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Abstract –Long-ranged dipole-dipole interactions in magnetic glasses give rise to magnetic
domains having labyrinthine patterns. Barkhausen Noise is then expected to result from the
movement of domain boundaries which is supposed to be modeled by the motion of elastic
membranes with random pinning. We propose an atomistic model of such magnetic glasses in
which we measure the Barkhausen Noise which indeed results from the movement of domain
boundaries. Nevertheless the statistics of the Barkhausen Noise is found in striking disagree-
ment with the expectations in the literature. In fact we find exponential statistics without any
power law, stressing the fact that Barkhausen Noise can belong to very different universality
classes. In this glassy system the essence of the phenomenon is the ability of spin-carrying par-
ticles to move and minimize the energy without any spin flip. A theory is offered in excellent
agreement with the measured data without any free parameter.

Introduction: The statistics of so-called “Serrated
Noise” is a subject of wide-ranging interest from earth-
quakes with stress fluctuations on a global scale to
Barkhausen Noise in small magnetic samples with mag-
netization jumps that are barely measurable. Typically
one finds in such problems a wide range of sharp varia-
tions in some measurable quantity, and the question is
how to model the statistics of these variations. In this
Letter we return to Barkhausen Noise which is one of
the most studied examples of serrated responses since
its discovery in 1919 [1]. The phenomenon is manifested
as a series of jumps in the magnetization of a ferromag-
netic sample when subjected to varying external mag-
netic field [2–7]. The phenomenon has practical impor-
tance for magnetic recordings [8] and for noninvasive ma-
terial characterization [9]. When the magnetic field is
ramped up and then down the magnetization describes
a hysteresis loop which is however punctuated by sharp
jumps in measured value, see for example Fig. 1.

Some of the more careful experimental realizations
of Barkhausen Noise involve magnetic systems with
labyrinthine magnetic domains in which the serrated re-
sponse can be linked to the movement of the domain
boundaries [10–12]. In these cases theory was proposed
using a model of an elastic membrane that is pinned by
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Fig. 1: A typical hysteresis loop showing the sharp changes
in magnetization when a magnetic field in the z direction is
ramped first up until saturation (m = 1) and then down until
saturation with m = −1. Our interest in this Letter is in the
statistics of the sharp changes ∆m seen in this figure.

random impurities and is moving under the action of
a force. In their excellent review of both experiments
and theory Durin and Zapperi [12] warn the reader that
even in these well chosen experiments the interpretation
of the results is far from obvious, not the least because
the statistics of Barkhausen Noise is not invariant along
the magnetization hysteresis loop. In less well charac-
terized experiments Barkhausen Noise appears to be a
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very complex physical phenomenon with many different
appearances. Its character may depend on the type of
ferromagnetic specimen under study, the character of the
disorder in the material, the external field driving rate,
thermal effects, strength of the demagnetization fields,
and other experimental details.
For these reasons it is worthwhile to construct micro-

scopic theoretical models in which the measurement can
be done with arbitrary accuracy and in which the inter-
pretation can be fully justified by comparing careful sim-
ulations with the appropriate theory. Indeed, in recent
papers we initiated the microscopic study of Barkhausen
Noise in magnetic glasses based on a model Hamiltonian
that couples the mechanical properties of an amorphous
solids to its magnetic degrees of freedom. In this Letter
we announce a model that contains long-ranged dipole-
dipole interactions such that the magnetic domains ap-
pear labyrinthine (see Fig. 2) in accordance with the ex-
pectation that Barkhausen Noise will be associated with
the movement of domain boundaries. Nevertheless we
will report here results that are quite surprising, in strong
contradiction with many of the expectations in the field.

The Model: Our model Hamiltonian represents a bi-
nary glass with magnetic degrees of freedom [13,16, 17]:

U({ri}, {Si}) = Umech({ri}) + Umag({ri}, {Si}) , (1)

where {ri}
N
i=1 are the 2-dimensional positions of N par-

ticles in an area Lx × Ly and Si are spin variables.
The mechanical part Umech represents a standard binary
mixture of 50% particles A and 50% particles B, with
Lennard-Jones potentials having a minimum at positions
σAA = 1.17557, σAB = 1.0 and σBB = 0.618034 [14].
These parameters are known to provide good glass for-
mation without crystallization. The energy parameters
are selected as ǫAA = ǫBB = 0.5 and ǫAB = 1.0, in units
for which the Boltzmann constant equals unity. All the
potentials are truncated at distance 2.5σ with two contin-
uous derivatives. NA ‘A’ particles carry spins Si; the NB

‘B’ particles are not magnetic. Of course NA+NB = N .
In the present model the spins Si are classical Heisenberg
spins in 3-dimensions; these can point anywhere on the
unit sphere.
The magnetic contribution to the potential energy is

chosen to allow the creation of labyrinthine magnetic do-
mains

Umag({ri}, {Si}) = −
∑

<ij>

J(rij)Si · Sj −B ·
∑

i

Si

−
∑

i

K
‖
i cos

2 (φi − ψi({ri}))−K⊥
∑

i

S2
iz

−
∑

〈ij〉

3(µi · rij)(µj · rij)− (µi · µj)r
2
ij

r5ij
. (2)

