be done since AV can be computed
inexpensively as explained in ch. 3 of [14].

However in addition to this it is imperative that we should be able to construct effective
preconditioners for the matrix A;; so that the condition number of the preconditioned
system is as small as possible. If this can be done then it will be possible to compute AI;IVI
efficiently using the preconditioned conjugate gradient method (PCGM) for any vector V.

Consider the space of spectral element functions |-|10v1 W such that for {{uf‘ j(vk, @) i jks

{uf+1 (&, nhte I'Ig/l’w we have ”{'(,1 =0 foralliand k. Let U be the vector corresponding
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to the spectral element function {{uﬁj(vk, @) Yik, {ulp+1 (&,n)}}. ThenUg=0and U =

U
{ O’} and so

. ({uf (Vi @) Yk {u] T (E.m) 1) = U A Uy (6.9)

Now using Theorem 3.1 we have the following result.
Let {{uﬁ-"j(vk, @) }ijks {ulp+1 (&,miite I'Ig/l’w. Then the estimate

Ll 1" =722 o )
>y “luk(&,n st+z [ (&, m)|13s
k:lj:ZI:l
< W) 7" ({ul (v, @) Yo (™ (€, 10) (6.10)

holds for W large enough. In the above, “{'(1 =0forl <k<pand1<i<[.
Let us define the quadratic form

%MW({M (Vku )}171 kv{upJrl (57’7)}1)

_ i ZZZ: M+1 J ZAkHu
7/
k=1 =

for all {{uf ;(Vi, @)} (™ (€, M)y € Mg
Now using the trace theorems for Sobolev spaces it can be concluded that there exists

a constant K such that
P (v, @) i L (Em) 1)
<KUY ({ul (i, @) Y ()™ (8,0 1) (6.12)

P En ks (6.11)

for {{uﬁj(vb @)}i,jku {M;Hl (Eu r’)}l} S rll(;llw-
Hence using (6.10) and (6.12) it follows that there exists a constant C such that
1 mw
57/ ({"‘{‘(,j(vkagq()}i,j,kv{”zpﬂ (&mh)
S%Myv({uﬁj(vku )}I7jk7{up+l (57’7)}/)
<Cnw? 7" ({u (Vi @) i juao (™ (&) 1) 6.13)

for all {{uf(vi, @), {uf ™ (€.} € MG
Thus the two forms ¥ ({uﬁj(vk, )}ijko {“pH (&,n)}) and w"" ({uﬁj(vk, @) }ijks
{uy *1(&,n)};) are spectrally equivalent.

. MW D .
We can now use the quadratic form % ({ufi(vk, )}ij, k,{u’“(E,n)}l) which
consists of a decoupled set of quadratic forms on each element as a preconditioner
for Aj;. This can be done by inverting the block diagonal matrix representation for

U™ (Vi @) i L) () ).
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Now from (6.13) we can conclude that if we were to compute (AH)’IUI using the
PCGM then the condition number of the preconditioned matrix would be O((InW)?).
Hence, to compute (A;;)~'U; to an accuracy of O(e ") would require O(W InW) itera-
tions of the PCGM.

We now return to the steps involved in solving the system of equations (6.2). As a first
step it would be necessary to solve the much smaller system of equations (6.7). Here the
dimension of the vector Zp is p, the number of vertices of the domain Q. Now to be able
to solve (6.7) to an accuracy of O(e ") using PCGM the residual

Rp = gUB—i"lB

needs to be computed with the same accuracy and in an efficient manner. The bottleneck
in computing Rp consists in computing (A;;)~'A;pUp to an accuracy of O(e ") and it
has already been seen that this can be done using O(W InW) iterations of the PCGM for
computing (A7)~ 'A;pUp for a given vector Us.

We now show that it is possible to explicitly construct the Schur Complement matrix S
in O(W InW) iterations of the PCGM. S is a p X p matrix. Let ¢; be a column vector of
dimension p with 1 in the kth place and O elsewhere. Let S = Sey.

