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Accurate information of inertial parameters is critical to motion planning and control of

space robots. Before the launch, only a rudimentary estimate of the inertial parameters is

available from experiments and computer-aided design (CAD) models. After the launch, on-

orbit operations substantially alter the value of inertial parameters. In this work, we propose a

new momentum model-based method for identifying the minimal parameters of a space robot

while on orbit. Minimal parameters are combinations of the inertial parameters of the links

and uniquely define the momentum and dynamic models. Consequently, they are sufficient

for motion planning and control of both the satellite and robotic arms mounted on it. The

key to the proposed framework is the unique formulation of momentum model in the linear

form of minimal parameters. Further, to estimate the minimal parameters, we propose a

novel joint trajectory planning and optimization technique based on direction combinations of

joints’ velocity. The efficacy of the identification framework is demonstrated on a 12 degrees-

of-freedom, spatial, dual-arm space robot. The methodology is developed for tree-type space

robots, requires just the pose and twist data, and scalable with increasing number of joints.

Nomenclature

n = Number of 1-DoF joints in the space robot

Li = Link with index i

Ji = Joint with index i

ΣI = Inertial frame of reference

Σi = Reference frame attached to Li based on modified Denavit–Hartenberg (DH) notation

Σ
(c)

i
= Reference frame attached to Li at its center of mass having the same orientation as Σi

ci ∈ R
3 = Position vector from ΣI to Σ

(c)

i
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ri ∈ R
3 = Position vector from ΣI to Σi

ai ∈ R
3 = Position vector from Σi to Σ

(c)

i

vi, ωi ∈ R
3 = Linear velocity and angular velocity of Σi

pi, li ∈ R
3 = Linear and angular momentum of Li respectively

p, l ∈ R3 = System linear and angular momentum respectively

Ki ∈ R
6×10 = Link kinematic matrix of Li

G ∈ R6×10(n+1) = Global kinematic matrix

iRj ∈ SO(3) = Rotation matrix from Σi to Σj

Ri ∈ SO(3) = Rotation matrix from ΣI to Σj

mi ∈ R = Mass of Li

iai ∈ R
3 = Position vector from Σi to Σ

(c)

i
expressed in Σi

ibj ∈ R
3 = Position vector from Σi to Σj expressed in Σi

ρj ∈ I
+
⋃
{0} = Parent link index of j th link

αj = Joint twist between Σρj
and Σj

iI
(c)

i
∈ R3×3 = Inertia matrix of Li around Σ

(c)

i

iIi ∈ R
3×3 = Inertia matrix of Li around Σi

0, O, E = Zero vector, Zero matrix, and Identity matrix respectively of compatible dimensions

v(j) = j th component of vector v

φφφi ∈ R
10×1 = Link parameter vector of Li

φφφ ∈ R10(n+1)×1 = Standard parameter vector

ti = ith time instant

θ js, θ jd ∈ R = Start and range parameters of the j th joint

w ∈ R+ = Weighing factor

κ(·) = Condition number

Nt = Number of trajectories of rates (Six for base twist + n for joints rates)

Nm = Number of instants of discretization of the trajectory

hij = Base/joint velocity from the ith trajectory at j th instant

θk
ji
, θk

j f
= Interval trajectory parameters, initial and final joint position respectively of the j th joint in the k th interval

t = Time measured since the beginning of the k th interval

Tp = Time period of the interval

qj = Joint position

ǫ(·) = Root mean squared (RMS) error
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q
j,0

, q
(s)

j,i
and q

(c)

j,i
= Coefficients of fourier series for the j th joint

Nh = Number of harmonics in the fourier series

ω f = Angular frequency of the fourier series

All the position and velocity vectors are expressed in ΣI unless mentioned.

I. Introduction

O
ver the past two decades, space robots have gained prominence by performing on-orbit tasks, such as assembly,

inspection, refueling, and docking [1]. They are also a potential solution to remove space debris and harvest

retired satellites [1]. On-orbit tasks demand an accurate motion planning and control of a space robot, which in turn rely

on the kinematic and dynamic models [2–5]. Unlike a fixed-base robot, the kinematics of a space robot is a function

of the mass, the position of center of mass (CoM), and the inertia tensor of the links, evident from the Generalized

Jacobian Matrix [2]. Consequently, to perform kinematic and dynamic analysis, motion planning, and control, the

knowledge of inertial parameters is indispensable.

For a rigid link, there are ten inertial parameters, i.e., one with a mass, three with a position of CoM, and six with

an inertia tensor. All of them can be identified for individual links before the system assembly [6, 7]. However, it

demands a complicated experimental setup. Further, in a dismantled state, the links do not include cables for power

transfer and communication and piping for fluid supply, which are quite heavy [8]. Also, the CAD models provide

estimates of inertial parameters which are erroneous by more than 10% [7]. Moreover, an inaccurate estimate of the

inertial parameters adversely affects the motion planning and control [9]. Furthermore, while operating on-orbit, a

change in the fuel quantity and payload can substantially alter the inertial parameters [10, 11]. Neither the pre-assembly

experiments nor the CAD models account for such an on-orbit change in the inertial parameters. A solution to address

all the above-mentioned issues is a model-based identification of the inertial parameters of the robot while on orbit.

In this work, we focus on identifying the minimal parameters of a space robot based on the momentum model

while on orbit. The minimal parameters define the dynamic model uniquely [12, 13]. They are a linear combination

of the link parameters, which are the mass (mi), the product of mass and position of CoM (mi
iai) components, and the

inertia tensor
(
iIi

)
components of multiple links. Such a linear combination is due to constraining the relative motion

of an adjacent pair of links with a joint [12], referred as kinematic constraints. The inertial parameters are redundant

in defining the dynamic model; consequently, only the minimal parameters can be identified [14]. Hence, our focus is

on identifying the minimal parameters; however, by using the momentum model.

The central proposition of the presented work is to formulate the momentum model in the linear form of minimal

parameters. The proposition is built on the evidence that the dynamic model can be formulated in the linear form of

minimal parameters [13–15]. Formulating the momentum model in terms of minimal parameters makes them sufficient
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not only for momentum model-based control but also for motion planning and dynamic model-based control. Estimating

such widely applicable minimal parameters of the space robot, with no prior knowledge of inertial parameters of any

of its links, fundamentally distinguishes the presented work from other momentum-based identification techniques

[10, 16–19].

Momentum model defining the kinematics is characteristic of a space robot. Using such a characteristic feature

for minimal parameter identification, based on the proposed linear formulation of momentum model, has the following

advantages:

• Minimal parameters fully construct the momentum and dynamic models. Hence, they are sufficient for modeling,

motion planning, and control.

• Momentum model consumes low noise data; thus, results in accurate estimates.

• Identification framework does not require thrusters and fuel resources. Instead, electrically driven actuators are

used.

• Momentum model is computationally efficient in comparison to dynamic model to use with adaptive control

techniques under no external force and torque.

• Linear formulation is also the key to design computationally efficient trajectories for identifying the minimal

parameters.

Firstly, a momentum model requires only pose and twist while a dynamic model needs torque and acceleration as

well. On the one hand, position and velocity are easy to measure, and their measurements have high signal-to-noise

(SN) ratio. On the other hand, torque and acceleration measurements often have low SN ratio in space robots since their

signal amplitude is low for safety reasons [16, 17]. As a result, parameter estimates based on the momentum model

are proven to be substantially accurate than dynamic model based parameter estimates [10, 18]. Next, the proposed

framework uses only robotic arms and reaction wheels for parameter identification. They consume only electricity;

thus, preserving the limited fuel resources. Finally, an exact linear model is a significant component of an adaptive

controller. Momentum model has only six equations for a system with an arbitrary number of links and consumes lower

amount of data than the dynamic model. Thus, it is computationally efficient for designing an adaptive controller.

Contributions and Paper Organization. The primary contribution of this work is a systematic procedure for linear

formulation of the momentum model in terms of the minimal parameters. In the usual momentum formulation of a

space robot [20, 21], inertial parameters are indistinct because they are grouped with kinematic data (base pose and

twist, and joint angle and velocity) and geometric parameters (link length, joint twist, and joint offset). However, in

Sec. III, the inertial parameters are systematically separated from the kinematic data and grouped into link parameters.

Further, we obtain the System Kinematic Matrix (SKM) and standard parameters for a generic space robot. SKM

contains the kinematic data of all the links of the system and links parameters of all the links are referred to as standard

parameters. SKM linearly transforms the standard parameter vector to system momentum.
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In Sec. IV, the kinematic constraints due to the joints are imposed onto the momentum model. The kinematic

constraints regroup the standard parameters resulting in a momentum model in the linear form of minimal parameters.

