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We introduce a method to construct non-Markovian variants of completely positive (CP) dynam-
ical maps, particularly, qubit Pauli channels. We identify non-Markovianity with the breakdown in
CP-divisibility of the map, i.e., appearance of a not-completely-positive (NCP) intermediate map.
In particular, we consider the case of non-Markovian dephasing in detail. The eigenvalues of the
Choi matrix of the intermediate map crossover at a point which corresponds to a singularity in
the canonical decoherence rate of the corresponding master equation, and thus to a momentary
non-invertibility of the map. Thereafter, the rate becomes negative, indicating non-Markovianity.
We quantify the non-Markovianity by two methods, one based on CP-divisibility (Hall et al., PRA
89, 042120, 2014), which doesn’t require optimization but requires normalization to handle the sin-
gularity, and another method, based on distinguishability (Breuer et al. PRL 103, 210401, 2009),
which requires optimization but is insensitive to the singularity.

I. Introduction

Quantum technologies have now advanced to a
stage where effects of memory and its manipula-
tion are expected to play a crucial role in the theo-
retical as well as experimental developments of the
field. This necessitates a proper understanding of
non-Markovian phenomena [1–7] in the context of
open quantum systems [8–11].
A classical (discrete) stochastic process Xt (t ∈ I)

is Markovian if the conditional probability for the
nth outcome xn satisfies: P (xn | xn−1; · · · ;x0) =
P (xn|xn−1), i.e., there is no memory of the history
of values of X. If an experiment can access only one-
point probability vectors, P (x), then the stochastic
evolution can be represented in terms of transition
matrices connecting initial and final probability vec-
tors: P (x1) =

∑

j T (x1|x0)P (x0), where T has suit-
able normalization and positive properties. For a
Markovian process, such “stochastic matrices” com-
pose according to T (xk|xi) =

∑

j T (xk|xj)T (xj |xi)
for any j intermediate between k and i < k. In this
sense, a Markovian process is divisible.

A non-Markovian process is not necessarily divis-
ible (because matrices T (xk|xj) may not be well de-
fined unless j = 0), instead requiring the full hi-
erarchy of conditional probabilities. Nevertheless,
for k > j > 0, assuming invertibility of T (xj |x0),
we can define T (xk|xj) =

∑

j T (xk|x0)T (x0|xj) =
∑

j T (xk|x0)T−1(xj |x0), though this matrix may
not be positive.
The vector w(x) ≡ qP1(x)− (1− q)P2(x) for two

distributions P1 and P2 has the physical signifance

∗ shrik@poornaprajna.org
† srik@poornaprajna.org
‡ subhashish@iitj.ac.in

that the minimum failure probability to distinguish

P1 and P2 in a single measurement pfailmin = 1−||w||1
2 ,

where ||v(x)||1 ≡ ∑

x |v(x)| is the L1 norm. A fun-
damental result here is that a classical stochastic
process is divisible (read: Markovian) iff the dis-
tinguishability of two distributions is non-increasing
under the process.
It isn’t straighforward to define quantum non-

Markovianity because a quantum realization of the
conditional probabilities P (xn|xn−1, · · · , x0) would
seem to require conditioning on measurement in-
terventions, bringing to the fore issues of non-
commutativity and measurement disturbance. Per-
haps, there is no unique, context-independent defi-
nition of quantum Markovianity [3]. Here, we use a
definition of Markovianity based on divisibility (in
specific, CP-divisibility) or distinguishability, which
needn’t refer to measurements [12, 13]. In general,
these definitions aren’t equivalent in the quantum
domain: Markovian à la divisibility implies Marko-
vian à la distinguishability, but not vice versa [14–
16], though they are shown to be equivalent for all
bijective maps [17].
CP-divisibity is the requirement that the time evo-

lution be characterized by linear, trace-preserving
CP maps Etk,tj (tk ≥ tj ≥ t0) such that Etk,ti =
Etk,tjEtj ,ti for any intermediate time tj . Under quan-
tum non-Markovian evolution, an intermediate map
Etk,tj may be not-completely-positive (NCP) [18], in-
dicative of correlations between the system and the
environment [19].

