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Current computers operate at enormous speeds of ~10
13

 bits/s, but their principle of 

sequential logic operation has remained unchanged since the 1950s. Though our brain is 

much slower on a per-neuron base (~10
3
 firings/s), it is capable of remarkable decision-

making based on the collective operations of millions of neurons at a time in ever-

evolving neural circuitry. Here we use molecular switches to build an assembly where 

each molecule communicates–like neurons–with many neighbors simultaneously. The 

assembly’s ability to reconfigure itself spontaneously for a new problem allows us to 

realize conventional computing constructs like logic gates and Voronoi decompositions, 

as well as to reproduce two natural phenomena: heat diffusion and the mutation of normal 

cells to cancer cells. This is a shift from the current static computing paradigm of serial 

bit-processing to a regime in which a large number of bits are processed in parallel in 

dynamically changing hardware. 
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In current computers the logic can reconfigure itself for a new problem or even 

select a suitable circuit from a few available ones to evolve its hardware.
1
 However, once 

the logical path to solve a problem is determined, current is passed through a circuit that 

remains static. During serial computation, logical operations are performed in a strictly 

defined sequence to obtain the solution. In contrast, circuits of biological processors are 

dynamic during computation and all fundamental computing elements operate 

collectively and simultaneously. As an alternative to serial logic operation, von Neumann 

demonstrated parallel computing on a piece of graph paper by moving black and white 

dots together using simple rules.
2-4

 To implement such a cellular automaton (CA) in 

hardware, each cell representing the dots should communicate with its neighbors 

simultaneously to generate a collective decision.
5-6

 Proposals are mounting for such 

network-based molecular computing.
7-9

 Recently, suitable cells/dots have been built 

using Quantum dots and molecules.
10-13

 However, thus far, it has not been possible to 

assemble them into a 2-dimensional grid where a CA cell communicates with many other 

devices at a time to execute a collective computation. In addition, in conventional cellular 

computing, the rules for updating cell states are fixed prior to computation, and the circuit 

or neighborhood is kept static. Realization of dynamic CA circuits would enable us to 

address problems that are prerogatives of natural bio-processors.  

Here, instead of wiring single molecules/CA cells one-by-one, we directly build a 

molecular switch
14-17

 assembly
18-23

 where ~300 molecules continuously exchange 

information among themselves to generate the solution.
5
 We demonstrate the ability of a 

CA cell to change its neighborhood from 2 to 6 CA cells in a controlled manner. 

Physically, it means that a molecule could interact locally with up to 6 molecules at a 

time during information processing. It should be noted that in the human brain, a neuron 

communicates with up to ~10
4
 neighboring neurons at a time, and neural circuits evolve 

continuously during the life-span. By separating a monolayer from the metal ground with 

an additional monolayer, we developed a generalized approach to make the assembly 

sensitive to the encoded problem. The assembly adapts itself automatically for a new 

problem and redefines the CA rules in a unique way to generate the corresponding 

solution. We demonstrate the computing potential of the molecular assembly by realizing 
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standard computational constructs like logic gates, directed propagation of information, 

etc. In addition, we have demonstrated the potential of dynamic circuit creation by 

physically encoding differential equations and generating quantitative solutions for heat 

diffusion
24-25

 and mutation of normal cells into cancer cells.
26

 The molecular assembly 

functions similarly to the graph paper of von Neumann, where excess electrons move like 

colored dots on the surface, driven by variation of free energy that leads to emergent 

computing.
27-30

 The assembly processes ~300 dots at a time, whereas the fastest 

processors today operate only one bit/dot at a time per channel.  

 

Realization of a DDQ computing grid  

 

The 2,3-dichloro-5,6-dicyano-p-benzoquinone (DDQ) molecule (Fig. 1a) that 

reversibly switches among the four conducting states
17,18

 0, 1, 2 and 3 is deposited on an 

Au (111) surface as a bi-layer (Supporting Information, SI a). To encode information, the 

molecules are selected one-by-one by physically moving the scanning tunneling 

microscope (STM) tip to the highest current location on the molecule as shown in Fig. 1b. 