A recursive approach is provided to obtain the closed-form solution of minimal parameters for a generic tree-type space

robot based on only the geometric parameters of the system.

In Sec. V, computation of exciting joint trajectories is presented. They render all the minimal parameters identifiable

and facilitate in estimating the parameters which are minimally sensitive to noise. The whole system usually cannot be

excited with a single motion [22], and it presents a major challenge in computing exciting trajectories. It is tackled with

a novel joint trajectory planning and optimization technique for computing exciting trajectories, which forms another

contribution of the work. The novelty lies in composing the joint trajectory with multiple intervals to excite all the

minimal parameters of the system. Each interval adds new information about the system behavior while improving the

number of identifiable minimal parameters. Moreover, the proposed approach is computationally efficient and scalable

with increasing degrees-of-freedom (DoF).

Finally, in Sec. VI, we apply the identification procedure on a 12-DoF, spatial, dual-arm space robot and estimate its

minimal parameters with measurement noise in the kinematic data. Further, the performance of the estimated minimal

parameters is evaluated by predicting the system’s kinematics and dynamics. The proposed method uses reaction

wheels with known inertial parameters to apply momentum onto the robot. We assume that the minimal parameters of

the space robot do not change while executing the exciting trajectories. Further, the geometric parameters are usually

precisely known [13, 17] and assumed to be deterministic in nature.

II. Related work

Solving the problem of parameter identification usually entails model formulation,experiment design, and parameter

estimation. We discuss the related literature from the perspective of these tasks.

A. Modeling

Identification techniques based on both momentum [10, 16–19] and dynamic [8, 10, 11, 14, 23–25] models exist.

Many works involved estimating the parameters of one of the links, with the knowledge of inertial parameters of rest

of them [10, 11, 17, 19, 24]. However, frameworks which identify atleast some inertial parameters or a combination of

inertial parameters of all the links is referred in this work as whole-system identification.

In one of the initial attempts towards whole-system identification, angular momentum model was linearized around

mass and inertia parameters using partial differentiation [16]. Adapting such a linearization to all the inertial parameters

provides only an approximate linear model because of nonlinearity in the CoM parameters. Moreover, the framework

in [16] estimates only some of the parameters of all the links while needing the knowledge of others.

Recently, a fusion of dynamic and momentum model was performed to estimate the inertial parameters of all the
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links [20]. However, the procedure needs firing the thrusters and requires high-noise acceleration measurements. A

combination of inertial parameters of the space robot are estimated using only the angular momentum model in [18]. It

is the work that comes closest to whole-system identification based only on momentum model. However, the estimated

parameters are limited to model-based control of attitude only. Hence, problems related to the position and linear

velocity control, motion planning and collision avoidance in task space cannot be solved.

In [22], minimal parameters were estimated by considering only the base link’s dynamic model. Thus the need

for joint torque and joint acceleration are eliminated. Even though the methodology applies to generic tree-type

floating-base systems, it is suitable for systems like humanoids and humans. They have huge acceleration leading to

higher SN ratio in their base link’s acceleration measurements as compared to space robots. The base link is a satellite

in space robots, which has a very low acceleration for safety reasons [17].

It is evident that the whole-system identification involving dynamic models require high-noise measurements and

may need fuel resources. Using the momentum model only some parameters are estimated, which are insufficient for

motion planning and control in task space.

B. Experiment Design

The designed trajectories which facilitate identifying the parameters of interest are usually called exciting trajectories.

An approach widely used for fixed-base robots is adapted for space robots in [18, 19, 24] by minimizing the condition

number of the regressor matrix. A well-conditioned regressor matrix minimizes the effect of noise on the parameter

estimates [26]. Also, the experiment design has to ensure that the SN ratio of the measured data is high [11] so that

the perturbation in its ground truth is minimum. Both condition number and SN ratio are utilized in the current work.

In [24], using ideas from optimal control, exciting trajectories were designed within 8 minutes for a single link

6-DoF system. However, with increasing number of dimensions, optimal control strategies often consume hours of

computation time [5]. Furthermore, exciting all the minimal parameters with a single motion is difficult [22]. The

difficulty increases with increasing DoF of the robot. This problem was partially solved by running a few intuitively

selected trajectories on the robot [14]. We identify that designing a systematic methodology for computing exciting

trajectories as another area for research and propose a solution to it in this work. In Table 1, a comparison of various

whole-system identification techniques is shown.

C. Estimation Methodology

In [20], owing to an unprocessed form of the momentum model, which is nonlinear in terms of parameters,

particle swarm optimization was implemented for parameter estimation. Formulations based on a processed form of

momentum model used least squares or an altered version of it for parameter estimation [10, 16–19]. Least squares

worked well because the noise affecting the data that is required by the momentum model is usually quite low. Despite
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Table 1 A comparative analysis of model-based frameworks for whole-system parameter identification of a

space robot

Approach
Comparision criterion

A B C D E

Ayusawa et al. [14] ✓ ✓ ✓ ✗ ✗

Yoshida et al [16] ✓ ✗ ✓ ✓ ✗

Christidi et al. [18] ✓ ✗ ✓ ✓ ✓

Xu et al. [20] ✓ ✓ ✗ ✗ ✗

Proposed work ✓ ✓ ✓ ✓ ✓

Comparison criterion description:

A: Framework applies to generic tree-type robotic systems

B: Estimated parameters are sufficient for motion planning and control

C: Framework does not need components consuming fuel

D: Model does not require acceleration or torque measurements

E: Systematic computation of exciting trajectories for parameter estimation

the presence of gravity-gradient torque, momentum model with least squares estimation performed well, evident from

the momentum reconstructed by the estimated parameters in [16].

III. Momentum Model in Linear Form of Standard Parameters

In the usual momentum model formulation of a space robot, the inertial parameters are grouped among themselves

and also with the kinematic data and geometric parameters [20, 21]. Thus, it is hard to conclude the identifiability

of inertial parameters using such a momentum formulation. In this section, we formulate the momentum model for a

generic tree-type space robot in the linear form of standard parameters. We consider an individual link in space, group

its inertial parameters, and separate the kinematic data into a Link Kinematic Matrix (LKM). LKM transforms the link

parameter vector to the link’s momentum. By assembling LKMs of all the links, the system kinematic matrix (SKM)

is obtained which linearly transforms the standard parameters of the space robot to its momentum.

A tree-type robot consisting of n + 1 rigid links connected by n joints is considered. Without loss of generality,

the joints are considered to be revolute with 1-DoF, which is often the case with space robots. One of the links is

considered as a base link, which is a satellite or spacecraft in space robots. Further, body frames are assigned to the

links based on the modified Denavit-Hartenberg (DH) convention. The base link is equipped with a sensor to measure

its linear velocity and euler rates, shown in Figure 1. To model the system, both linear and angular momentum are

considered because angular momentum conservation does not necessarily imply linear momentum conservation and

vice versa.
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Fig. 1 A dual-arm space robot with some of the notations. The sensor on the base link is at r0 in ΣI

A. Linear Momentum of the ith Link

It is well-known that the linear momentum is linear in terms of the link parameters [17, 19] and for the ith link (Li),

it is as follows:

pi = mi Ûci (1)

From the rigid body kinematics, the position and linear velocity of link CoM frame
(
Σ
(c)

i

)
and link frame (Σi) are

related as follows:

ci = ri + ai (2)

Ûci = vi +ωωωi × ai (3)

Substituting Eq. (2) and Eq. (3) in Eq. (1) and separating the link parameters result in the link’s linear momentum as:

pi = vimi + (ω̃̃ω̃ωi
IRi)mi

iai (4)

where, ω̃ωω represents the skew-symmetrix matrix representation ofωωω.