The lower bound on the probability of discriminat-
ing two states ρ1 and ρ2 in one shot with an optimal

POVM {T, I − T}, is known to be pfailmin = 1−||∆||1
2 ,

where ∆ ≡ qρ1 − (1 − q)ρ2 is the Helstrom ma-
trix. Under a CP-divisible (identified here with
Markovian) process pfailmin is non-decreasing [20, 21].
Thus, the decrease of pfailmin (or, equivalently, increase
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in distinguishability) for sometime indicates non-
Markovianity, suggestive of an underlying memory
in the process about system’s initial state or infor-
mation backflow from the environment. The differ-
ential CP-divisible map is characterized by a time-
local generalization of the Lindblad equation [22, 23]
with positive decoherence rate [16].

Here, we shall consider the problem of construct-
ing non-Markovian versions of familiar Markovian
maps, in specific, qubit Pauli channels. An example
is the dephasing channel, wherein a state ρ evolves
according to the evolution:

ρ −→ (1− κ)IρI + κZρZ. (1)

Here, κ, the “channel mixing parameter”, increases
monotonically from 0 (noiseless case) to 1

2 (maxi-
mal dephasing). The operator-sum representation

of map Eq. (1), ρ → ∑

j=I,Z KjρK
†
j , corresponds

to the Kraus operators:

KI ≡
√
1− κI; KZ ≡

√
κZ. (2)

Our work is motivated to extend this to the most
general dephasing channel described by the form:

KI(p) =
√

[1 + ΛI(p)](1− p)I;

KZ(p) =
√

[1 + ΛZ(p)]p Z, (3)

and to study the conditions on Λj under which the
channel is non-Markovian. This has its roots in
the open system dynamics modeling random tele-
graph noise [24]. Here, Λj(p) (j = I, Z) are real
functions and p is a time-like parameter running
monotonically from 0 to 1

2 . By “time-like” is meant
that p increases monotonically with time (accord-
ing to a functional dependence whose details are not
important here.) We recover Eq. (2) by setting
ΛI = ΛZ = 0, with p effectively becoming κ.

This work is arranged as follows. In Section II,
the general dephasing channel in the form Eq. (3) is
derived, and some salient features are noted, among
them a singularity that occurs in the intermediate
map at the crossover between its two eigenvalues.
In Section III, the non-Markovianity is quantified
using negative canonical decoherence rate, which
essentially measures how far the instantaneous in-
termediate map deviates from CPness. A singu-
larity is encountered at the crossover point, which
is dealt with using a normalization procedure. In
Section IV we point out that the singularity rep-
resents a momentary failure of invertibility of the
map, but is nevertheless harmless. In Section V,
we obtain the trace-distance-based distinguishability
measure of non-Markovianity. This measure doesn’t
require normalization, and is shown to be qualita-

tively in agreement with the negative decoherence
based measure. After a brief discussion of extending
this method to non-Markovian depolarizing in Sec-
tion VI, we conclude in Section VII, with a discus-
sion of some general features of the non-Markovian
dephasing channel introduced here.

II. Non-Markovian dephasing

The completeness condition imposed on Eq. (1)
requires that:

(1− p)ΛI(p) + pΛZ(p) = 0; 0 ≤ p ≤ 1

2
, (4)

implying ΛI(p) = −αp and ΛZ(p) = α(1−p), where
α is real number. Then, from Eq. (3), we have:

KI(t) =
√

[1− αp](1− p) I ≡
√

(1− κ)I

KZ(t) =
√

[1 + α(1− p)]p Z ≡
√
κZ, (5)

which reduces to conventional dephasing Eq. (1) for
α → 0. Here we choose 0 ≤ α ≤ 1, ensuring that
the modified dephasing is CP.

