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Modeling of tuning of microresonator filters by

perturbational evaluation of cavity mode phase shifts
K. R. Hiremath, Member, IEEE, and M. Hammer

Abstract—Microresonator filters, realized by evanescent coupling
of circular cavities with two parallel bus waveguides, are promis-
ing candidates for applications in dense wavelength division mul-
tiplexing. Tunability of these filters is an essential feature for their
successful deployment. In this paper we present a framework
for modeling of tuning of the microresonators by changes of
their cavity core refractive index. Using a reciprocity theorem, a
perturbational expression for changes in the cavity propagation
constants due to slight modifications of the cavity core refractive
index is derived. This expression permits to analytically calculate
shifts in spectral response of the 2D resonators. Comparisons of
the resultant shifts and spectra with direct simulations based on
coupled mode theory show satisfactory agreement.

Index Terms—Integrated Optics, numerical modeling, tuning,
bent waveguides, microresonators, coupled mode theory, optical
filters, whispering gallery modes

I. INTRODUCTION

H IGH Q microcavity resonators are extensively investi-

gated for a variety of applications like lasers, sensors,

the study of quantum electrodynamics, or integrated optical

communication devices [1]. When such cavities in the form

of circular rings or disks are coupled to single/dual bus

waveguides they act as wavelength filters. Due to high Q

and compactness of these filters, they are explored for dense

wavelength division multiplexing in integrated optics [2], [3],

[4]. The realization and actual performance of the resonators

are constrained by several factors, e.g. an accurate definition

of the resonance wavelengths requires a high degree of control

of the geometrical parameters, temperature dependent changes

in the material parameters detune the spectral response. Active

(e.g. electro/thermo-optical, photobleaching) tuning of the

resonators greatly relaxes these constraints [5], [6], [7]. This

controllability is also utilized in other devices like lasers,

optical switches, optical modulators [8].

In essence, an active tuning is equivalent to a controllable

perturbation. This perturbational viewpoint is often employed

for microresonators based bio, chemo-sensors [9], [10]. Due

to the sensitivity of whispering gallery modes (WGMs) of the

resonators towards the environment in which they are built

up, any slight change in the environment –in the exterior or

the interior of the cavity– results in a shift of the resonance

wavelengths, and a change of output light intensity at a fixed
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wavelength. Such wavelength shifts have been analyzed using

arguments based on energy perturbations [11], [12] or rigorous

finite element simulations [13]. Here we broaden these studies

in the context of add/drop filters.

For the application of microresonator elements as tunable

wavelength filters, suitable materials are introduced that permit

a slight change of the refractive index of the cavity core by

external mechanisms like electro- or thermo-optic effects. For

the modeling of such tuning, in this contribution we propose

and evaluate perturbational expressions for phase shifts of

the modes of the bent waveguides that constitute the cavity.

Similar expressions for the induced changes of propagation

constants of modes supported by straight waveguides are well

known [14]. We use reciprocity techniques for the deriva-

tion. When applied to given cavity modes of a resonator

configuration, these phase shift expressions allow to evaluate

analytically the wavelength tuning range for the respective

resonances. These expressions resemble those for the fre-

quency shifts of whispering gallery resonances of circular

(uncoupled, isolated) cavities, obtained by energy perturbation

arguments [15].

In principle, the proposed theoretical framework is applicable

for both 3D and 2D settings. Subject to availability of the cav-

ity (bent) modes, analytic evaluation of the shifts is also possi-

ble. Due to an easy access to 2D analytical bent modes [16], in

this paper numerical results are discussed for the 2D geometry.

Further we discuss use of the perturbational expressions in

combination with the semi-analytical 2D model for circular

microresonators, which is based on a spatial frequency-domain

coupled mode theory [17]. Preliminary studies can be found in

Refs. [18], [19]. Within certain limits, the phase-shift formulas

permit to predict directly how the tuning affects the entire

wavelength spectrum. Extension to 3D resonators is outlined

in the concluding remarks.