ω̃ωω =



0 −ωz ωy

ωz 0 −ωx

−ωy ωx 0


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B. Angular Momentum of the ith Link

For space robots, multiple works have used the nonlinear form of angular momentum for parameter estimation as

in [16, 17, 20]. However, with insights from the linear form of the dynamic model [14, 15], we manipulate the angular

momentum model on the similar lines to arrive at the linear form. The angular momentum of Li is as follows:

li =
IRi

iI
(c)

i
IRT

i ωωωi + ci × mi Ûci (5)

Expanding Eq. (5) using Eq. (2) and Eq. (3) and denoting the cross product with skew-symmetric notation for the

kinematic data, we get:

li =
IRi

iI
(c)

i
IRT

i ωωωi + mi

(
r̃ivi + (r̃iω̃̃ω̃ωi − ṽi)ai + (ai ×ωωωi × ai)

)
(6)

Note that in Eq. (5) and Eq. (6), the angular momentum is in nonlinear form of CoM parameters. However, it is linear

in terms of mass and inertia. So, rewriting the nonlinear term ai ×ωωωi × ai as aTi aiE − aia
T
i to get:

li =
(
IRi

iI
(c)

i
IRT

i + mi(a
T
i aiE − aia

T
i )

)
ωωωi + mi

(
r̃ivi + (r̃iω̃̃ω̃ωi − ṽi)ai

)
(7)

Substituting, ai =
IRi

iai in Eq. (7). As a result of the parallel axis theorem, nonlinear CoM terms are eliminated by

grouping them with inertia around Σ
(c)

i
resulting in inertia around Σi as follows:

li =
(
IRi

iIi
IRT

i

)
ωωωi + mi

(
r̃ivi + (r̃iω̃̃ω̃ωi − ṽi)

IRi
iai

)
(8)

where, iIi =
iI
(c)

i
+ mi(

iaTi
iaiE −

iai
iaTi )

Eq. (8) is in the linear form of link parameters. Rewriting Eq. (8) by separating the link parameters from the kinematic

data as follows:

li =
(
IRi

[
(IRT

i ωωωi) •
] ) [
• iIi

]
+

(
r̃ivi

)
mi +

(
(r̃iω̃̃ω̃ωi − ṽi)

IRi

)
mi

iai (9)

where, [•I] =

[

I11 I22 I33 I12 I23 I13

]T
, [ωωω•] =



ωx 0 0 0 ωz ωy

0 ωy 0 ωz 0 ωx

0 0 ωz ωy ωx 0


Finally, Eq. (9) is in the desirable linear form of the link parameters.
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C. System’s Total Momentum in Linear Form

Total momentum of Li is obtained by appending the linear and angular momentum equations, i.e, Eq. (4) and Eq.

(9) into a matrix-vector product form as follows:

Kiφφφi =



pi

li



(10)

where,

Ki =



O vi ω̃̃ω̃ωi
IRi

IRi

[
(IRT

i ωωωi) •
]

r̃ivi (r̃iω̃̃ω̃ωi − ṽi)
IRi



∈ R6×10

φφφi =

[
[
• iIi

]T
mi mi

iaT
i

]T
∈ R10×1

The matrix Ki is the LKM, which consists of only the kinematic data of Li . The momentum of the entire system is

obtained by assembling the LKMs of all the links resulting in a System Kinematic Matrix (SKM) denoted by K.

Kφφφ =



p

l



(11)

where,

K =

[

K0 . . . Ki . . . Kn

]
∈ R6×10(n+1)

φφφ =

[

φφφT
0

. . . φφφTi . . . φφφTn

]T
∈ R10(n+1)×1

The linear system of equations in Eq. (11) is evaluated for kinematic data (base pose and twist, joint angle and

velocity) at multiple instants and vertically appended together. The resultant is a global kinematic matrix (GKM)

denoted by G.

Gφφφ = m (12)

where,

G =

[

K(t1)
T . . . K(tNm

)T

]T
∈ R6Nm×10(n+1)

m =

[

p(t1)
T l(t1)

T . . . p(tNm
)T l(tNm

)T

]T
∈ R6Nm×1
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Previously, it is shown in [27] that the inertia matrix is linear in terms of mass and inertia parameters of the links

of the space robot. The inertia matrix can be used to construct the momentum model [21]. We further show in Eq.

(12) that the momentum model is in linear form of standard parameters (φφφ). Even with sufficient data, all the standard

parameters are individually not identifiable because some of the columns of GKM are linearly dependent. Under the

action of external force and torque on the space robot, the linear dependency in GKM is one of the following types: A)

due to the kinematic constraints posed by the joints B) due to the choice of trajectory for constructing the GKM. Even

for a fixed-base robot, linear dependencies occur due to same reasons with the matrix formulated using the linear form

of dynamic model [26, 28]. Moreover, for a fixed-base robot, there are additional constraints due to its fixed base.

Type-A linear dependency is inherent to the GKM and exists irrespective of the robot, as long as 1-DoF joints

connect the rigid links. Type-A linear dependency is not avoidable and has to be eliminated. Type-B is because of

the chosen joint trajectories and the response of the base link to them. Type-B linear dependency is avoidable, unlike

Type-A. In the next two sections, we overcome both the types of linear dependencies in the momentum model.

IV. Minimal Parameters and Regressor Matrix

A joint connects two adjacent links in a robot and constraints their kinematics, i.e., their physical motion. In this

section, we enforce these kinematic constraints onto the momentum model. Specifically, columns in GKM which

are linearly dependent due to the kinematic constraints are identified. From the set of linearly dependent columns,

we obtain a set of basis columns which are linearly independent. Rest of the columns are called redundant columns,

which are a linear combination of the basis columns with the coefficients of linear combination. Further, Type A linear

dependency is eliminated by deleting the redundant columns from the GKM resulting in the regressor matrix. Using

the coefficients of linear combination, the standard parameters are regrouped, resulting in the minimal parameters.

Grouping the standard parameters compensates for the deleted redundant columns in the momentum model. Hence,

the momentum model stays intact, and it is in the minimal form. More properties of minimal parameters are discussed

in [12, 13].

On a case-by-case basis, the redundant columns and the linear dependency coefficients can be computed using

matrix factorization techniques on the numerical GKM for a particular robot similar to [23, 29]. We do not take such

an approach because the identified linearly dependent columns offers no distinction between the columns of Type-A

and Type-B. However, it is necessary to know the redundant columns due to Type-A exclusively, which should be

eliminated. Exclusive knowledge of Type-A facilitates distinguishing Type-B linear dependency. Thus, the occurrence

of Type-B linear dependency can be avoided.

We consider two adjacent links in a tree-type robot to find the redundant columns and their coefficients of linear

combination with the basis columns. Using these coefficients, a recursive grouping of parameters is performed to

obtain the minimal parameters of a tree-type space robot. Two links connected by a 1-DoF joint have a parent-child
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relationship. A parent is connected to the base link with a lower number of links than its child link. Each child has

only one parent, and a parent can have multiple children. Base link has children, but it has no parent. Terminal links

do not have children but have a parent.

We use the following notation to represent the above mentioned relations between the links. For a child link with

index j, j ∈ I, j > 0, j ≤ n + 1, its parent is represented by ρj (ρj < i). Further, for a parent with index i, the set of

its children is represented by ζi . The set of indices of all terminal links of a tree-type system is denoted by T such that

∀e ∈ T, ζe = {}.

For the purpose of presentation, writing Ki from (10) as follows:

Ki =

[

K
(1)

i
K
(2)

i
K
(3)

i

]
(13)

where,

K
(1)

i
=

[

O
(
IRi

[
(IRT

i ωωωi) •
] )T

]T
∈ R6×6

K
(2)

i
=

[

vT
i
(r̃ivi)

T

]T
∈ R6×1

K
(3)

i
=

[

(ω̃̃ω̃ωi
IRi)

T ((r̃iω̃̃ω̃ωi − ṽi)
IRi)

T

]T
∈ R6×3

Consider a parent-child pair i, j such that ρj = i. The relation between the pose and twist of links i, j due to a

revolute joint is as follows:

rj = ri + bj (14)

IR j =
IRi

iRj (15)

vj = vi +ωωωi × bj (16)

ωωω j = ωωωi +
IR j

[

0 0 Ûqj

]T
(17)

where bj =
IRi

ibj and Ûqj is the joint velocity of the j th joint

Eq. (14) to Eq. (17) are substituted in LKM of child link, i.e., K j , and the linearly dependendent columns of Ki and

K j are identified using their symbolic forms. Consequently, the following redundant columns and their coefficients of

linear combination are obtained as follows:

K
(1)

j

〈
2
〉
= K

(1)

i
t1, j − K

(1)

j

〈
1
〉

(18)

K
(2)

j
= −K

(1)

i

[
•
i
b̃

2

j

]
+ K

(2)

i
+ K

(3)

i
ibj (19)
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K
(3)

j

〈
3
〉
= K

(1)

i
t2, j + K

(3)

i
t3, j (20)

where, for a matrix A, A
〈
k
〉

represents kth column of A

t1, j =

[

1, C2
αj
, S2

αj
, 0, Cαj

Sαj
, 0

]T

t2, j =

[

2ib
(3)

j
Cαj
− 2ib

(2)

j
Sαj

, 2ib
(3)

j
Cαj

, −2ib
(2)

j
Sαj

, ib
(1)

j
Sαj

, ib
(3)

j
Sαj
− ib

(2)

j
Cαj

, −ib
(1)

j
Cαj

]T

t3, j =

[

0, −Sαj
, Cαj

]T

Cα = cos(α), Sα = sin(α)

The choice of redundant columns is not unique [13]. However, we choose columns with the highest index, in line

with the traditional literature [30]. The redundant columns are 2nd, 7th, and 10th columns of LKM of the child link

and correspond to the link parameters, iI
(yy)

i
, mi, and mi

ia
(z)

i
. The linear dependency coefficients are obtained for an

arbitrary parent-child link pair connected by a 1-DoF revolute joint. The redundant columns and the coefficients of

linear dependency obtained in Eq. (18) to Eq. (20) are in coherence with those obtained using the dynamic model in

[30]. However, in [30] additional constraints due to the fixed base also exist. Also, it is clear that the obtained linear

dependency coefficients are only a function of the geometric parameters. Hence, the linear dependency holds good

between LKMs of every parent-child pair in a tree-type system at every instant, irrespective of the joint trajectory.