Given a quantum map evolving a system from
time 0 to time t through s, defined by the com-
position E(t, 0) = E(t, s)E(s, 0), we can define the
intermediate map:

E(t, s) ≡ E(t, 0)E(s, 0)−1, (6)

provided E(s, 0) is invertible. This may be computed
directly using matrix inversion [25, 26] of the dynam-
ical map [27].

Here we derive it by “vectorizing” the density op-
erator and representing the superoperator E as a
corresponding matrix operation, using the identity

ÂBC = (CT ⊗ A)B̂ [19]. The intermediate map is
derived by matrix inversion, and applied to the vec-
torized version of (|00〉+ |11〉). “Devectorizing” this
gives the Choi matrix of the intermediate map.

χ = (E(t, s)⊗ I)(|00〉+ |11〉). (7)

By Choi-Jamiolkowski isomorphism, matrix χ is
positive iff E(t, s) is CP [28]. If E(t, s) is NCP, then
the map E(t, 0) is non-Markovian.

Consider an intermediate interval bounded be-
tween p∗ and p∗, with 0 < p∗ < p∗ ≤ 1

2 . The Choi
matrix for intermediate map, E(α, p∗, p∗), is found
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to be

MChoi ≡











1 0 0 (p∗−α−)(p∗−α+)
(p∗−α−)(p∗−α+)

0 0 0 0
0 0 0 0

(p∗−α−)(p∗−α+)
(p∗−α−)(p∗−α+) 0 0 1











,

(8)

where

α± =
±
√
α2 + 1 + α+ 1

2α
. (9)

The non-vanishing eigenvalues λI and λZ of MChoi

in Eq. (8) are

λI(α, p
∗, p∗) = 1 +

(α− − p∗) (α+ − p∗)

(α− − p∗) (α+ − p∗)
;

λZ(α, p
∗, p∗) = 1− (α− − p∗) (α+ − p∗)

(α− − p∗) (α+ − p∗)
. (10)

This leads, according to the Choi prescription [29,
30], to the Kraus operators for the intermediate map:

K int
I (α, p∗, p∗) =

√

ǫIλI(α, p∗, p∗)I,

K int
Z (α, p∗, p∗) =

√

ǫZλZ(α, p∗, p∗)Z, (11)

where ǫI (resp., ǫZ) is +1 if λI (resp., λZ) is positive
and −1 otherwise. The corresponding operator sum-
difference representation [31] of intermedite evolu-

tion is given by ρ −→ ∑

j=I,Z ǫjK
int
j ρK int†

j . and the

completeness relation is
∑

j ǫjK
int†
j K int

j = I. Note
that the intermediate map Kraus operators also pre-
serve the dephasing form Eq. (5).

From Eq. (10), one observes the following behav-
ior: if p∗ < α− and p∗ is varied from p∗ to 1

2 , then
the two eigenvalues crossover at α− (see Figure 1).
The crossover point is also the place where κ = 1

2
in Eq. (5), i.e., the noise is maximally dephasing.
If p∗ > α− and p∗ is varied from p∗ to 1

2 , then

λZ is negative in the entire range p∗ ∈ (p∗,
1
2 ] (see

Figure 2) and thus demonstrates non-Markovianity.
Letting p∗ − p∗ → 0, so that λZ → 0−, we see
that the instantaneous intermediate map is NCP
here. This implies that ||MChoi||1 > 1, and therefore
the deviation of this norm from 1, integrated over
the time of evolution, would provide a quantifica-
tion of non-Markovianity, which in fact is the Rivas-
Huelga-Plenio (RHP) measure [19]. But an NCP
intermediate map corresponds to negative decoher-
ence, which suggests a conceptually equivalent, but
quantitatively different and perhaps computation-
ally simpler method to quantify non-Markovianity,
based on the integral of the decoherence rate in the
master equation for the negative rate period(s). This
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λj