II. TUNING OF MICRORESONATORS

The resonators under consideration consist of ring- or disk-

shaped dielectric cavities, evanescently coupled to two parallel

straight bus waveguides, as illustrated in Fig. 1. The core layer

of the cavities is assumed to be an active region, e.g. heaters

or electrodes are placed on top of it for tuning. We consider

a 2D geometry in the frequency domain setting, where a time

harmonic optical signal exp (iωt) of given real frequency ω,

corresponding to vacuum wavelength λ and wave number

k = 2π/λ, is present everywhere. Cartesian coordinates x,

z, and polar coordinates r, θ are introduced for the spatially

2D description as shown in Fig. 1. The entire structure and the
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TE- or TM-polarized optical fields are assumed to be constant

in the y-direction.
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Fig. 1. Schematic microresonator representation: A cavity of radius R, core
refractive index nc and width wc is placed between two straight waveguides
with core refractive index ns and width ws, with gaps of widths g and g̃
between the cavity and the bus waveguides. nb is the background refractive
index. Tuning is applied to the core of the cavity.

To compute the spectral response, we apply a coupled mode

theory (CMT) based model of the resonators [17]. In this

model, the resonator is represented in terms of two bent-

straight waveguide couplers, I and II as in Fig. 1, which are

internally connected by cavity segments of length L and L̃
(this length is measured outside the coupler regions). The

responses of the couplers I and II are characterized by their

respective scattering matrices S, S̃; whereas the fields in the

cavity segments are characterized by their mode propagation

constants γ. Due to the leaky nature of these modes, the prop-

agation constants are complex valued, denoted as γ = β− iα,

where β and α are the real valued phase propagation and

attenuation constants.

Given input powers PI and/or PA, the through power PT and

the drop power PD can be calculated in terms of S, S̃, and γ.

The computation of the spectral response can be sped up using

interpolation [17], where instead of the scattering matrices

S, S̃, which are associated with the couplers defined over a

larger z interval, one uses “reduced” scattering matrices S′, S̃′

associated with couplers of a zero length, such that the length

of the cavity is Lcav = 2πR. We use this technique for the

subsequent simulations in Section IV.

As explained in Refs. [18], [20], at resonance the condition

β = (2mπ + φ)/Lcav = βm holds for the cavity mode phase

propagation constant β (real part of γ), where the integer m
gives the order of the resonance, and φ is the total phase

contribution due to the coupling. Assume that the wavelength

dependence of the phase constant β = β(λ) is given. Then one

can write β(λm) = βm, where λm is the resonance wavelength

associated with the resonant cavity mode propagation constant

βm.

In principle, the tuning affects both the coupler response and

the cavity mode propagation. If the coupler length is short

enough, then as a first approximation one can disregard the

influence of tuning on the couplers, and assume that a tuning

mechanism, modeled by a parameter p, affects mainly the

wave propagation along the cavity. We verify the validity

of this approximation for the subsequent simulations in Sec-

tion IV, where it is used to simplify the computations. Now

besides the wavelength, the cavity mode propagation constant

also depends on the tuning parameter, i.e. β = β(p, λ), with

p = 0 representing the original state: β(0, λm) = βm.

As a result of tuning, the resonance of order m is shifted

towards a new wavelength λ̃m, such that β(p, λ̃m) = (2mπ +
φ)/Lcav = βm is satisfied again, i.e. the wavelength shift

compensates the change in the cavity mode propagation

constant due to a nonzero perturbation strength p. A linear

approximation in the tuning parameter and in the wavelength

differences leads to

β(p, λ̃m) ≈ β(0, λm)+p
∂β

∂p

∣

∣

∣

∣

0,λm

+(λ̃m−λm)
∂β

∂λ

∣

∣

∣

∣

0,λm

!
= βm.

(1)

Hence the shift in the resonant wavelength ∆pλm = λ̃m−λm

that is effected by the tuning can be written as

∆pλm = − p

(

∂β

∂p

)(

∂β

∂λ

)

−1
∣

∣

∣

∣

∣

0,λm

. (2)

Express the propagation constant in terms of vacuum

wavenumber and effective mode index as β = 2πneff/λ; if

the wavelength dependence of the effective index is negligible,

then

∂β

∂λ
= −

β

λ
+ k

∂neff

∂λ
≈ −

β

λ
. (3)

The same approximation can also be obtained by homogeneity

arguments [21] for the propagation constants; alternatively a

more accurate representation of the wavelength dependence of

the propagation constant in terms of the group effective index

of the cavity mode can also be derived [18]. With the above

approximation, the wavelength shift reads

∆pλm = p
∂β

∂p

λm

βm

. (4)

Note that the wavelength shift does not explicitly depend on

the length of the cavity.