Further, it can be inferred from Eq. (18) to Eq. (20) that a parent-child link pair creates redundant columns in the

LKM of the child. A base link has no parent. As a result, columns of LKM of the base link are linearly independent

due to kinematic constraints posed by joints. However, LKMs of the base link’s children have redundant columns.

Since a terminal link does not have children, it does not contribute to the formation of redundant columns in LKM of

other links. However, terminal links have a parent in which they are always the child. Hence, the LKM of terminal

links have redundant columns. Rest of the links become both parent and child to different links. Hence, LKM of such

a link has redundant columns and creates redundant columns in the LKM of their child links.

Based on the above-discussed logic, the links are divided into three categories, namely, link with no parent, links

with no children, links with both parent and children. A recursive grouping of standard parameters corresponding to

redundant columns is performed using the coefficients of linear dependency as follows:
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For all links, e ∈ T (set of indices of terminal links)

φ̃̃φ̃φe = φφφe

φ̃̃φ̃φ
(1)
e = φφφ

(1)
e − φφφ

(2)
e

φφφm,e = D(φ̃̃φ̃φe)

Km,e = D(Ke)




(21)

For all links, i < T, i ∈ I, i > 0, i ≤ n

φ̃̃φ̃φi = φφφi +
∑

∀j∈ζi

(
φ̃̃φ̃φ
(2)

j
k1, j + φ̃̃φ̃φ

(7)

j
k2, j + φ̃̃φ̃φ

(10)

j
k3, j

)

φ̃̃φ̃φ
(1)

i
= φ̃̃φ̃φ
(1)

i
− φ̃̃φ̃φ
(2)

i

φφφm,i = D(φ̃̃φ̃φi)

Km,i = D(Ki)




(22)

For the base link,

φφφm,0 = φφφ0 +

∑

∀j∈ζ0

(
φ̃̃φ̃φ
(2)

j
k1, j + φ̃̃φ̃φ

(7)

j
k2, j + φ̃̃φ̃φ

(10)

j
k3, j

)
(23)

where, φφφm,0 ∈ R
10×1, φφφm,i ∈ R

7×1
∀ i ∈ I+, k1, j, k2, j, k3, j ∈ R

10×1 and

k1, j =

[

tT
1, j

0

]T

k2, j =

[

−
[
•
i
b̃

2

j

]T
1 ibTj

]T

k3, j =

[

tT
2, j

0 tT
3, j

]T

The function D in Eq. (21) to Eq. (23) deletes the redundant columns from LKM, and the standard parameters

corresponding to the redundant columns from link parameter vector. Note that the recursion process to obtain the

closed-form solution of minimal parameters requires the knowledge of only the geometrical parameters.

Upon performing the recursive grouping process, we obtain the minimal SKM (Km) and the minimal parameter

vector (φφφm) which are:

Km =

[

Km,0 . . . Km,n

]
∈ R6×(10+7n) (24)

φφφm =

[

φφφT
m,0

. . . φφφTm,n

]T
∈ R(10+7n)×1 (25)
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Previously, minimal parameters were obtained for a fixed-base robot using symbolic and numerical techniques

based on the energy and dynamic models [13, 26, 30]. Further, the dynamics based formulation is also extended

to space robots [14]. Recently, a minimum set of parameters were obtained using only the angular dynamics and

momentum model [18]. However, to our best knowledge, this is the first time minimal parameters are systematically

derived based on both linear and angular momentum model of space robots. This reformulation of momentum model

in terms of the minimal parameters forms the primary contribution of this work.

The momentum model in Eq. (12) is rewritten using the regressor matrix (Gm) and φφφm as follows:

Gmφφφm = m (26)

where, Gm =

[

Km(t1)
T . . . Km(tNm

)T

]T
∈ R6Nm×(10+7n) . The momentum (m) in Eq. (26) is applied by the

reaction wheels. Note that we have leveraged the conservation of momentum principle by conserving the summation

of momentum of space robot and the momentum applied by the reaction wheels onto the space robot. The system of

equations in Eq. (26) with sufficient data points (6Nm > 10 + 7n) is overdetermined. A least squares estimate of the

minimal parameter vector (φ̂̂φ̂φm) is:

φ̂̂φ̂φm = (G
T
mGm)

−1GT
mm (27)

Since the obtained minimal parameters fully construct the momentum model these parameters are sufficient for

motion planning and momentummodel-based control. Moreover, these minimal parameters are identical to the minimal

parameters of floating-base robots based on the dynamic model in [14]. Hence, estimating these parameters not only

allow for momentum-based control but also for dynamic model-based control. In conclusion, they are sufficient for

kinematics and dynamics analysis, motion planning, and control.

In this section, redundant columns due to Type-A linear dependency were identified and eliminated; thus, con-

structed the minimal parameter vector and regressor matrix. Next, we avoid the occurrence of Type-B linearly

dependency in the regressor matrix.

V. Exciting Trajectories

We present the other contribution of this work, which is the joint trajectory planning and optimization framework

for computing exciting trajectories. First, an overview of the entire framework is provided, following which the methods

and modules within the framework are discussed.

A. Outline of the Proposed Framework

The exciting trajectory computation framework majorly consists of joint actuation strategy, trajectory parametriza-

tion, optimization, and pruning modules, as shown in Figure 2. The geometric parameters of the robot and an initial
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Fig. 2 Block diagram of joint trajectory planning and exciting trajectories computation

guess of the inertial parameters are the inputs to the framework, and they can be obtained from the robot’s CAD model.

Based on the geometric parameters of the robot, the joint actuation strategy decides the direction of joints’ velocity

during a time interval, which is encapsulated in direction combinations. Each interval executes a unique direction

combination and consequently excites a subset of minimal parameters. The entire trajectory is composed of multiple

intervals and thus excites all the minimal parameters, rendering them identifiable. The joint trajectory within a specific

interval is parameterized with the interval trajectory parameters. In turn, the interval trajectory parameters of all the

intervals of a particular joint are parameterized by the seed parameters. The seed parameters along with the knowledge

of direction combinations parameterize the entire trajectory, hence, they are the design parameters of the trajectory

optimization problem. Specifically, computing the exciting trajectories requires the following three steps:

• Step 1: Parameterization of the joint trajectories with all the direction combinations and trajectory optimization,

resulting in intermediate exciting trajectories

• Step 2: Pruning the intervals of the intermediate exciting trajectories, resulting in optimal direction combinations

• Step 3: Parameterization of the joint trajectories with only the optimal direction combinations, and trajectory

optimization, resulting in optimal seed parameters and the exciting trajectories

In the block diagram in Figure 2, the inner loop containing the Joint trajectories and Seed parameters is executed

in both Step 1 and Step 3 until the objective function converges to minima. The outer loop containing the Trajectory

pruning is executed only once, i.e., in Step 2. Next, we discuss the design of each module.

B. Joints’ Actuation Strategy

We propose to excite the minimal parameters of a space robot using direction combinations of joint rates. A

direction combination is a set of directions of the joint velocity of all the joints at a given instant. A non-zero joint

velocity has two directions, either positive or negative. We fix the direction of the joint velocity of one joint constant
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throughout the entire duration. As a result, for a system with n joints, there are 2n−1 direction combinations. Each

direction combination is executed in a specific time interval.

In [31], due to the inherent nature of B-splines, the exciting trajectory is composed of multiple intervals. However,

in this work, the exciting trajectory is purposely composed with multiple intervals because each interval, composed

with a unique direction combination, excites a subset of minimal parameters.

C. Interval Trajectory Parametrization

Here, parametrization of joint position and joint velocity in a time interval is discussed. The proposed interval

trajectory parametrization facilitates achieving the joint actuation strategy.