FIG. 1. (Color online) Eigenvalue λI (dashed, red line)
and λZ (bold, blue line) for the intermediate map Choi
matrix of the non-Markovian dephasing channel char-
acterized by Eq. (5). The intermediate p-range lies
between p:=p∗ and p:=p∗, where p∗ < α−, and p∗ is
varied over the interval [p∗,

1

2
]. At p∗:=p∗, λI = 2 and

λZ = 0. At p∗ = α−, the eigenvalues crossover, i.e.,
λI = λZ = 1, and furthermore the channel becomes
maximally dephasing, i.e., κ = 1

2
in Eq. (5). Here,

α := 0.3 and p∗ := α− − 0.2 ≈ 0.23.

0.46 0.47 0.48 0.49 0.50
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FIG. 2. (Color online) Eigenvalue λI (dashed, red line)
and λZ (bold, blue line) for the intermediate map Choi
matrix of the non-Markovian dephasing channel charac-
terized by Eq. (5). The intermediate p-range lies be-
tween p:=p∗ and p:=p∗, where 1

2
> p∗ > α−, and p

∗ is

varied over the interval [p∗,
1

2
]. For p∗ > p∗, one finds

λZ < 0. Thus, the whole range p∗ ∈ (p∗,
1

2
] corresponds

to an NCP map, demonstrating the non-Markovianity of
the channel characterized by Eq. (5). Here α := 0.3 and
p∗ := α− + 0.03 ≈ 0.46.

yields the Hall-Cresser-Li-Andersson (HCLA) mea-
sure, used here later below.

The point p∗ = α− represents a singularity, since
both eigenvalues diverge for any p∗ ∈ (p∗,

1
2 ]. We

discuss this matter later below. The other potential
singularity p∗ = α+ is not relevant, as the dephasing
parameter p is assumed to be restricted to the range
[0, 12 ], whereas α+ ∈ [1,∞].
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FIG. 3. Plot of the decoherence rate γ as a function
of p for α = 0.7. Note the singularity at α− (≈ 0.34),
just after which γ becomes negative, indicating that the
evolution is non-Markovian.

III. Negative decoherence rate in the master

equation

The Kraus representation Eq. (5) is a solution
to the master equation describing dephasing in the
canonical form:

dρ

dp
= γ(p)(−ρ(p) + Zρ(p)Z). (12)

We now show that the decoherence rate correspond-
ing to 1

2 ≥ p > α− is negative, indicative of non-
Markovianity [16]. By direct substitution, and let-
ting G ≡ 1− 2κ(p), one finds:

γ(p) = − 1

2G

dG

dp
=

1
2 (α+ + α−)− p

(p− α−)(p− α+)
, (13)

from which one sees that the evolution for p < α−
is Markovian (γ ≥ 0), but becomes non-Markovian
(γ < 0) for p > α−. The point α− itself represents
a singularity (see Figure 3).

Following [16], we want to quantify the amount

of non-Markovianity by NHCLA ≡ −
∫ 1/2

α−

γ(p)dp,

which however, would diverge because of the sin-
gularity at α−. One remedy, following an idea pro-
posed in [2], is to replace −γ(p) by its normalized
version

γ′ ≡ −γ
1− γ

=
α− 2αp+ 1

α− 2αp2 + 2p
, (14)

from which we can define a normalized HCLA mea-

N '
HCLA NBLP

0.1 0.2 0.3 0.4 0.5
p

0.02

0.04

0.06

0.08

0.10

FIG. 4. (Color online) Plot of the normalized HCLA
coefficient N ′

HCLA (bold, blue line, Eq. (15)) and the
BLP coefficient NBLP (dashed, red line, Eq. (19)), as a
function of the non-Markovian parameter α.

sure:

N ′
HCLA ≡

∫ 1/2

α−

γ′(p)dp

=

[

1

2
log

(

α+ 2p− 2αp2
)

−
α tan−1

(

2αp−1√
−2α2−1

)

√
−2α2 − 1

]1/2

α−

(15)

A plot of N ′
HCLA (bold line) is given in Figure

4. The monotonic increase of this measure with α
justifies its being regarded as a non-Markovianity
parameter. These results are directly related to
the RHP measure, NRHP, of non-Markovianity [19],
sinceNHCLA = d

2NRHP, where d is system dimension
[16], which here is 2.