Then the Schur Complement matrix S can be written as

S=1[S1,S2,...,S,].
Now by a well known result on the Schur Complement we have

UbSUp = min vTAV

Vi Vg=Up

= min 0@ e 00T (E ).
VI'(':Vi'(,l:gk

LJ

Here Ug = [g1,82,---,8p)" - Hence using Theorem 3.1 we conclude that

C
UjSU > WHU8H2~

And so we obtain

IS~ < C(inw)?. (6.14)
Here the norm denoted is the matrix norm induced by the Euclidean norm. Now

Sk = Sex = (App — AlyA,'Arp) ey

Let (Sg)? be the approximation to Sy computed using O(W InW ) iterations of the PCGM
to compute A;,lAIBek. Then

1Sk —Sf|l = 0(e™"").
Let S* denote the matrix

S = [S4,8%,...,59)-



Nonconforming h-p spectral element methods 133

Clearly
IS—s) =0(e™"").

Now to compute S* requires O(W In W) iterations of the PCGM since p is a fixed constant.
Hence we can solve (6.7) as

SZp = hg

by replacing S by the matrix S¢. Let Z§ be the solution of

S°Zg = hg.
Since

S =S+ 38,
we have

(St =a+s71ss)S7
Thus

57— (59" <2l |P88] < o((nw)*) |55

for ||8S|| small enough.
Hence

Is7 =) =0@").
Therefore
125 — Zs]| = 0(e™").
Having solved for Zp we obtain Z; by solving
AnZy=h; —ArpZg

using O(W InW) iterations of the PCGM. Hence the solution Z can be obtained to expo-
nential accuracy using O(W InW) iterations of the PCGM.

We shall now briefly examine the complexity of the solution procedure for the h-p
finite element method. Since finite elements have to be continuous along the sides of the
elements, the cardinality of the set of common boundary value is large in the h-p finite
element method. Let S denote the Schur Complement matrix for the h-p finite element
method. In [1,10] it has been shown that an approximation S to S can be obtained such
that the condition number X of the preconditioned system satisfies

X <C(1+ (Inw)?),

where C denotes a constant. Then to solve SUp = hp to an accuracy O(e ="V will require
O(W InW) iterations of the PCGM using S® as a preconditioner. Now to compute the
residual in the Schur Complement system to an accuracy of O(e*W) requires O(W) iter-
ations of the PCGM to compute AﬁlAIBVB. Hence we would need to perform O(W2 InW)
iterations of the PCGM for computing AI;I\G, where V7 will vary after every sequence of
O(W1nW) steps. So the h-p finite element method requires O(W?InW) iterations of the
PCGM to obtain the solution.

Hence the proposed method is faster than h-p finite element method by a factor of
ow).
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7. Technical results

Lemma.1. Let {{u} ;(Vi,®)}i, W (E )Y € MY, Then there exists {{v;
(Vis @) Yijks {07 (E,0) 11} such that vE 1 =0/forallik v ;€ Hz(Qk Nfor2<j<M

and all i and k, vf“ € H*(S)forl=1,2,...,Land w = u—l—v € HB 2(Q). Moreover the
estimate

S

(o) M (v )1, +lev”“<$n|\

j= l

M~
M=

k=1

c<1nw>2(§ S dy)

k=1 y,cQFUBE, 1 (f;) <oo

< (5 5, + T )N, + 1) )

+0 5 (e IS, + NG, + ”“)]Ill/zy)>

yngpH
P Ik M
<Z ZZ M+1 ]) 2)\kHu (Vk7@) kHZQk
+Z||u”“ (&.m)|? ) 7.1)

holds. Here €, is exponentially small in W.