A cycloidal function in time parameterizes the joint position. It requires just two parameters (θk
j f
, θk

ji
) to produce

continuous and differentiable joint position, joint velocity, and joint acceleration. For j th joint during k th interval,

j, k ∈ I, j, k > 0, j ≤ n, and k ≤ 2n−1, the joint position and joint velocity are:

qk
j = θ

k
ji +

(θk
j f
− θk

ji
)

Tp

[

t −
Tp

2π
sin

(
2πt

Tp

)]

(28)

Ûqk
j =

(θk
j f
− θk

ji
)

Tp

[

1 − cos

(
2πt

Tp

)]

(29)

Along with having only two parameters to parameterize the trajectory in an interval, cycloidal parametrization also

offers following advantages:

• Position function is monotonic in a given interval. The two parameters of the cycloidal function physically are

the initial and final positions of the joint in an interval. Hence, by simply bounding those two parameters, the

joint position can be contained within the desired limits.

• Since the position function is monotonic in a given interval, the joint velocity has a single direction in an interval.

This behavior is extremely advantageous to execute the velocity combinations. By choosing a final position

greater than initial position, a positive joint velocity is obtained. Similarly, for negative joint velocity, the final

position should be lesser than the initial position.

• Further, analytical solutions exist for maxima and minima on velocity and acceleration and they result in linear

constraints. Thus, constraining them within limits is simplified.

The joint trajectory is obtained by concatenating the interval trajectories. Further, the final position of the previous

interval is the initial position of the current interval. Hence, for a single joint, f intervals result in f + 1 interval

trajectory parameters. For a system with n joints, there are 2n−1 intervals. Consequently, for n joints, there are a total

of n(2n−1
+ 1) interval trajectory parameters.
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D. Seed Parameters

The interval trajectory parameters parameterize an interval trajectory. Here, seed parameters are introduced, which

parameterize the interval trajectory parameters of all the intervals of a joint. The total number of interval trajectory

parameters grows as n(2n−1
+ 1), which is undesirable for optimization and does not scale with increasing dimensions

of the robot. Even with just six joints, the design space of optimization is of 198 dimensions. Hence, a small number

of seed parameters are proposed to parameterize the (2n−1
+ 1) interval trajectory parameters of a joint.

For each joint, a seed consists of just two parameters, namely, start and range parameters. Start parameter is the

initial position of the first interval. The range parameter is either added or subtracted to the initial position of an interval

to get the final position. Addition or subtraction of range is decided by the direction requirement of the joint velocity

in that interval. If a positive velocity is required, the range term is simply added, else subtracted. For j th joint during

k th interval, the seed parameters construct the trajectory parameters as follows:

θkji =




θ js, k = 1

θk−1
j f
, k > 1

(30)

θkj f =




θk−1
j f
+ θ jd, Ûqk

j
> 0

θk−1
j f
− θ jd, Ûqk

j
< 0

(31)

where, θ js and θ jd are the start and range parameters of the j th joint respectively. Since θ jd is range, it is always

greater than zero. A zero range leads to a constant joint position resulting in no joint motion. The interval trajectory

parameters constructed in Eq. (30) and Eq. (31) are used to compute interval trajectories using Eq. (28) and Eq. (29).

Using a seed, the design parameters of the optimization problem drastically reduce from n(2n−1
+ 1) to 2n. Sections V.

C and V. D together comprise the Trajectory Parametrization block in Figure 2.

E. Trajectory Optimization

The trajectory optimization problem is discussed in this subsection, which results in the optimal values of the

seed parameters. The primary objective of exciting trajectories is to render all the minimal parameters identifiable.

Specifically, the trajectory should not cause linear dependency (Type-B) in the columns of regressor matrix. Further,

the sensor measurements are corrupted by noise. Hence, the secondary objective is to ensure that the estimates of the

minimal parameters are minimally affected by noise. Exciting trajectories are computed by minimizing a cost function

that fulfills the desired objectives.
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1. Objective Function

We define an objective function involving the condition number of the regressor matrix and the magnitude of the

base velocities and joint rates.

min
θj s,θjd ∀ j∈1 to n

C = κ(Gm) + w
NtNm

∑Nt

i=1

∑Nm

j=1
h2
ij

(32)

h is the joint velocity or the component of base twist.

A low condition number ensures that the trajectory uniformly excites all the minimal parameters and results in the

estimates which are relatively insensitive to noise. Moreover, the inverse of squares of base velocities and joints rates are

added to the objective function to achieve trajectories measurements with high SN ratio. Since the measurement noise is

independent of the measured value, higher velocity measurements correspond to a higher SN ratio. Measurements with

low SN ratio do not represent the true behavior of the system, and the accuracy of estimates could be adversely affected.

Both components of the objective function together help in realizing both the objectives of exciting trajectories.

2. Simplified Joint Constraints

The proposed interval trajectory parametrization with cycloidal trajectories and further parametrization of the

interval trajectory parameters with the seed parameters not only reduces the number of design parameters of the

optimization problem but also simplifies the joint constraints. We derive a simplified set of constraints, which result in

trajectories adhering to joint angle, joint velocity, and joint acceleration limits.

The joint position can be simply constrained by bounding the interval trajectory parameters within the limits as

follows:

θmin
j ≤ θkji, θ

k
j f ≤ θ

max
j (33)

Given the direction combinations, the interval trajectory parameters are computed from the seed parameters with only

linear operations. Hence, the constraint in Eq. 33 leads to only linear constraints on the design parameters of the

optimization problem.

The maximum of the magnitude of j th joint velocity in kth interval is max(| | Ûqk
j
| |) = 2(θk

j f
− θk

ji
)/Tp. However, for

all k, | |(θk
j f
− θk

ji
)| | = θ jd , see Eq. (30) and Eq. (31). Hence, max(| | Ûqk

j
| |) = 2θ jd/Tp. To adhere to the joint velocity

limit, 2θ jd/Tp ≤ min(| | Ûθmin
j
| |, | | Ûθmax

j
| |). On rearranging the equation, we get

θ jd ≤ (Tp/2)min(| | Ûθmin
j | |, | |

Ûθmax
j | |) (34)

Similarly, maximum of the magnitude of j th joint acceleration in kth interval can also be obtained, which is

max(| | Üqk
j
| |) = 2πθ jd/T

2
p . To adhere to the joint acceleration limit, 2πθ jd/T

2
p ≤ min(| | Üθmin

j
| |, | | Üθmax

j
| |). On rearranging
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the equation, we get

θ jd ≤ (T
2
p/2π)min(| | Üθmin

j | |, | |
Üθmax
j | |) (35)

To satisfy both the Eq. (34) and Eq. (35),

θ jd ≤ min
(
(Tp/2)min

(
| | Ûθmin

j | |, | |
Ûθmax
j | |

)
, (T2

p/2π)min
(
| | Üθmin

j | |, | |
Üθmax
j | |

) )
(36)

The right hand side of Eq. (36) is simply a constant, represented by θmax
jd

, which can be computed from the joint

limits. Since, θ jd > 0, the bound constraint on θ jd, ∀ j ∈ I, j > 0, j ≤ n is as follows:

0 < θ jd ≤ θ
max
jd (37)

The proposed parametrization leads to only linear and bound constraints on the design parameters of the optimization

problem for satisfying the joint limits. The 2n design parameters are obtained by minimizing the objective function in

Eq. (32) with Eq. (33) and Eq. (37) as the constraints. Sequential Quadratic Programming (SQP) is used to solve the

constrained optimization problem, which allows to include nonlinear constraints also.

F. Pruning the Intermediate Exciting Trajectories

Even though 2n−1 intervals add unique data about the system, not all of them are required to render the parameters

identifiable and well-condition the regressor matrix. We present a methodology to prune such intervals. Each interval

has a unique direction combination; pruning the intervals of intermediate exciting trajectories results in the optimal

direction combinations. Moreover, with all the 2n−1 intervals, scaling the methodology to high-dimensional systems

becomes infeasible because the time required for them to execute the exciting trajectories grows exponentially.

To perform pruning (Step 2), we first compute the intermediate exciting trajectories, which consider all the direction

combinations (Step 1). The process of pruningproceeds as shown in Algorithm 1. Regressor matrix (Gm) is constructed

using intermediate exciting trajectories, which is an input to pruning algorithm. Next, the regressor matrix constructed

with the trajectory data of unpruned intervals is represented by (Go
m). Given the regressor matrix (Gm) and the interval

index (i), getIntervalRM retrives all the rows of Gm corresponding to the ith interval index represented by Gi
m. First

few intervals are unpruned until Go
m has higher number of rows than columns (nr > nc).