IV. The singularity isn’t pathological

The possible non-invertibility of the time evolu-
tion is discussed in [2, 32], in particular, the issue
of general consistency conditions on such a map
to derive a master equation, and the problem of
quantification of non-Markovianity. In the present
case, the singularity at p = α− corresponds to
a time where the trajectories of all initial states
cos( θ2 ) |0〉 + eiφ sin( θ2 ) |1〉 differing only by the az-
imuthal angle φ, momentarily intersect. This is be-
cause the point p = α− corresponds to maximal de-
phasing, under which any initial qubit state ρ1 ≡
(

a b
b∗ 1− a

)

is transformed to ρ2 ≡
(

a 0
0 1− a

)

. In

other words, all off-diagonal terms in the computa-
tional basis are killed off, making the map momen-
tarily non-invertible. Nevertheless, the singularity
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isn’t pathological, in the sense that the density oper-
ator, and consequently the full map, are well defined,
and invertibility is subsequently recovered.

At time α−, the intermediate dynamical map Eq.
(11) advancing the state by a small time interval ǫ,
is acting on a density operator of the type ρ2 and
induces the intermediate evolution:

ρ2 −→ (1 + Y )

2
ρ2 +

(1− Y )

2
Zρ2Z

=
(1 + Y )

2
ρ2 +

(1− Y )

2
ρ2 = ρ2, (16)

where Y ≡ (α−−p∗)(α+−p∗)
(α−−p∗)(α+−p∗) is the divergent sum-

mand in the expression for K int
I in Eq. (11) and

we set p∗:=α−. Since the singularity in the interme-
diate map occurs at the point of maximal dephasing,
the infinite term Y has no effect, as it would only
multiply with off-diagonal terms in the density op-
erator, which vanish.

Similarly, in the master equation (12) for the rate
dρ
dp , we note that the divergence of γ(p) at the singu-

larity is rendered harmless by virtue of the fact that
the term ρ(α−)−Zρ(α−)Z, which it multiplies, van-
ishes for the above reason.

V. Quantifying non-Markovianity via trace

distance

There are a host of measures to witness or quantify
non-Markovianity, such as trace distance, fidelity,
quantum relative entropy, quantum Fisher informa-
tion, capacitance measures; as well as correlation
measures such as mutual information, entanglement,
and discord, all of which are non-increasing under
CP-divisible maps, and can thus be used to witness
non-Markovianity [19].

Here, we consider evolution of the trace distance
(TD) [33], applied to the pair of initial states:
|ψ0〉 = cos(θ/2) |0〉 + eiφ sin(θ/2) |1〉 and |ψ1〉 =
− sin(θ/2) |0〉+ eiφ cos(θ/2) |1〉. For this pair:

TD(θ, φ, α, p) ≡ 1

2
tr
√

(ρ0 − ρ1)2

=

[

1− 4α2(1− p)p(α+ + α− − p)×

(2α+α− − p) sin2(θ)

]1/2

, (17)

where ρj = E(|ψj〉 〈ψj |), and E represents the time
evolution under our non-Markovian dephasing. The
expression is independent of φ, reflecting the az-
imuthal symmetry of the dephasing action [34, 35].
For θ where 0 < θ < 2π, it may be seen that TD

0.1 0.2 0.3 0.4 0.5
p

0.001

0.010

0.100

1

TD

FIG. 5. Log plot of trace distance TD between ρ0 ≡
E(|ψ0〉 〈ψ0|) and ρ1 ≡ E(|ψ1〉 〈ψ1|) as a function of p
with θ:=π