Then the desired conducting/logic states 0, 1, 2 or 3 are written by applying a pulse of -

1.6, 1, 1.3 or 1.6 V tip bias respectively for 5-10 µs at ~300 K. State 3 appears as a 

brighter sphere in the STM image due to having an additional trapped electron than in 

state 1. State 2’s brightness is between that of state 1s and state 3s as it has a more 

elongated prolate-shape than state 0. Fig. 1c shows detection of four states. The STM 

image is represented by a 2D map (matrix) of states 0, 1, 2, and 3, which are denoted by 

blue, green, yellow, and red balls respectively (Fig. 1d). 

The connecting region between two neighboring DDQs with more than 60% of 

the peak tunneling current observed on the molecules is considered as a wire, which is 

represented by a solid line in Figs. 1e and 1f. Thus, we get a circuit where one molecule 

is connected to a distinct number of neighboring molecules with which it interacts at a 

time. This interaction is referred to as one-to-many interaction at a time in this article. 

The neighborhood of a molecule or CA cell varies from 2 to 6 in the eight molecular 

circuits possible in the top monolayer. Continuous scanning of the bi-layer by changing 

the tip bias from -2 V to +2 V in a loop reveals eight distinct circuits (Fig. 1g). In a 

 3



matrix, if states 0 or 2 are in excess of 60% within ~20 nm
2
 area, the DDQs prefer to 

reassemble into a circuit of Type 7 or 2 respectively. If the number of state 1s are more 

than 50% or the number of state 3s are more than 30 % in a ~20 nm
2
 area, then a circuit 

of Type 1 or 5, respectively, is created (Figs. 1f, g). As we write a matrix, depending on 

the concentration of excess electrons (state 1s and 3s), DDQs in some part of the matrix 

region re-orient to the nearest energetically favorable circuit. Hence, for every new input 

matrix, a unique arrangement of several circuit-domains is created automatically (Fig. 1g, 

Movie 3). Thus the density of free electrons in an input pattern, the transformed circuit 

and the logic state transport rules are correlated.  

Switching of an entire molecular arrangement as a function of applied bias has 

been reported for different molecules (SI b).
19-23

 However, the co-existence of multiple 

circuits side-by-side, as demonstrated in Fig. 1g, has not been observed. Due to weak 

inter-layer coupling (Fig. 1b) and strong coupling among surface molecules, the top 

monolayer relaxes almost independently. This leads to the survival of multiple circuits. 

Therefore, excess electrons supplied to the assembly via states 1 and/or 3 find themselves 

in a potential surface of valleys and hills;
5
 this triggers their spontaneous motion to 

minimize the free energy. Since the encoding process re-defines the mode of interaction 

of DDQs with their neighbors, the excess electrons do not move randomly, but rather 

they follow well-defined rules (SI c). In particular cases, the spontaneous evolution of the 

input matrix requires an additional trigger by scanning the surface at -0.98 V. All states 

of the entire logic pattern are erased to state 0 by scanning the surface at -1.6 V, and it is 

possible to use the same surface repeatedly for pattern evolution. 

 

Logic state transport rules 

 