Next, every Gi
m is vertically concatenated to the Go

m, resulting in Gt
m. The properties of Gt

m are compared with Go
m

to check if appending the regressor matrix of a particular interval has helped in achieving the objectives of computing

exciting trajectories. Finally, ith interval from the rest of the intervals is unpruned if one of the following conditions is

satisfied by Gt
m:

1) The number of significant singular values of Gt
m, computed by the function numSignificantSingularVals, is
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Algorithm 1: Prune intervals

Input :Gm, n, umax, δ

Output :g

1 i, nr, nc, u← 0

2 g,Go
m ← [ ]

3 while nr ≤ nc do

4 i ← i + 1

5 g← [g, i]

6 Gi
m ← getIntervalRM(Gm, i)

7 Go
m ← [(G

o
m)

T , (Gi
m)

T ]T

8 [nr, nc] ← size(Go
m)

9 end

10 Gt
m ← Go

m

11 sprev ← numSignificantSingularVals(Go
m, δ)

12 cnprev ← condNum(Go
m)

13 while i < 2n−1 do

14 i ← i + 1

15 Gi
m ← getIntervalRM(Gm, i)

16 Gt
m ← [(G

o
m)

T , (Gi
m)

T ]T

17 snow ← numSignificantSingularVals(Gt
m, δ)

18 cnnow ← condNum(Gt
m)

19 if
(
(snow > sprev) or (cnnow < cnprev) or

(
(snow == sprev) and (u ≤ umax)

))
then

20 g← [g, i]

21 Go
m ← Gt

m

22 if
(
(snow == sprev) and (u ≤ umax)

)
then

23 u← u + 1

24 else

25 u← 0

26 end

27 else

28 u← 0

29 end

30 end

more than that of Go
m, i.e., snow > sprev.

2) The condition number of Gt
m, computed by the function condNum, is less than that of Go

m, i.e., cnnow < cnprev.

3) The number of significant singular values of Gt
m are equal to Go

m and occurs continuously for not more than

umax times.

Significant singular values are determined by the number of singular values whose magnitude is greater than

a fraction (δ) of the singular value with the highest magnitude. First condition means that unpruning a particular

interval excites higher number of minimal parameters than without it. Second condition means that the system is

well-conditioned with that particular interval than without it. Third condition is applied to reduce the effect of initial

guess on the exciting trajectories. The index of every unpruned interval is stored in g whose elements are the indices

of optimal direction combinations. Using the optimal direction combinations, the trajectory is parameterized and seed
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parameters are optimized, i.e. Step 3, also shown in Figure 2. The trajectory parameterized with the optimal direction

combinations and the optimal seed parameters are the exciting trajectories to be executed on the system of interest.

VI. Results and Discussion

In this section, we numerically apply the proposed identification framework on a spatial space robot. The exciting

trajectories are computed, and they are executed by the space robot. The kinematic data of the robot is captured

while performing the exciting trajectories, using which all the minimal parameters are estimated. Furthermore, the

performance of the estimated minimal parameters is evaluated by performing inverse dynamics computations to

calculate the error in the predicted base twist and joint torques in comparison to the ground truth.

A. Space Robot Setup

With a growing interest in tasks like active debris removal and refurbishment of retired satellites, multi-arm space

robots are expected to grow. Hence, we demonstrate the efficacy of the proposed framework by identifying the minimal

parameters of a 12-DoF, spatial, dual-arm space robot, shown in Figure 3. Each arm has three links connected by

1-DoF revolute joints. Two such arms contribute to 6-DoF. The base itself has 6-DoF resulting in a 12-DoF space

robot. The true inertial parameters of the space robot are given in Table 2. Terminal links, namely, L3, L6, hold a

generic payload. Hence, their true inertial parameters are distributed along all the axes and higher than other links of

the robotic arms. Further, the robot is equipped with three reaction wheels mounted on the base link along mutually

orthogonal axes. However, the proposed identification framework applies to other arrangements of reaction wheels

also. The closed-form solution of minimal parameters obtained using Eq. (21) to Eq. (23) for the robot shown in

Figure 3 are available in the Appendix A. 1.

Base Link

Joint 1

Joint 2

Joint 3

Joint 4

Joint 5

Joint 6

x0

y0

z0

Fig. 3 The architecture of the 12-DoF, spatial, dual-arm space robot considered for the numerical study. The

reaction wheels are mutually orthogonal with 3-DoF.
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Table 2 True inertial parameters of the robot and the offset inertial parameters. The offset inertial parameters

are used to generate the exciting trajectories for minimal parameter identification

Parameters L0 L1 L2 L3 L4 L5 L6

Mass

(Kg)

T 2000 50 40 30 50 35 60

O 1500 30 20 50 40 25 30

x-CoM

(m)

T 0.2 0.6 0.4 0.7 0.55 0.45 0.6

O 0 0.4 0.7 0.5 0.4 0.3 0.5

y-CoM

(m)

T 0.3 0.05 -0.45 0.4 0.04 0.05 -0.5

O 0 0 0 0.2 0 0 0.2

z-CoM

(m)

T 0.4 -0.07 -0.05 0.3 -0.04 0.05 -0.35

O 0 0 0 0.1 0 0 0.2

I cx x

(Kg-m2)

T 1200 3.1 1.15 24.45 1.85 2.55 12.24

O 1000 2 1 14 1 1 6

I cyy
(Kg-m2)

T 1200 1.89 1.68 28.56 1.62 1.84 31.45

O 1000 1 1 20 2 1.5 20

I czz
(Kg-m2)

T 1200 20.51 18.67 35.53 17.05 14.28 23.77

O 1000 10 28 20 9 19 35

I cxy
(Kg-m2)

T 35.52 1.9 0.61 9.78 1.5 2.9 9.1

O 25 0.9 1.2 4.6 1 1.5 15

I cyz
(Kg-m2)

T 40.45 3.65 1.75 9.1 2.25 1.55 8.52

O 20.45 2.65 2.75 3.1 1.25 0.55 18.52

I cz x
(Kg-m2)

T 45.71 3.9 1.5 10.23 3.71 1.27 8.67

O 65.71 2.9 2.5 1.23 6.71 4.27 4.67

T and O represent true and offset inertial parameters respectively

B. Exciting Trajectories

Here, we discuss the details required to compute exciting trajectories, described in Figure 2, while providing

insights into the proposed exciting trajectories computation framework.

1. Direction Combinations

There are six joints in the space robot and three in the reactions wheels resulting in a total of nine joints. Hence,

the number of direction combinations are 29−1
= 256, which is also the total number of intervals in the intermediate

exciting trajectory. The robot executes each direction combination during a specific interval; we allot one second to

each interval.

2. Reaction Wheels Momentum

Each reaction wheel has predetermined seed parameters. The start and range parameters as 0 rad and 3π rad

respectively. They produce a maximum angular momentum of 18.8496 Kg-m2/sec along its axis of rotation in its body
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frame. In case of a different reaction wheels arrangement, the entire framework remains the same. However, the other

reaction wheels arrangement should execute the momentum trajectories computed using three mutually orthogonal

wheels arrangement.

3. Intermediate Exciting Trajectories

The objective function in Eq. (32) is minimized using all the 256 direction combinations to obtain the intermediate

exciting trajectories. Minimizing the cost requires kinematic data of the base link and the joints. Since base motion

is a response to the joint trajectories according to the robot’s momentum model, computing the cost requires an initial

guess of the minimal parameters.

For physical systems, an initial estimate is available from the CAD models of the system. However, to check the

robustness of the methodology, we offset the true inertial parameters within ± 20% - 120% of their values, shown as

offset parameters in Table 2, and pass them as an initial guess to the exciting trajectory computation framework. Note

that the guess of the terminal links and the base link are highly offset because on-orbit operations substantially modify

the CAD model’s estimates.

4. Trajectory Pruning and Exciting Trajectories

Out of 256 intervals in the intermediate exciting trajectories, 189 of them are pruned using Algorithm 1. umax and

δ in Algorithm 1 are chosen as 5 and 1/300 respectively. Hence, the number of singular values whose magnitude is

greater than 1/300 times the magnitude of the highest singular value is the number of significant singular values. As

a result, 67 unique optimal direction combinations are obtained, which constitute the exciting trajectories. The result

of pruning suggests that the proposed exciting trajectories computation framework is scalable with increasing DoF

because only some of the 2n−1 direction combinations are required. The joint trajectories are parameterized with the 67

optimal direction combinations, and the seed parameters are optimized resulting in exciting trajectories. The optimal

seed parameters of the exciting trajectories are tabulated in Table 3.

5. Analysis of the Exciting Trajectories Computation Framework

For analysis, using the exciting trajectories, the condition number of the regressor matrix and the number of

significant singular values are computed for the true system, shown in Figure 4. These computations are made for two

kinds of trajectories, a) interval trajectory, which consists of one particular direction combination and b) concatenated

trajectory, which consists of several interval trajectories appended together up to the interval index.