We are interested in tuning by a slight change ∆nc of the

cavity core refractive index. The resultant shifts in resonance

wavelengths are given by

∆λm = ∆nc

∂β

∂nc

λm

βm

. (5)

In order to estimate this effect, one must know the dependence

of the propagation constants on the core refractive index.

In the next section we derive a perturbational expression

for the change in the cavity propagation constants due to a

perturbation of the core refractive index.

III. A PERTURBATIONAL EXPRESSION FOR BEND MODE

PHASE SHIFTS

As outlined in Section II, in the CMT model of the microres-

onators the cavity is segmented into pieces of bent waveguides.



2007 3

Eq. (5) requires an expression for the derivatives, i.e. the first

order changes, of the bend mode propagation constants with

respect to the cavity core refractive index. Here we adhere to

the 2D setting as introduced in Fig. 1, with polar coordinates

(r, y, θ) (invariance in the y-direction). For a bent waveguide

with radial refractive index distribution n(r) =
√

ǫ(r), let the

full electric (E) and magnetic (H) field for a given mode be
(

E

H

)

(r, θ, t) =

(

(Ẽr, Ẽy, Ẽθ)

(H̃r, H̃y, H̃θ)

)

(r) ei(ωt − γRθ), (6)

where the ∼ symbol indicates the mode profile. These mode

profiles and the corresponding propagation constants γ of the

bent waveguides are computed analytically according to the

expressions given in Ref. [16].

Suppose that the core refractive index is slightly perturbed, and

the perturbed refractive index distribution is given by np(r) =
√

ǫp(r). Assuming that the mode profile remains unchanged

for this perturbation, the corresponding perturbed modal field

(Ep, Hp) is approximated as
(

Ep

Hp

)

= P (θ)

(

E

H

)

, (7)

where P (θ) is an unknown function of the angular coordinate

θ.

By applying Lorentz’s reciprocity theorem [14] in polar coor-

dinates to (Ep, Hp, ǫp) and (E, H, ǫ), one obtains
∫

∞

0

∇· (Ep ×H
∗ +E

∗×Hp) r dr

= −iωǫ0

∫

∞

0

(ǫp − ǫ)Ep · E∗ r dr,

which upon inserting the ansatz (7) and after simplifying

reduces to

dP

dθ

∫

∞

0

aθ · (E × H
∗ + E

∗ × H) dr

= −iωǫ0P

∫

∞

0

(ǫp − ǫ)E · E∗ r dr,

(8)

where aθ is the unit vector in the angular direction. Inserting

the bent waveguide field ansatz (6) and solving for P (θ) leads

to

P (θ) = P0 exp

(

−iωǫ0

∫

∞

0
(ǫp − ǫ)Ẽ · Ẽ

∗

r dr
∫

∞

0
aθ · (Ẽ × H̃

∗

+ Ẽ
∗

× H̃)dr
θ

)

,

(9)

where P0 is a constant, the superscript ∼ represents the mode

profile. Thus the perturbed modal field is
(

Ep

Hp

)

= P0

(

Ẽ

H̃

)

exp (−i (γ + δγ)Rθ),

and the change in propagation constant δγ due to the pertur-

bation is given by

δγ =
ωǫ0
R

∫

∞

0 (ǫp − ǫ)Ẽ · Ẽ
∗

r dr
∫

∞

0 aθ · (Ẽ × H̃
∗

+ Ẽ
∗

× H̃) dr
. (10)

Note that the above expression can also be written in terms

of modal fields (E, H) instead of mode profiles (Ẽ, H̃).
Then it is evident that the denominator of the fraction on

the right hand side of Eq. (10) is equal to 4Pθ(θ), where

Pθ(θ) is the power transported by the (unperturbed) bent mode

in the angular direction [16]. Thus for a mode normalized

to unit modal power, the change in propagation constant is

directly proportional to the strength of
∫

∞

0
(ǫp− ǫ)Ẽ ·Ẽ

∗

r dr,

i.e. the shift is the largest if the permittivity perturbation

is present at radial positions, where the squared bent mode

profile (|E|2 = E · E
∗) is strong. For typical well guided

modes supported by a cavity ring, a permittivity perturbation

of the core layer automatically fulfills this requirement. In

case of whispering gallery modes (WGMs) of disk-shaped

resonators, the field maximum is in the vicinity of the outer

dielectric layer interface. A slight perturbation in that region is

immediately picked up by the WGMs. Precisely this sensitivity

of the modes is utilized in microcavity based sensors. One

can see a close formal resemblance of Eq. (10) for the change

in the cavity propagation constant to the expression for the

shift of WGMs in microspheres by protein adsorption given

in Ref. [15].