We first make a correction {{rf-fj(vk, ) }ijjeo {r”+l (&€,n)}:} such that rf.fl =0 for all i

and k and at the vertices Q; for{ = 1,...,4 of Qf o

(”5{; + rf{;)(Ql) =i(0)),
((”{‘(,j)vk + (’{(j)vk)(QAl) =ity (Q1),
((uf ) + (759 ) (Q1) = i, (Or), (7.22)

provided Q; is not a vertex of Qf‘ | forall i,k. If Qy is a vertex of Qf‘ | choose rf‘z such that

((Wh2)v, + (2)v ) (Q1) = (U 1)y (O1),
((Uf2) g + (F2) @) (Qr) = (uf 1) g (D). (7.2b)

Here E(Q,) denotes the average of the values of s at Q; over all the elements which have
0 as a vertex.

We can find a polynomial 7§ ;(Vi, @) on Qf ; such that 7§ ;(Q1) = az, (1} ;)v,(Q1) =
b/,(rl’fj)%(Ql) = ¢ forl =1,...,4. Here the values a;,b;,c; are defined by (7.2). More-

over r{‘ ; s a polynomial of degree less than or equal to four and the estimate

(uiz +12)(Q1) = uf1 (Q1),
Dy
Da
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2 : 2 2 2
It Vi @I, <€ {3 e+ (b1l + e (7.3)
2 ij =1
holds for j > 2 and all i and k. Next consider Qf“ € QP Now

(] = " )g & + (" )n 1y, and

W) = g & + W) Ny

Let fxl, fo, flx, and f},, denote the polynomials of degree W in & and n separately which
are the approximations to &, &y,, Ny, and Iy, in the space of polynomial of degree W as
defined in Theorem 4.46 of [12]. R

Let P, j=1,...,4 denote the vertices of S. Then &, (P;) = &, (P;) and Ay, (Pj) = N, (P})
fori=1,2and j=1,...,4. Now

1 1 ¢ I A
("% = (] )edey + (] ) Ay, and

1 TN I A
(] "% = (e &+ (@] Dy Ay

Hence (u f“)xi(l’f,) (™), (Py), fori=1,2and j = 1,...,4. Therefore we can find a
polynomial /" (£,n) on § = (MP*1)~1(QP*) such that for j =1,...,4,

W (Py) = a(Py),
(W), + (7)) (P) = iy, (Py), and
(™), + (7)) (P) = 1y ().

Now let g(y) be a polynomial of degree W defined on I = (—1,1). Then by Theorem 4.79
of [12]

gl , <CnW)lq|? (74)

o0 — 121"
Here C is a constant. Hence using (7.3) and (7.4) we obtain

k
M 1—
+ j 2)\kH (Vk; HZQk +ZHr17+l E n HZ

M~
NME

K(InW) ( % S d(Ag, vs) N

k=1 y,CQFUBE, 1 (fs) <o

< (I3 5, + T )N, + 1) )

+ 05 (I, + NGEDE ,, + G ”“)]IIIM)>

VCQ1J+1
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I
MA+1—j\—2A k 2
< >> § P )T (Vi @) — 2,
= i

+Z||u"“ & nl? ) (1.5)
Let
Yf/(vka(ﬁ() - M (Vkquc) +rlk](vk7qq<) and

WHNE ) =T E )+ E ).

Now we define a correction {{s’?(vk, )},Jk,{s”+l (&,n)}:} such that sﬁl = 0 for all
i and k, s¥ eHZ(Qk ) for2 < j<Mandalliandk, s/ € HX(S) for/ =1,...,L and
w= y+s€H (Q)

Consider Qk with 2 < j < M. Let

1
Fl((ﬁc):_i(y{‘(,j_yﬁﬂrl)’ylv
Lo %
Gi(@) = —§(Yi7j—)’i7j+1)vk‘w and
Lo %
Hl((n():_E(yi7j_yi7j+l)(n¢}yl' (7.6)

In the same way we define F;,G; and H; forl =1,... 4. If y; C 9Q for some [, F;,G; and
H; are defined to be identically zero on ;. Now Fj, G; and H; are polynomials of degree
W that vanish at the end points Q; and Oy of §;. If y5 C 9Q¥ N 9Q¥, for some i,k then
the factor of 1 will be missing in the definition of Fz(q)() Gg((pk) and Hs(@). We wish
to define s (Vk,qq() on Qk such that s =F, (s* e g = Grand (sf])% g = Hi for
I=1,. 4