Each interval trajectory excites only some minimal parameters of the robot up to the desired level (in this case, 8

to 11 out of 52). However, different interval trajectories excite a different subset of minimal parameters. Consequently,

all the optimal interval trajectories together excite all the minimal parameters, apparent from Figure 4. Further, the
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Fig. 4 a) Condition number and b) Number of significant singular values of the regressor matrix obtained

using exciting trajectories executed on the true system

condition number of the regressor matrix constructed with a single interval is extremely high (∼ 1018) because it excites

only some minimal parameters. However, optimal intervals and the optimal seed parameters have brought a significant

reduction in the condition number to 248.8. The proposed concept of direction combinations resulted in interval

trajectories. The interval trajectories together excited all the minimal parameters. Thus, the minimal parameters are

rendered identifiable while also resulting in a low condition number of the regressor matrix.

Further, the number of seed parameters are only 2n with the proposed technique, 5.5 times lower than the trajectory

parameters of commonly used 5-term fourier series. Such a reduction in the number of design parameter for optimization

makes it highly desirable to generate exciting trajectories even for high-dimensional space robots. Moreover, even

after generating exciting trajectories with hugely offset inertial parameters, the trajectories excited all the minimal

parameters and provided a regressor matrix with a low condition number. This indicates that the proposed framework

for computing exciting trajectories is robust to a bad initial guess of inertial parameters.

In Figure 4, the condition number takes a massive drop twice. The first drop occurs between the 1st and 3rd intervals.

The number of significant singular values because of first interval is 11. Upon appeding the 2nd and 3rd intervals, the

number of significant singular values improve to 20. Owing to a sudden improvement in the number of significant

singular values led to a massive drop in the condition number. Such an improvement is possible initially because only

11 of the 52 minimal parameters are excited by the 1st interval. The chances of exciting new minimal parameters by the

subsequent interval is high. The second drop takes place when number of significant singular values reach 52, which

is equal to the number of minimal parameters. Until then, at least one minimal parameter was not sufficiently excited

by the trajectory resulting in an ill-conditioned regressor matrix.
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Table 3 Seed parameters of exciting joint trajectories obtained with offset inertial parameters as initial guess

to the trajectory optimizer

Seed

parameters

(deg)

Joint index

1 2 3 4 5 6

Start (θs ) 40.661 -109.403 -78.782 125.089 -110 51.228

Range (θd ) 0.524 2.51 2.51 2.513 2.036 2.5

C. Parameter Estimation

In this subsection, the exciting trajectories are executed by the space robot in ReDySim [32], and the kinematic

data is captured. Using the captured kinematic data, the regressor matrix is constructed and the minimal parameters

are estimated using Eq. (27). It may be noted that, unlike the existing whole-system momentum-based identification

frameworks, we do not estimate only a few parameters of all the links. We estimate even the parameters including the

CoM terms along the y-axis and z-axis and product of inertia of the links, which are ignored by the existing works.

To check the validity of the proposed identification framework, the regressor matrix is constructed using the

kinematic data that is free of noise, and the minimal parameters are estimated. Without noise, as expected, the

estimates match exactly with the true values, tabulated in Table 4.

For the simulated data to mimic the real data, zero-mean gaussian white noise is added to the joint rates and base

velocities, as in [17]. The standard deviation in measurement noise on linear and angular velocity components of the

base and joint rates are 50 µm/sec, 80 µrad/sec, and 50 µrad/sec respectively. The regressor matrix is constructed with

the noisy kinematic data and the minimal parameters are estimated, shown under Case 1 in Table 4. To understand

the accuracy of the estimates, the median and maximum of the relative error of the estimated parameter estimates wrt.

their true values are computed, and they are tabulated in Table 5.

ǫmedian =

52

median
i=1

�����
φφφ
(i)
m − φ̂φφ

(i)

m

φφφ
(i)
m

�����
(38)

ǫmax =
52

max
i=1

�����
φφφ
(i)
m − φ̂φφ

(i)

m

φφφ
(i)
m

�����
(39)

The median relative error is as low as 2%, and the maximum relative error is 174%. Most of the estimated

parameters are quite accurate apart from 10-11 parameters which have a relative error more than 10%. Such a relative

error occurred with parameters having comparatively low numeric values because they have a low contribution towards

the system behavior; hence, noise easily distorts their estimates. These are the minimal parameters containing the
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product of inertia terms of the links of the robotic arm. However, terms containing the product of inertia of either the

base link or the end effector link are accurately estimated because their numeric value is comparatively high. Even

with the obtained relative error, in the next subsection, we show that these parameters predict the future states of the

space robot accurately.

Table 4 True and estimated value of minimal parameters of 12-DoF space robot with different joint trajectories

Minimal

Parameter

True

Value

Estimated Value

Case 1 Case 2 Case 3

φ̂φφ
(1)

m [Kg-m2] 2130.560 2126.814 1729.274 2121.443

φ̂φφ
(2)

m [Kg-m2] 2078.560 2071.702 1930.767 2109.644

φ̂φφ
(3)

m [Kg-m2] 1555.700 1554.130 1801.419 1740.076

φ̂φφ
(4)

m [Kg-m2] -96.630 -95.304 -875.382 -83.209

φ̂φφ
(5)

m [Kg-m2] -269.450 -267.023 -607.177 -294.371

φ̂φφ
(6)

m [Kg-m2] -148.890 -142.312 26.411 -103.739

φ̂φφ
(7)

m [Kg] 2265.000 2244.299 1418.330 2198.283

φ̂φφ
(8)

m [Kg-m] 440.500 436.558 800.561 440.037

φ̂φφ
(9)

m [Kg-m] 679.500 673.810 574.592 658.626

φ̂φφ
(10)

m [Kg-m] 1033.000 1023.873 621.876 1005.331

φ̂φφ
(11)

m [Kg-m2] -2.525 -6.919 1305.865 -34.097

φ̂φφ
(12)

m [Kg-m2] 192.775 188.387 909.389 -14.112

φ̂φφ
(13)

m [Kg-m2] 7.400 10.166 614.689 4.942

φ̂φφ
(14)

m [Kg-m2] 3.825 7.047 537.259 85.749

φ̂φφ
(15)

m [Kg-m2] 6.000 2.818 -521.054 0.024

φ̂φφ
(16)

m [Kg-m] 100.000 98.937 -555.623 90.001

φ̂φφ
(17)

m [Kg-m] -4.500 -4.993 253.047 5.614

φ̂φφ
(18)

m [Kg-m2] -36.866 -30.258 -112.659 -30.894

φ̂φφ
(19)

m [Kg-m2] 55.134 56.976 240.184 62.475
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Minimal

Parameter

True

Value

Estimated Value

Case 1 Case 2 Case 3

φ̂φφ
(20)

m [Kg-m2] 1.250 1.915 2.599 3.191

φ̂φφ
(21)

m [Kg-m2] 1.670 1.422 129.586 6.837

φ̂φφ
(22)

m [Kg-m2] -6.700 -6.544 103.711 -12.255

φ̂φφ
(23)

m [Kg-m] 46.000 45.310 74.935 45.001

φ̂φφ
(24)

m [Kg-m] -1.600 -1.438 -47.935 -4.119

φ̂φφ
(25)

m [Kg-m2] -14.010 -11.737 -28.911 -12.295

φ̂φφ
(26)

m [Kg-m2] 55.030 54.600 69.948 52.819

φ̂φφ
(27)

m [Kg-m2] 1.380 -0.975 -15.320 -1.341

φ̂φφ
(28)

m [Kg-m2] 5.500 5.833 -4.728 5.395

φ̂φφ
(29)

m [Kg-m2] 3.930 3.865 2.534 2.835

φ̂φφ
(30)

m [Kg-m] 21.000 21.080 13.574 20.316

φ̂φφ
(31)

m [Kg-m] 12.000 12.092 7.293 12.556

φ̂φφ
(32)

m [Kg-m2] 19.600 19.097 84.010 12.528

φ̂φφ
(33)

m [Kg-m2] 256.670 258.902 463.905 302.331

φ̂φφ
(34)

m [Kg-m2] -18.850 -18.251 40.214 -19.746

φ̂φφ
(35)

m [Kg-m2] 2.330 2.474 -477.795 11.882

φ̂φφ
(36)

m [Kg-m2] 4.810 3.999 65.519 -8.016

φ̂φφ
(37)

m [Kg-m] 122.500 121.080 -12.235 115.634

φ̂φφ
(38)

m [Kg-m] 21.250 20.857 -179.302 19.762

φ̂φφ
(39)

m [Kg-m2] -66.290 -67.589 -103.468 -74.876

φ̂φφ
(40)

m [Kg-m2] 81.455 82.689 -387.648 81.355

φ̂φφ
(41)

m [Kg-m2] 2.112 1.306 -12.430 2.533

φ̂φφ
(42)

m [Kg-m2] 1.462 2.565 44.779 3.472

φ̂φφ
(43)

m [Kg-m2] 21.483 20.749 206.239 20.474
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Minimal