We have identified the following seven categories of rules (Fig. 2) that dictate 

logic-state transport. Rule 1: If negatively charged state 1s and 3s are distributed 

heterogeneously in an input pattern, a pseudo positive charge (PPC) is generated to which 

they are attracted from at most ~15 molecules apart. As a result, state 1s and 3s move to 

this single point. Since ~ 700 molecules influence each other at a time, it is not feasible to 

express this Rule in an abstract form; it would require ~4
700

 rules. Therefore, we recourse 
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to an analytic approach to program this Rule (SI h). The dynamic feature of the rule is 

provided in Movie 4. Rule 2: A state 2 site offers a lower barrier for the electron 

transport than a state 1 site, and a state 1 moves faster than a state 3. By tuning the 

distance Δx between two DDQ molecules (0.93 to 1.03 nm) in an assembly of circuits we 

can speed up or slow down the electron transport process as described in Fig. 2 (SI d). To 

program this rule in our simulator such that the temporal behavior of transition state 

dynamics is consistent with our experiment, we leave a fraction of states 1 and 3 

unchanged in each update. Rule 3: State 1s and/or 3s and their groups experience 

repulsive forces in a particular direction if they come in contact at a single point. This 

rule promotes divergence of bits in a logic pattern. Rule 4: State 1s and/or 3s and their 

groups move leaving a trail of state 2s that remain static. If seven state 2s form a 

hexagonal cluster, then all switch to the lower energy state 0 in two steps except the 

central DDQ. Rule 5: In particular arrangements, clusters of state 1s and/or 3s form a 

group and move on the surface as a single entity. Groups lose their property of a single 

entity if the contact dimension is at least two-molecules in length. Rule 6: When 

negatively charged states form a cluster that is asymmetric, the cluster changes to a 

symmetric shape through the creation of two state 1s by breaking one state 3 or through 

the creation of a new state 3 by fusing two state 1s. Rule 7: Depending on the charge 

density of an input pattern, a unique composition of circuits is formed. In a CA grid, a 

particular set of rules is favored in a typical circuit-domain (see tables in Figs. 2 and 4). 

The order of relative circuit areas for an input pattern determines the order of execution 

of Rules. The algorithms used to program these rules in our simulator are described in the 

online text (SI h). 

 

Conventional CA computing 

 

Writing, erasing and retrieving information: In Fig. 3a we demonstrate the 

sequential writing of a state 1 matrix on a state 0 surface. The states are stored as static 

information until spontaneous pattern evolution is triggered externally. By scanning the 

surface at -1.68 V one can reset all molecules to state 0, thus erasing the information. To 

retrieve information the surface is scanned at ~0.2 V (Figure 1d).  
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Directed propagation of Information: To send a complex information packet in a 

particular direction, we need to write additional states 1s and/or 3s so that an electron 

density gradient is created along the desired direction of propagation (Figure 3b top). One 

example of transport over an apparently unbounded distance is shown via simulation and 

experiment in Figure 3b (bottom). However, it is possible to send a packet to a particular 

location. The signal propagation stops, when the motion of states within the packet 

generates a pattern that periodically repeats in a fixed space. To send an information 

packet that is in the form of a group, we need to create its mirror image in contact with it; 

repulsion would then triggers the propagation of information following Rule 3, which 

dominates in the circuits 1, 5 and 7 (Figure 4a).  

 Logic gate: The effects resulting from Rule 3 appear similar to the interactions in 

the Billiard Ball Model,
31

 which has been used to design logic gates. We have realized an 

AND logic gate based on interactions in which Rule 1 dominates over Rule 3. A 

schematic logic device is shown in Figure 3c. A random composition of states 1 and 3 

(density > 0.5 electrons/nm
2
) written in a circular form is a logical "1" and the absence of 

any such composition is a logical "0". If we write two logical "1"s at most 15 nm (15 

cells) apart, only then a new composition is created automatically on the surface 

depicting logical state "1". If any one or both input compositions are absent we do not get 

such an output; rather states collapse at the same space (Figure 3d), we get a logical "0" 

at the output location. Thus we realize an AND gate. A large number of such logic gates 

could be operated in parallel on DDQ CA by separating those by ~15 CA cells. The 

output of a logic gate could be transported to the input of another logic gate, as described 

in Figure 3b.   