2
, under the considered non-Markovian dephas-

ing noise. The bold (blue) curve represents Markovian
dephasing, and shows no recurrence. The dashed (red,
α = 0.5) and dot-dashed (green, α = 0.9) show enhanced
distinguishability beyond their respective crossover point
α−, indicative of non-Markovianity. Note that larger
α shows a larger enhancement region, suggesting larger
non-Markovianity in the sense of BLP [33].

attains a minimum of cos(θ) at α−. The subsequent
(p > α−) rise in TD signals non-Markovianity.
This pattern is manifest in the case of θ = π

2 , for
which Eq. (17) reduces to the particularly simple
form

TDπ/2(p) = 2α (p− α−) (p− α+) . (18)

This is depicted in Figure 5 for various non-
Markovian parameters α. We note in this Figure
that the recurrence region (α−,

1
2 ] is larger for larger

α, suggestive of greater non-Markovianity for larger
α.
The BLP measure of non-Markovianity, denoted

NBLP, is given by:

NBLP = max
(ψ0,ψ1)

∫ 1/2

α−

dTD

dp
dp

= max
θ

[

√

1 + (−1 +
α2

4
) sin2(θ)− cos(θ)

]

=
α

2
. (19)

The result is depicted as the dashed (red) line in Fig-
ure 4, and shows that there is a general agreement
with the quantification of non-Markovianity accord-
ing to the normalized HCLA measure N ′

HCLA.
Here, following [33], we have assumed that the

pair of states parametrized by (θ, φ), is orthogonal.
This is appropriate, to enhance the contrast that
demonstrates non-Markovianity. Specifically, note
that the TD in Figure 5 varies in the range between
1 (initial) and 0 (maximal dephasing). If, on the
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other hand, the two initial stats were (say) |0〉 and
1√
2
(|0〉 + |1〉), then TD varies in the smaller range

between 1√
2
(initial) and 1

2 (maximal dephasing).

VI. Non-Markovian Depolarizing

The depolarizing channel of a qubit transforms
state ρ to a mixture of itself and the maximally
mixed state. The non-Markovian version of the de-
polarizing channel can also be found in a manner
analogous to the dephasing channel, which is now
discussed briefly.

A Kraus representation for the depolarizing chan-

nel would be ρ −→
∑

j KjρK
†
j , where KI =√

1− pI, KX =
√

p
3X, KY =

√

p
3Y and KZ =

√

p
3Z. A potential non-Markovian extension for

them would be

KI =
√

(1 + Λ1)(1− p) KX =

√

(1 + Λ2)
p

3
X

KY =

√

(1 + Λ2)
p

3
Y ; KZ =

√

(1 + Λ2)
p

3
Z (20)

where Λk (k ∈ {1, 2}) is a real function, and p is a
timelike parameter that rises monotonically from 0
to 1

2 . The variables Λj satisfy the following condi-
tion,

(1− p) Λ1 + pΛ2 = 0 (21)

as a consequence of the completeness requirement.

In agreement with Eq. (21), we make the following
choices: Λ1 = −3αp and Λ2 = 3α(1 − p), where α
is real. Then, the non-Markovian Kraus operators
take the form

KI(p) =
√

[1− 3αp](1− p) I

KX(p) =

√

[1 + 3α(1− p)]
p

3
X,

KY (p) =

√

[1 + 3α(1− p)]
p

3
Y,

KZ(p) =

√

[1 + 3α(1− p)]
p

3
Z,

(22)

As before, parameter α may be seen to represent the
non-Markovian behavior of the channel, such that
setting α := 0 reduces the Kraus operators in Eq.
(22) to those in the conventional Markovian depo-
larization channel.