Here rij ≡ |ri−rj | and the sums are only over the A par-
ticles that carry spins. The exchange parameter J(rij) is
a deterministic function of a changing inter-particle posi-
tion (either due to affine motions induced by an external

Fig. 2: A typical labyrinthine structure of the magnetic do-
mains in the present model with N = 2100 and dipole-dipole
interactions. Here J0 = 6, K⊥ = 0.25, K‖ = 5, µ2

B = 0.1.
Upper panel: zero magnetic field. The “small” particles in
black are the non-magnetic particles. The other two colors
represent 50% spins “up” and 50% spins “down”. Middle
and lower panels: the effect of an increasing magnetic field on
the labyrinthine pattern shown in the upper panel. Middle
panel: B = 0.3. Lower panel: B = 0.4. Note the coarsening
of the domains of “up” spins (in magenta) which occur via
movements of domain boundaries.

strain or an external magnetic field or due to non-affine
particle displacements, and see below). We choose for
concreteness the monotonically decreasing form J(x) =
J0f(x) where f(x) ≡ exp(−x2/0.3)+H0 +H2x

2 +H4x
4

with H0 = −5.51 × 10−8 , H2 = 1.68 × 10−8 , H4 =
−1.29×10−9 [15,18]. This choice cuts off J(x) at x = 2.5
with two smooth derivatives. Finally, in our case J0 = 6.
The second term is the interaction with the external mag-
netic field. The next term represents the effect of an in-
plane (x − y) local anisotropy, where the local axis of
anisotropy ψi is determined by the local structure. The
angle φi is determined by the projection of the spin Si

on the x − y plane and is measured with respect to the
x-axis. To find ψi we define the matrix Ti:

Tαβ
i ≡

∑

j

J(rij)r
α
ijr

β
ij/

∑

j

J(rij) , rij ≡ |ri − rj| ,

(3)
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where we sum over the particles that are within the
range of J(rij). The matrix Ti has two eigenvalues in
2-dimensions that we denote as κi,1 and κi,2, κi,1 ≥ κi,2.
The eigenvector that belongs to the larger eigenvalue κi,1
is denoted by n̂. The easy axis of anisotropy is given by
ψi ≡ sin−1(|n̂y|). Finally the coefficient Ki is defined as

Ki ≡ C̃[
∑

j

J(rij)]
2(κi,1−κi,2)

2 , C̃ = K0/J0σ
4
AB . (4)

The parameter K0 determines the relative strength of
this random local anisotropy term with respect to other
terms in the Hamiltonian [19]. The next term in the
Hamiltonian represents the perpendicular (out-of-plane)
anisotropy in the z-direction. The last term is the dipole-
dipole weak but long-ranged interaction; here µi is de-
fined as µBSi where µB is taken as µ2

B = 0.1. We have
chosen B in the range [-0.65,0.65]. At the two extreme
values all the spins are aligned along the direction of B.
Barkhausen Noise: The model has an obvious enor-

mous parameter space with very many interesting effects
that are beyond the scope of this Letter. Here we ex-
plore parameters that result in a labyrinthine pattern of
“up” and “down” spins. In Fig. 2 upper panel we show a
snapshot of the magnetic domains of the present model
when the external magnetic field is zero. We reiterate
that the parameters were chosen such that competition
between the dipole-dipole interaction and the perpendic-
ular anisotropy result in all the spins pointing either “up”
or “down” in the z-direction. Having this structure with
B = 0 we next switch on a magnetic field in the z direc-
tion which we ramp up in small steps (quasi-statically),
applying conjugate gradient energy minimization after
each such step to bring the system back to mechanical
and magnetic equilibrium. The effect of the increasing
magnetic field is exemplified by the middle and lower
panels of Fig. 2; we observe the creation of new domains
and the coarsening of the existing domains of “up” spins
at the expense of “down” spins. The coarsening occurs
by a movement of the domain boundary.
The creation of new domains and the movement of the

domain boundary occurs in jerks (sometime referred to
as “avalanches”) such that a number of spins s flip from
“down” to “up” when B is increasing, and later, after
saturation, when all the spins are pointing “up” the op-
posite changes occur when the magnetic field is decreased
to the point of being negative. The flip of s spins is equiv-
alent to a change in magnetization ∆m ≡ s/NA. A typ-
ical hysteresis loop exhibiting the sharp changes in the
magnetization M is shown in Fig. 1. The magnetization
curve has smooth sections punctuated by discontinuities
whose size and distribution will be the focus of this Let-
ter.
Statistics of the Barkhausen Noise: There exists

a large body of literature that expects the statistics of
Barkhausen Noise, as well of many other serrated re-
sponses, to be modeled by a power law multiplied by a
cutoff functions, i.e.