Density Classification: Density classification (DC) is a task to categorize 

particular elements in a mixture. DC is challenging when elements of different densities 

interact and influence each other at the same time. Classically, in CA, minority states in a 

space are converted into the majority's state to reflect classification.
32

 In our CA, however, 

we divide local space into multiple strictly defined regions on the basis of charge density, 

as shown in the table of Figure 4a. We can categorize the region into 8 circuit classes 

with a maximum sensitivity of 1 electron/20 nm
2
 (Figure 4b). We have converted a state 

0 space into two distinct circuit patterns simply by writing two input patterns with distinct 
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charge densities. The CA grid spontaneously classifies two distinct density distributions, 

difference of ~2 electrons/30 nm
2
, by converting the grid into two distinct circuit domains 

(Figure 4c). 

Voronoi Decomposition: In Voronoi decomposition
33

 a space is divided into 

multiple regions; each of which corresponds to a point such that any two neighboring 

points are equally separated from the boundary between them. As described earlier, an 

organic monolayer when imaged at a low bias (~0.2 V) reveals the composition of 

circuits generated by the input pattern. The borders between the circuit domains are 

remarkably linear (see Figure 1e and Figure 4d). The Density Classification at larger 

scales (~50 nm
2
) triggers segmentation of the computing space and decomposes the 

surface into Voronoi cells. A physical process in the molecular assembly could be 

modeled in terms of the evolution of the points (black dots in Figure 4d) representing the 

Voronoi cells.  

 

Mimicking two distinct natural phenomena 

 

Biological computers like our brain do not have logic gates yet they solve 

complex problems. During computation, the encoded information pattern in the neurons 

dynamically modulates the neural architecture and continuously evolves to reach a 

collective solution. Theoretically, by tuning input patterns and CA rules, we can solve 

several problems without using any logic gates.
34

 Here we mimic two natural events in 

the molecular CA matrix by tuning input patterns and effective CA rules. We encode two 

distinct input patterns that evolve over time in such a way that the transport of free 

electrons (or logic states) follows the essential features of diffusion
24-25

 for one input 

pattern and follows the evolution of cancer cells
26

 for the other input pattern. We have 

also emulated the pattern evolution in a simulator. The global features of the 

experimental patterns are in reasonably good agreement with the simulated patterns (SI e).  

In the diffusion process, a blue ball (state 0) denotes a normal material. When it 

accepts one electron, it turns to green (state 1). Two excess electrons turn blue to red 

(state 3). When electrons leave, green and red balls relax to state 2s, which are yellow 

(Fig. 5a). To create a directional flow, we write a pattern of straight-lines each composed 
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of alternating state 3 and state 1 so that they form a group and move as a single unit (Fig. 

5b). The direction of flow is controlled by the potential gradient of states in the 

background.
24,25

 For free energy minimization, the linear arrangement tries to bend into a 

circular shape, but as it begins to move, the coupling breaks. The broken parts follow the 

potential gradient independently (Movie 5). We calculate the concentration variation and 

the rate of electron flow as described in the Method Section and plot them in Fig. 5a. A 

linear relation suggests a diffusion process; its slope D (2 nm
2
/min) is the electron 

diffusion coefficient. Fig. 5b shows that gradually over time states 1 and 3 spread 

homogeneously on the surface. From Fig. 5c we get flux )
)5.5(

exp(
14

),(
2

2/1 t

x

t
tx

−
−=ϕ as 

the quantitative formal solution of the diffusion equation on a linear array of 10 cells.  

In a conventional CA, since transition Rules are fixed, irrespective of the input 

pattern one can generate only one kind of dynamics of logic states.
3-5

 To demonstrate the 

potential of CA rule modulation during computation (Rule 7, Fig 2), we generate a 

significantly different kind of dynamics in the same CA grid by emulating the mutation 

of normal cells to cancer cells. To formulate the mutation process, we correlate four 

transition states of the normal cell to four conducting states of a DDQ. A normal cell 

(state 0) first mutates inactivating a single tumor suppressor gene (TSG) (state 1) at a rate 

u1; it then mutates again inactivating another TSG (state 3) at a different rate, u2 (Movie 5, 

Fig 6a). Cellular proliferation occurs when one state 3 creates two cells in state 1. 