VII. Conclusions and discussion

We introduced a method to construct non-
Markovian variants of completely positive (CP) dy-
namical maps, particularly, qubit Pauli channels,
with non-Markovianity defined by departure from
CP-divisibility. Specifically, a one-parameter non-
Markovian dephasing channel was studied in detail,
which is characterized by a singularity in the canoni-
cal decoherence rate γ, which occurs at the crossover
point α− associated with the eigenvalues of the in-
termediate map, and where phase noise is maximal.
The decoherence rate γ is negative for p ∈ (α−,

1
2 ],

indicating non-Markovianity. Intuitively, this can
be understood as due to κ in Eq. (1) exceeding 1

2 ,
thereby enhancing distinguishability.
More precisely, substituting the form Eq. (1) into

Eq. (12), one finds that:

γ =
dκ/dp

1− 2κ
, (23)

which relates the “channel mixing rate” dκ
dp to the

decoherence rate γ. From Eq. (23), it follows that

γ < 0 iff

{ dκ
dp < 0, in case of κ < 1

2
dκ
dp > 0, in case of κ > 1

2 ,
(24)

with κ = 1
2 representing a singularity. In the form

of noise we consider, the second case in Eq. (24)
explains the origin of non-Markovianity. The reason
is that the derivative of the “channel mixing param-
eter” κ is always positive, i.e., dκ

dp > 0. Thus, κ(p)

must exceed 1
2 for non-Markovianity to occur. In

view of Eq. (23), this entails that a singularity must
be encountered when κ = 1

2 , which happens in our
case at p = α−.
This is illustrated by the dashed (red) plot in Fig-

ure 6, which represents our non-Markovian dephas-
ing with α = 0.7, for which dκ

dp > 0 throughout the

range [0, 12 ]. The point α−, where this intercepts

the horizontal line of κ = 1
2 , is the singularity. Non-

Markovianity comes from the positive mixing rate
(dκdp > 0) region p > α−.

On the other hand, non-Markovian dephasing
noise where κ remains within [0, 12 ] as p increases

monotonically from 0 to 1
2 , corresponds to the first

case in Eq. (24). Here, the channel mixing param-
eter can’t monotonically rise, i.e., there must be re-
gions where dκ

dp < 0. As a simple instance, consider:

κ(p) = p
(1 + η sin(ωp)(1− 2p))

(1 + η(1− 2p))
, (25)

with 0 ≤ p ≤ 1
2 , where η and ω are positive con-
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stants characterizing the strength and frequency of
the channel. Such a noisy channel encounters no sin-

0.0 0.1 0.2 0.3 0.4 0.5
p

0.1

0.2

0.3

0.4

0.5

0.6

0.7

κ

FIG. 6. Plot of κ(p) in Eq. (25) as a function of p,
with η = 1

2
and ω = 50 (bold, blue line). This dephas-

ing channel corresponds to the first case of Eq. (24) and
non-Markovianity arises from regions of negative slope in
the plot. The dashed (red) line corresponds to the non-
Markovian dephasing Eq. (5) with α = 0.7. The mixing
rate dκ/dp is never negative, and non-Markovianity per-
tains to the first case in Eq. (24).

gularity, and the non-Markovian contributions come
from the regions of negative mixing rate dκ

dp , which

arises because of the sine function. A plot of κ(p) for
η = 1

2 and ω = 50 is the bold (blue) plot in Figure
6.
We discussed two methods of quantifying the non-

Markovianity, one based on CP-divisibility and an-
other on distinguishability. The former is derived
from the HCLA measure [16], based on negative de-
coherence rates in the canonical master equation.
This doesn’t require optimization but is marked by
a singularity, which we have handled by using a suit-
able normalization. The other measure is the BLP
measure [33], which requires optimization but is un-
affected by the singularity.

Our method to construct a non-Markovian variant
of the dephasing channel can be straightforwardly
extended to other Pauli channels, e.g., bit flip or
depolarizing channels. Details such as the level-
crossing feature of the eigenvalues of the Choi matrix
of intermediate map and the occurence of singular-
ities, may vary from case to case, presenting new
insights.
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