The right hand side of Eq. (10) is a pure real number.

Therefore this expression, in fact, gives the change in the

real part of the propagation constant only, denoted by δβ. In

Ref. [14] a similar expression for the change in the propagation

constant for bulk uniform permittivity perturbations of straight

waveguides is derived by means of a variational principle.

In the present case of bent waveguides, the use of an asymp-

totic expansion of Hankel functions of second kind H(2)
ν (nkr)

(see Ref. [16]) reveals that, if ǫp − ǫ does not vanish for

large radial coordinates, the integral
∫

∞

0
(ǫp − ǫ)Ẽ · Ẽ

∗

r dr
is undefined for the upper limit r = ∞ (obviously the

template (6) for the perturbed field does not constitute an

acceptable approximation in that case of a uniform alteration

of the properties of the exterior cladding). Still, for a radially

bounded perturbation δǫc = δn2
c = n2

cp − n2
c of the core

refractive index, Eq. (10) is well defined; in that case it

simplifies to

δβ =
ωǫ0
R

δn2
c

∫ R

R−wc

E · E∗ r dr
∫

∞

0
aθ · (E × H

∗ + E
∗ × H) dr

(11)

where R − wc and R define the core interfaces as shown in

Fig. 1, and ncp and nc are the perturbed and unperturbed core

refractive index respectively. For a small perturbation one can

approximately write

∂β

∂nc

= 2nc

∂β

∂ǫc

≈ 2nc

δβ

δǫc

= 2nc

ωǫ0
R

∫ R

R−wc

E · E∗ r dr
∫

∞

0 aθ · (E × H
∗ + E

∗ × H) dr
. (12)

Note that the integrals that occur in the above expression are

well behaved. Here E, H are the electric field and magnetic

field of the cavity mode associated with the m’th order

unperturbed (untuned) resonance. Using this expression with

Eq. (5), gives desired wavelength shift due to tuning.
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IV. SIMULATION RESULTS

First we assess the validity of the perturbation expression (12).

For the moderately lossy bent waveguide configuration con-

sidered in Fig. 2, the estimation of the change in the phase

propagation constants by the perturbation expression agrees

very well with the values computed directly by the analytical

bent waveguide model.
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Fig. 2. Phase propagation constants estimated by the perturbational expres-
sion, for a bent waveguide configuration with width wc = 0.5 µm, R = 5 µm
and uniform background nb = 1. Dashed lines denote β/k obtained by direct
calculations [16], dots are reference points nc = 1.5 and nc = 1.75, and the
slope of the solid line segments is given by expression (12).

As an another example, for Fig. 3 the perturbational expres-

sion (12) is evaluated for WGMs supported by a single curved

interface (meant as piece of a resonator disk). For the moder-

ately lossy fundamental and first order WGMs, the agreement

is excellent, but for the second order WGMs which are con-

siderably lossy (e.g. nc = 1.5, γ/k = 1.0422− i 5.7410 ·10−3

(TE2), 1.0339 − i 1.21610 · 10−2 (TM2)) there are major

deviations. Apparently, here the changes in the mode profiles

and the attenuation constants due to the core refractive index

perturbation are not negligible, such that the ansatz (7) is not

appropriate for these fields.

Having assessed the expression (12), now we validate the

resonance shifts predicted by Eq. (5) using Eq. (12). Table I

gives comparison for the shifts for the test case of the ring

resonator. For the present perturbation, it is evident that the

shifts predicted by using Eq. (5) using the perturbational ex-

pression (12) agree satisfactorily with direct CMT simulations.