Parameter

True

Value

Estimated Value

Case 1 Case 2 Case 3

φ̂φφ
(44)

m [Kg-m] 75.750 75.350 -25.984 74.843

φ̂φφ
(45)

m [Kg-m] 1.750 1.832 54.533 2.982

φ̂φφ
(46)

m [Kg-m2] -25.810 -25.265 -55.123 -21.904

φ̂φφ
(47)

m [Kg-m2] 60.370 61.114 84.505 61.583

φ̂φφ
(48)

m [Kg-m2] 27.100 27.657 38.051 27.333

φ̂φφ
(49)

m [Kg-m2] -1.980 -2.074 -5.270 -1.736

φ̂φφ
(50)

m [Kg-m2] 21.270 21.145 24.745 21.551

φ̂φφ
(51)

m [Kg-m] 36.000 35.662 21.960 35.448

φ̂φφ
(52)

m [Kg-m] -30.000 -29.627 -17.515 -28.990

Further, we study the effect of the number of significant singular values of the regressor matrix on minimal

parameter estimates. For this purpose, two trajectories with only the first 20 and 40 intervals are considered to estimate

the parameters. The minimal parameter estimates are tabulated for 20 and 40 intervals under Case 2 and Case 3

respectively in Table 4. Median and maximum relative error in the parameters is calculated and tabulated in Table 5.

The trajectory in Case 2 and Case 3 excites 38 and 46 out of the 52 minimal parameters respectively. In comparison

to Case 1, the median and maximum relative errors are substantially higher for both the Case 2 and Case 3 because

all the minimal parameters are not excited sufficiently. Although 46 out of 52 minimal parameters are excited in

the trajectory with 40 intervals, the relative error is much higher compared to Case 1 reinforcing the idea that every

parameter has to be sufficiently excited by the trajectory. Such an excitation is thoroughly obtained by the proposed

framework at a much lower computational effort even with a bad initial guess.

Table 5 Relative error in the estimated minimal parameters wrt. their true values

Case 1 Case 2 Case 3

ǫmeadian 2.08% 150.22% 12.28%

ǫmax 174.02% 51817.41% 2141.79%
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D. Performance Evaluation of the Proposed Framework

The primary goal of estimating the minimal parameters is to facilitate modeling, motion planning, and control of

a space robot. The motion planning and control algorithms rely on the kinematic and dynamic model of the system.

So, we use the estimated parameters to evaluate the accuracy with which they predict the kinematics and dynamics of

the system, as in [20, 33]. We evaluate the performance of the proposed framework by conducting inverse dynamics

simulations with the true and estimated minimal parameters and computing the error in base twist and joint torques as

depicted in Figure 5. To consolidate the error trajectory into a single parameter, its RMS is computed.

Fig. 5 Block diagram of the performance evaluation scheme. The joint trajectory inputs to the inverse dynamics

blocks are in Figure 6, and the prediction error outputs are in Figure 7.

Cycloidal parametrization is used for parameter estimation. Hence, for performance evaluation of the estimated

parameters, we consider a fourier series parametrization for joint position as follows:

qj = qj,0 +

Nh∑

i=1

q
(s)

j,i
sin(iω f t) + q

(c)

j,i
cos(iω f t) (40)

Ûqj =

Nh∑

i=1

iω f

(
q
(s)

j,i
cos(iω f t) − q

(c)

j,i
sin(iω f t)

)
(41)

Here, Nh = 2 and ω f = π/20. The fourier based trajectories for joint angles and their rates are shown in Figure 6.

The RMS of error for an arbitrary trajectory (ψ) is defined as follows:

ǫ(ψ) =

√√√
1

Nm

Nm∑

i=1

(ψi − ψ̂i)2 (42)

We apply Eq. (42) to base twist and joint torque whose results are in Table 6. The error trajectories are shown in Figure

7.

From Table 6, it is clear that the RMS error in the predicted linear velocity is only 1 - 3 times higher than the

standard deviation of its measurement noise (5e-5 m/s) and that of angular velocity is only 1 - 4 times higher than the

standard deviation of its measurement noise (8e-5 rad/s). Further, the RMS error in predicted torque is much lower, i.e.,
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Fig. 6 Fourier series based parametrization of joint angle and velocity trajectories used for performance

evaluation of the estimated parameters

Fig. 7 Error in the predicted base twist components and joint torques

by 1 - 10 times the standard deviation of the usual measurement noise of joint torque (0.3808 Nm [33]). With such low

error in predicting the kinematics and dynamics of the system, it is safe to conclude that the parameters estimated using

the proposed identification framework facilitates accurate analysis, motion planning, and control of a space robot.

VII. Conclusion

The applicability of the momentum model of tree-type space robots for minimal parameter identification is examined

in this work. Momentum model is linearly formulated in terms of the minimal parameters of a space robot. It is achieved

by reformulating the generic momentum model and imposing the kinematic constraints posed by the space robot’s

joints. The minimal parameters uniquely model the space robot’s momentum and dynamic models; hence, they are
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Table 6 RMS error in predicted base velocities and joint torques

Base twist

component

v
(x)

0
v
(y)

0
v
(z)

0
ωωω
(x)

0
ωωω
(y)

0
ωωω
(z)

0

m/s m/s m/s rad/s rad/s rad/s

RMS error 1.7e-4 1.6e-4 0.6e-4 2.1e-4 1.8e-4 3.5e-4

Joint

torque

τ1 τ2 τ3 τ4 τ5 τ6

Nm Nm Nm Nm Nm Nm

RMS error 0.2961 0.1665 0.0778 0.0922 0.0368 0.0262

sufficient for kinematic and dynamic analysis, motion planning, and control.

A systematic framework for computing the exciting trajectories is proposed based on an interval-wise approach.

Each interval is constructed using a unique direction combination of the joints’ velocity. A single interval excites a

subset of minimal parameters; all the intervals excite the entire set of minimal parameters. The proposed framework

is computationally efficient with only 2n design parameters for optimization and also results in only linear and bound

constraints on the design parameters to adhere to the joint limits. Hence, the proposed framework is scalable with

increasing degrees-of-freedom. Even though an initial guess of inertial parameters is required for computing exciting

trajectories, it is shown that even a bad guess computed exciting trajctories that resulted in accurate parameter estimates.

Further, the minimal parameters of a 12 degrees-of-freedom, spatial, dual-arm space robot are identified with the

kinematic data corrupted by noise. The estimated parameters predicted the base motions and joint torques accurately

with prediction errors mostly in the order of noise in their measurements. Such accurate predictions with the proposed

methodology even in the presence of noise facilitates accurate motion planning and control. The presented approach

is generic and applicable to floating-base, tree-type robotic systems with reaction wheels. Consequently, it is also

applicable to the underwater robots under the conservation of momentum.

Appendix

A. Analytical Expression of Minimal Parameters

The components of minimal parameter vector for the space robot shown in Figure 3 are as follows:
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where M =

6∑

i=0

mi

B. Rotation Matrices

The rotation matrix of the base link (IR0) is formulated using the Z-X-Y euler angle notation. The link frames

are assigned to the links using the modified DH notation [34]. Hence, for a parent-child pair i, j such that ρj = i, the
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rotation matrix is:

iR j =



Cqj −Sqj 0

Sqj CqjCαj −Sαj

SqjSαj CqjSαj Cαj



(43)

where, C• = cos(•), S• = sin(•).

C. Computed Kinematic Data

Computing the regressor matrix requires the kinematic data, i.e., base pose, base twist, joint angle, and joint velocity.

However, only the rates are assumed to be measured and the pose is computed from the rates. Further, the base angular

velocity in the inertial frame is computed from the euler rates. The quantities to be computed and measured is a choice

that can be made by the user based on the available sensors. Finally, all the kinematic data is required to construct the

regressor matrix. An time index ‘t’ is appended to the subscript of the kinematic data.

Base position and orientation at time index ‘t’ are as follows:

r0,t = r0,t−1 + v0,t−1∆t (44)

ζζζ t = ζζζ t−1 +
Ûζζζ t−1∆t (45)

where ζζζ is a 3 × 1 vector with euler angles.

Base angular velocity at time index ‘t’ is as follows:

ωωω0,t =
IR0,tMt

Ûζζζ t (46)

where, Mt transforms the euler rates to body rates.

Eq. 44 and 45 togther provide the base pose. Measured base velocity and the computed angular velocity in Eq. 46

provide the base twist.

Joint angle of j th joint at time index ‘t’ is computed from its joint velocity as follows:

qj,t = qj,t−1 + Ûqj,t−1∆t (47)
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