We now cite Theorem 1.5.2.4 of [8]. The mapping u — {{fi }7'—,', {gx}1', } defined by
fi =Dk ”‘g:o’ g1 =D u’n:O for u € D(R; x Ry ) has a unique continuous extension as

AN
s

o>

<>

¢k Q2 N /dl=((x,l3)
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an operator from W'(R; x IR ) onto the subspace of
m—1

m—1
T=[]w" " PRy x J‘| wnP(R )
k=0 =0

defined by

(@) D fi(0) = Dgi(0), [ +k <m—2/pforall p#2, and
(b) [ |l fi(t) — Digi(t)Pdt /1 < oo, I +k=m— 1 for p=2.

Hence using a partition of unity argument it is enough to show that

(i) JC|Dg.Fi(t+B) — Ha(a —1)dt /1, and
(i) .f05 |G1(t + B) — Dy F>(a —t)|dt /¢, are finite.

Conditions (i) and (ii) follow by applying the above theorem to a neighbourhood of the
vertex Q1 = (a,B) of in.
Now ”

[ g Fie )~ Hafer )P
<2/6|D F (I+B)|2dt/t+2/6|H (a —1)|?de /1
=2/ IDgFi | 12 :

Moreover from Theorem 4.82 in [12] we have that if ¢(y) is a polynomial of degree W
on/=(—1,1) such that g(—1) = ¢(1) =0, then

1 2
q-(y) 2
| e <cmwigl,,

Now by (7.4),

2 2
lal2.,, <KnWlql?, , .

Hence we conclude that
. ° 2 2 2 2
() [ IDaFi(+B)~Haa —n)Pd/t < COnWPR(IDG P2, + I, )
7.7

A similar result holds for (ii).
Hence we can define {{sﬁj(vk, @)} {87 (E,n)}} such that s& | = 0 for all i and £,

sk, e HX(Qk,) for j > 2, sPT e HA(S) andw =y + s € H;’z(Q).
Let vf; (i, @) = rf (Vi @) + 5§ (Vie, @) and v () = 1 (&) + 57 ().
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Now from (7.7) we conclude that there is a constant K such that

S

(P

J=

P (I +z||s”“ &2,

M-
M-

K| S e

Ly, CQYUBE, u(fy) <o

x (5 5, + TG )TN, o + 1 Cag) N )

HME

Y R, IR, IR,

VVCQP+1

p hk M )
+&, <z Z Z(pulerlij)iz}\kHuiij(Vk’q){)_hknjﬁk

k=1li=1j=2 L

+leu”“fr7|| )

Combining (7.5) and (7.8) gives the estimate (7.1).

We now prove the last result of this section.

Lemma7.2. Letw=u+ve€ H;’Z(Q)- Here {{u ;(vi, @) }ijue- {u] " (E,0) 1} € n"" an

{{vﬁj(vk, Vi 0 (E,n) 11} is as defined in Lemma 7.1. Then the estimate

).
’% (r[()]) ON A H%’%(r[l])

B

2
[Iwl]
H

T polw

p l
C(InW)? S Il
ki 9Qknriol Lo I€D k=I=1 3, COQKNT |, pu(Ys) <o0

—2A
X d (A, ¥6) Ml — 1§ g, + e, I3 12, 5,)

2

I
+ > > d(Ar, vs) M
1EN k=T=1 y, COQKNT ], u(fs) <oo

aup+1
g (o)
ycﬁQ”“mr

(dul’“)“ 2
oN ),

on Ak
a2
1/2>VS>

Y COQRUBE () <oo

1/2,%

+2
leV VSQBQIH’I mrl

3

1/2.y5

(7.8)

d
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< d(Ae ) (AR, + 116d)IP,,, + 1612, ,)