λm µm (CMT) ∆λm µm (Eq. (5), (12) ) ∆λm µm (CMT)

1.0184 0.0025 0.0025
1.0413 0.0026 0.0027
1.0654 0.0026 0.0027

TABLE I
Comparison of ring resonator TE mode spectral shifts ∆λm predicted by

Eq. (5) (second column) with direct calculations (third column) for a structure
according to Fig. 1 with R = 5 µm, wc = ws = 0.3 µm, ns = 1.5,

nb = 1.0, g = g̃ = 0.2µm. The cavity core refractive index is nc = 1.5 for
the unperturbed setting, and ncp = 1.504 for the perturbed structure.

For the evaluation of the effect of tuning, in principle one

can compute the resonator spectra for the unperturbed and
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Fig. 3. Phase propagation constants of WGMs evaluated by the perturbational
expression (12), for a bent waveguide configuration with nb = 1.0, wc =

R = 5 µm. Interpretation of the curves is as for Fig. 2. The subscripts 0, 1, 2
denote the order of the modes.

the perturbed configurations separately using the CMT based

interpolation method described in Section II. Let’s assume that

for a slight change of the cavity core refractive index the

coupler scattering matrices S′, S̃′ do not change much, and

the shifts of the resonances are entirely due to the changes in

the cavity mode propagation constants. Then using S′, S̃′ of

the unperturbed resonator, and adding the phase propagation

constant shifts δβ to the propagation constants γ of the

unperturbed cavity segments, one can again follow the pre-

viously described interpolation method, without recalculating

the scattering matrices for the perturbed resonator. In this way,

a significant amount of computational work can be avoided.

We will verify this approach.

Fig. 4 depicts the spectral responses for the perturbed and

the unperturbed resonators. As seen in the top plot, for the

ring resonator the spectral response computed with the above

approximation method (solid line) agrees quite well with the

direct CMT calculation (circles). As far as the resonance

positions are concerned, similar agreement is found also in

case of the present multimodal disk resonator, as shown in

the bottom plots. This agreement confirms the previous claim

that the influence of moderate tuning can be reliably captured

by a mere effect on the cavity mode propagation, without

significant changes in the strength of the interaction with the

external waveguides. For the disk resonator, minor deviations

are observed in the depths of the resonance dips, in particular

for the TE1 resonances, where apparently the change in modal
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Fig. 4. Spectral shift due to tuning of the cavity core refractive index, for the
ring- (top plot, wc = 0.3 µm) and disk-resonator configurations (bottom plot,
wc = R = 5 µm) of Table I. The curves of the normalized transmitted power
are calculated by the interpolation method of Ref. [17] (nodal wavelengths:
1.015 µm, 1.05 µm, 1.085 µm) for the unperturbed resonator with nc = 1.5
(dash-dotted line) and for the perturbed resonator with ncp = 1.504 (circles).
Solid lines represent the results of the approximation based on the perturbation
expressions as outlined in the text.

attenuation due to the core refractive index change is slightly

larger than for the TE0 mode. The reason for these deviations

is that the present perturbation approach does not take into

account alterations in the cavity mode attenuation constants.

Otherwise, the agreement is quite good.

V. CONCLUSIONS

In this paper we modeled the tuning of microresonator based

filters by changes of their cavity core refractive index. Slight

changes in the refractive index affect mainly the propagation

constants of the cavity modes; the respective phase shifts can

be calculated using a reciprocity technique. The formulas are

applicable to uniform localized perturbations of the radial

permittivity profile; complications due to nonconvergent in-

tegrands do not arise. This approach accounts only for the

change in the real part of the propagation constants. Never-

theless, the spectral responses for 2D microresonators obtained

with this perturbational evaluation agree quite well with direct

simulations based on 2D coupled mode theory. Especially

for resonances involving less lossy (fundamental) modes, the

agreement for the shifts of resonance positions is very satis-

factory. If more lossy (higher order) modes are involved, slight

deviations in the resonant power drop are observed. Using the

scattering matrices and the cavity propagation constants of the

unperturbed structure in combination with the shifts in the

cavity mode propagation constants given by the perturbational

expression, one can reliably and efficiently predict the spectral

response for moderately perturbed resonators.