P (∆m) = ∆m−αf(∆m) , (5)
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Fig. 3: A logarithmic binning of the measured data in our
model with N = 2100 for the probability P (∆m) plotted in
double-logarithmic scale. It is very easy to believe that the
data is well represented by a power law multiplied by a cutoff
function with α in Eq. (5) being very close to α = 1.

where f(x) is falling off rapidly for large values of x.
If one is convinced of the verity of this form, it is very
easy to mislead oneself to support it by the data. For
example, in Fig. 3 we present the measured data from
a system of 2100 particles for P (∆m). The data was
collected in logarithmic bins and plotted accordingly as
log10P (∆m) as a function of log10 ∆m. The reader can
convince herself that the plot appears to agree with the
expected form Eq. (5) with α ≈ −1. In the rest of this
Letter we will show that this is in fact incorrect, and that
in the present example there is no power law whatsoever,
notwithstanding the apparent scaling presented in Fig. 3.
To understand what is the actual statistics in the

present model we need to think what is happening when
the magnetic field is ramped up or down. Indeed, the
magnetization is changed due to flips of some number of
spins from “down” to “up” when the magnetic field is
increased or from “up” to “down” in the opposite case.
Our model here is not close to any apparent criticality,
so we should expect that there exist an average number
of spins 〈s〉 that flip in an typical avalanche, and that
this average number does not increase like the number
of particles N when the latter is increased. In fact, we
have measured this average as a function of system size,
cf. Fig. 4, where it becomes clear that 〈s〉 tends to a
system-size independent value when N → ∞. As far as
one can see this appears to be the only constraint of the
statistics P (s), together with the normalization condition

smax∑

s=smin

P (s) = 1, (6)

The average number of flipping spins is fixed by

smax∑

s=smin

sP (s) = 〈s〉. (7)

In accordance with the principle of maximum entropy
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Fig. 4: The average 〈s〉 as a function of system size N . The
indication is that 〈s〉 reaches a system-size independent limit
as N → ∞.

[20] to find the actual distribution P (s) we should max-
imize the information entropy

S = −

smax∑

s=smin

P (s) lnP (s), (8)

subject to the constrains defined by Eq. (6) and Eq. (7).
The standard method of Lagrange multipliers [20] is em-
ployed with the final result

P (s) =
e−(s−smin)/〈s〉

〈s〉
. (9)

Note that if the reasoning leading to Eq. (9) is accepted,
we have no free parameter in comparing this prediction
to our data, since in the present case smin = 1 and 〈s〉 is
known for every system size N .
In Fig. 5 we show the comparison of our data for

three system sizes N = 600, 1000, 2100 to the predic-
tion Eq. (9) without any free parameter. Obviously the
present theory appears to agree excellently well with the
data, showing that in the present model the Barkhausen
Noise has very simple exponential statistics without any
power law.
The fundamental reason why the dipole-dipole long

range term does not bring us any closer to a mean-field
theory of the Barkhausen Noise is that the particles in
this glassy system are allowed to move. This important
change from crystalline models can be seen by simply
flipping one spin in an equilibrated configuration and
observing the effect of subsequent energy minimization
keeping the flipped spin frozen. In a crystalline model
neighboring spins are bound to react, and the effect may
or may not be long ranged. In the present class of mod-
els the spin-carrying particles can rearrange themselves
without changing their spins and reach a new energy
minimum. The responding displacement field will decay
slowly as a power-law, but the magnetic response can
be highly localized or non existent. This can be quan-
titatively tested in the present model by computing the
inverse Hessian matrix, H−1. This operator is propor-
tional to the Green’s or response function of the material
[21]. In the present model the Hessian has entries for the
positional degrees of freedom ri and the spin degrees of

Fig. 5: Comparison of the statistics of the number of spin
flips P (s) to the theoretical formula Eq. (9). Note that the
comparison is done without any free parameter, showing an
excellent agreement. Upper panel: N = 600; Middle panel:
N = 1000; Lower panel: N = 2100.

freedom Si. We have checked that as a function of rij
the positional entries of the inverse Hessian decay slowly,
as a power law with an asymptotic 1/r2 law. In contrast
the spin entries decay very rapidly, (faster than 1/r4),
explaining the non existence of a divergence of 〈s〉 when
N → ∞.
Summary and Conclusions: The present Letter

indicates a number of important conclusions for the
large community that is interested in serrated responses.
Barkhausen Noise and other similar phenomena can ap-
pear with statistics that vary enormously depending on
the underlying microscopic dynamics. Note that in the
present case we considered the cleanest possible case with
temperature T = 0 and without any mechanical strains
or stresses, and yet the expected behavior Eq. (5) did not
materialize itself. A second, and even more worrisome
conclusion is that it is very easy to mislead oneself to
present the data without supporting theory in the form
of Eq. (5), and different methods of binning the data may
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lead to different exponents α that are not really there.
Finally, we conclude that the richness of behaviors that
begins to unfold itself with different microscopic models
underlines the usefulness of such models - their simula-
tion is straightforward, the quality of the data is excellent
and in general it is relatively easy to understand what is
the nature of the serrated response under study. We thus
plan to continue along the lines presented here and study
further universality classes of serrated responses with the
same care and precision.
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