+0 Y (IR, A G

yCQerl

)/
h 2 L LM M+l J ZA]( —l’l 2
| k| + z Z 22 ”utj(vka ) kHzﬁk
1i=

o

+ DI

1/2,ys I/ZVY)

JrZHM”+1 (&) ) (1.9)

holds. Here &, is exponentially small in W. Now

inf{lql| 2 }-

33
Hg (o) o =W @

Let 6; € C*(R) such that 6, = 1 for r, < pii and 6; = 0 for r; > p. Let g = g6 and
qo=1-30_ qr.Let6=1—37_, 6. Define Q;“k ={x:d(Ap,x) <ply} fork=1,...,p
and let Q71 = Q\ Uy, Q’;“k . Then it can be concluded that

2
wll”, |
HBZ’Z(HO])
: 2 : 2
<c| ¥ il g’ b e el )
K 0QAAT 020 Wpgeero =% T ol it g = )
(7.10)
Now using (3.9) we have
). (7.1D)

lal,, < Cml®+ 1 (qr(vis @) — e 21-PO% |2
Hy (@)

2,0k

Let us choose the cut-off function 6 to be a piecewise polynomial such that
O(vk) =1 for v <In(ppy),
Bc(In(op) = 1,61 (In(p i) = 0,67 (In(ppy)) =
6:(Inp) = 0,6\ (Inp) =0,6/” (Inp) =0, and

Qk(vk) =0 for vy >1Inp.

Here Qk(l) denotes the Ith derivative of 6 with respect to Vi. Then 6 is a polynomial of
degree five in Vi for In(p L) < vx < Inp. Now using (7.10) and (7.11) we have
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: 2
it {lal?,, )
K aQkAr (012 Ikl aqknrio) =% Hp™ (@)

<C SoomP+ S (v ) — e 2R

3/2,(—0,inp)
k: dQkNriol ki Tnriol£o

+ S k(v g — e 2ROV

3/2,(—e,Inp)
ki Ty OO0

Letnf =Inp+(M+1—j) In gy and I = (n}_;,n%). Then

1 (Vs ) — B Je 2P0 2

3/2,(—o0,Inp)
M+1
~2(1-B)Vg |2
<CO Y Maviw) —hye =
=) (N ponj)

M+1

—2(1-B)vy,
+ Vi, UK — e
122 H((CIk( o Y, ) k) )VkHl/Z(nJ .k k)

M+1

—(1-B)s
h)e

(g, (s, W) — )(n} +0)

"do 712
b (7.12)

—%«qk .9 = m)e s - o)

Here & > 0. Now

A

d
& (s 4 = e A9 (nf + 0)

2do

o

—%«qk(s,ws)— Je 1Bt o)

dl hk (’7,"‘04’14)

dl 2

5 (g —he)(Nf—o,uy)| e

2 Il

« (e 21RO} +0) _ 201 (nf-0)) 49 > .

21y (nf+0) 4O
o

[ 2
d_ qk_hk ( -0 Ltuu)

o
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Hence

I (qr(Vie, W) — hy)e ™R V"H3/2

(—o,Inp)

<c S den)
YOI g, (f5) <o

dgj
. <||<qk—hk>|§% |

This follows from Theorem 4.82 in [12] which states that if p(y) is a polynomial of degree
N in y such that p(1) = p(—1) =0, then

2

+1nW|(qk—hk)||w>> . (1.13)

1/2,9s

1,2
P-() 2
<
/71 1_yzdy_ CIHNHPHU»(,)

Now g (Vie, Wk) — hie = O w(Vie, W) — hie = O (w(Vie, k) — hye) + (6B — 1) .