Even though here the simulation results are discussed for

2D microresonators, the tuning model presented is equally

applicable to 3D resonators. In the latter case the present

integrals over the 1D radial cross section in Eqs. (10), (12)

will become integrals over the radial/axial cross section plane

of the cavity core. Bend mode phase shifts can then be

evaluated on the basis of (necessarily approximate) 2D mode

profiles as provided e.g. by the quasi-analytical bend mode

solver of Ref. [22]. Further, using a 3D CMT model of

resonators [23] one can follow similar steps as outlined here

to predict the tuned spectral responses. Thus extension of the

present framework to a 3D setting should be straightforward.

ACKNOWLEDGMENT

This work was carried out as a part of the project ‘NAIS’

(IST-2000-28018), funded by the European Commission.

K. R. Hiremath also acknowledges funding by DARPA Grant

No. W911NF-05-2-0053, and thanks Dr. V. N. Astratov and

Prof. Dr. M. A. Fiddy for support.

REFERENCES

[1] K. Vahala, editor. Optical microcavities. World Scientific, 2004.

[2] E. A. J. Marcatili. Bends in optical dielectric guides. The Bell System
Technical Journal, 2103–2132, September 1969.

[3] B. E. Little, S. T. Chu, H. A. Haus, J. Foresi, and J. P. Laine. Microring
resonator channel dropping filters. IEEE Journal of Lightwave Technol-
ogy, 15(6):998–1005, June 1997.

[4] M. Bertolotti, A. Driessen, and F. Michelotti, editors. Microresonators
as building blocks for VLSI photonics, volume 709 of AIP conference
proceedings. American Institute of Physics, Melville, New York, 2004.

[5] P. Rabiei, W. H. Steier, C. Zhang, and L. R. Dalton. Polymer micro-
ring filters and modulators. IEEE Journal of Lightwave Technology,
20(11):1968–1975, November 2002.

[6] D. J. W. Klunder, F. S. Tan, T. van der Veen, H. F. Bulthuis, G. Sengo,
B. Docter, H. J. W. M. Hoekstra, and A. Driessen. Experimental and
numerical study of SiON microresonators with air and polymer cladding.
IEEE Journal of Lightwave Technology, 21(4):1099–1110, April 2003.

[7] J. K. S. Poon, Y. Huang, G. T. Paloczi, A. Yariv, C. Zhang, and L. R.
Dalton. Wide-range tuning of polymer microring resonators by the
photobleaching of CLD-1 chromophores. Optics Letters, 29(22):2584–
2586, November 2004.

[8] R. G. Hunsperger. Integrated optics theory and technology. Springer, 4
edition, 1995.

[9] R. W. Boyd and J. E. Heebner. Sensitive disk resonator photonic
biosensor. Applied Optics, 40(31):5742–5747, November 2001.

[10] S. Blair and Y. Chen. Resonant-enhanced evanescent-wave fluorescence
biosensing with cylindrical optical cavities. Applied Optics, 40(4):570–
582, February 2001.

[11] M. M. Mazumder, D. Q. Chowdhury, S. C. Hill, and R. K. Chang.
Optical resonances of a spherical dielectric microcavity: Effect of pertur-
bations. In R. K. Chang and A. J. Campillo, editors, Optical processes
in microcavities, pages 209–256. World Scientific, 1996.

[12] I. Teraoka and S. Arnold. Theory of resonance shifts in TE and
TM whispering gallery modes by nonradial perturbations for sensing
applications. Journal of the Optical Society of America B, 23:1381–1389,
July 2006.

[13] H. Quan and Z. Guo. Simulation of whispering-gallery-mode resonance
shifts for optical miniature biosensors. Journal of Quantitative Spec-
troscopy and Radiative Transfer, 93:231–243, 2005.

[14] C. Vassallo. Optical Waveguide Concepts. Elsevier, Amsterdam, 1991.



2007 6

[15] S. Arnold, M. Khoshsima, I. Teraoka, S. Holler, and F. Vollmer. Shift of
whispering-gallery modes in microspheres by protein adsorption. Optics
Letters, 28(4):272–274, February 2003.

[16] K. R. Hiremath, M. Hammer, S. Stoffer, L. Prkna, and J. Čtyroký.
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bent waveguides based on mode matching. IEEE Photonics Technology
Letters, 16(9):2057–2059, September 2004.

[23] R. Stoffer, K. R. Hiremath, M. Hammer, L. Prkna, and J. Čtyroký.
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