Moreover w = r+ s+ u, as has been defined in Lemma 7.1. Here w(vy, ¥) is a poly-
nomial of degree W, s(Vi, Y¥) = 0 and r(v, ¢/¥) is a polynomial degree four.

Hence using (7.4) and (7.13) we conclude that

(v ) — e 20 B2

(—0.Inp)
<ol T A P WRI v ) —hOIE,,
VSl i1 NOQK
) + W | (ve, )|\3/2V)) (7.14)

Hence using (7.5) and (7.14) it can be concluded that

inf (a2, )
K 0QkAT10)£ IKlaorrlo) =% HE™ (@)

!
Cllnw)>? Z ey Y > d(Aeye) N
I€EDk=I=1y,COQFNT,u(f5)<oo

p
—2A
X = h2, + a2, z S Ay
k=1y, COFUBE () <eo

x (N5 5, + T )TN, o + 1 Cag) N )

= SN[ oW (7 1 S o | (€7 A il

1/2)6)
ngp+1

1/2,s
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p M I
+ & (z _zzzmuﬁ”l D) Ml (v, @) =,
J=2i=

N

+ Z |hk|2+z |l (&, )| ) (7.15)

In the same way we can show that

inf  (lqoll?,

a0 ‘aﬁp+1 ﬁl—[O] =wby

)

Qp+l)

l

14
<C(Inw)? S Il % > >
. IEDk=I-1y,COQ T, u(f5) <o

k2 aQknrl0l.zo

bS]

xd (A, Vo) Ml = illG gy + e 17 ) + Y

k=1, COFUB () <oo

x d(Ar Vo) N ENE A+ NG )OI, + TG )T )

Y IR, IR, + IR,
pcQ”!
Aurt I\ |’
12
DD (' i+ (%)
I€7 ycoaP* ! r, Ve
Zz (P ) T (Ve ) — el
1j=21= o
1
+Z|hk|2+2||u”+ & nl; ) 710
Now
ow : 2
G - e
Hﬁ%v%(r[l]) “rn=av)a
Here

lql> :||Q||2 Tt II‘D D"QIIZ
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Let 6; € C2(R) be as defined earlier and gx = ¢ 6. Let go = 1 — $4_, gx. Then, as before

a_w 2
oN ),

2 . 2
(g, 0+ it ol )
B

_(ow Hl(QPFT)
qO‘ngJFIN—[l]* W)AGO
Now

2
/ 2PV |g (v, @) Pdvidgx <K lg|” |
Qk g !

5 )
for By > 0. And so

/ ezﬁkvk|qk(vk7 (ﬁc)|2ded@( S K ||QkH2| 1
o} g (@

Hence for 0 < By < 1, there exists a constant C such that

inf

. = "’k(@)_
qk“mkmr[l] € on Akek

2Bk vi a )
. </ka ¢ 21 |DVk;(chk(Vk7 (ﬁc)| dedq)(>>

inf (lael®,, )
qk‘g@kmr[l]:eivk(%)gkek HB (Qk)

Al —
™M=

IN
H%E

inf

oV [ Ow
Kl ykri =e k(T:),ikek

X </Qk Y |D5,(,(Q(CIk(Vk,<ﬁ<)|2ded@>> -

laf<1
Thus by similar arguments as before it can be shown that

IA
a
™M=

|G
ON ), L
H52’2<r[1])
l
< C(nw)? > d(Ag )M
leNV k=I—

Ly, CoQkNT;, u(fs) <o
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Ak urt\|?
X (— +> ( )
H on & ycoqror I OV Salls,
p 2A
+z z d(Ak7yA“)7 ,
k=1 CQ*UBE, u(fs)<oo
< (T, + )T + 1T )
T R, IR, IR, )
pea!
LM oy 2
ey [ > Y Yo ) g (Vi @) — Pl g
(=Y=1= o
+Z |hk|2+Z||’4P+l &nl2 ) 17

Combining (7.15)—(7.17) we obtain the required result.
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