Depending on the input pattern, the fusion of two state 1s into one state 3 may also 

dominate. When cancer spreads in tissues, it may leave a trace of chromosomal instability 

(CIN) or state 2. In theory, the inactivation of TSGs follows three successive differential 

equations.
26

 The solution for the third equation (see Methods section) provides the 

number of cancer cells (state 3s) produced, which in our CA grid is the count of new red 

balls generated (N3). N3 depends on the cell population, N, in a tissue compartment (Fig. 

6b). We write state 1s in the form of two concentric rings so that they neither converge 

nor diverge (Fig. 6c). Thus, an artificial tissue boundary CG is established, wherein N is 

the total number of DDQs inside CG. We tune u1 by switching some of the state 0s to 

state 1s inside CG between every two scans, whereas u2 is decided by the system itself. 
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We change N by modifying the separation between the two rings while keeping 

the inner ring unchanged. Here, the half-life t1/2 for state 3 is the duration for which N3 is 

increased to 2N3. We plot average t1/2 values for different values of N in Fig. 6a. A 

similar feature between half-life t1/2 vs. N plot in Fig. 6a and the kinetics of cancer
26

 

suggests a consistent encoding of a two rate controlled phenomenon in the CA grid.  

Fig. 6c shows that, at a very low population (N < 290), when the two rings are 

less than 3 nm apart, the inner ring stabilizes by rearranging the states after which both 

the rings merge. In this case, almost every collision between two state 1s produces a state 

3, and N3 varies with time as ~ 4t
2
 (Fig. 6b). The conversion continues at this rate until 

all state 1s are converted to state 3s. For an intermediate population (290 < N < 620), the 

inter-cluster distance increases to ~5 nm, and the state 1s of two rings collide before 

reaching an equilibrium. Instantly produced state 3s break into state 1s, and N3 varies as 

~ 18t. For a very high population (N > 620), when two rings are more than 8 nm apart, a 

higher PPC leads to a large-scale one-to-one collision of state 1s; thus conversion to state 

3 is sped up. Therefore, the abundance of cells in state 1 allows N3 to vary as ~ 40t
2
. N3s 

in Fig. 6b provide quantitative solutions for the differential equations. During evolution, 

if state 2s are erased or written, the production of state 3s is also slowed down or sped up 

respectively; this is a distinct feature of CIN dynamics. As N3 kinetics changes with time, 

different sections of the lines in Fig. 6b follow additional solution functions 7e-4t
2
, 7e-

10t
3
…. t

5
 for low populations and 0.05t

2
, t

2
, t

1.8
…t

1.2
 for high populations. Remarkably, 

these smaller parts reveal complex CIN dynamics, which are consistent with the 

established models.
26

  

During realization of diffusion and cancer growth on a 24×27 molecular-matrix, 

changes in the STM image contrast at 300 DDQ sites reveal that the Rules are executed at 

least at 300 sites simultaneously.
18

 Cancer may evolve naturally in real tissue of ~ 10
9
 

cells in ~ 100 years, and heat diffuses in metals at a speed of ~ 100 km/s. However, in a 

molecular assembly, ~600 cells mutate in 6 minutes, and heat diffuses ~10 nm in 5 

minutes. By writing an input matrix, we can tune the grids Δx and hence Δt, and solve 

several differential equations similar to conventional methods. 

 

Outlook 
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In order to realize a CA that can carry out a wide variety of computational tasks, it 

is necessary to obtain a sufficient level of control on the transition state dynamics. The 

DDQ CA in this article provides an intriguing avenue to achieve such control while still 

relying on a relatively small and simple molecule. It is not only the interactions of the 

molecules in the DDQ CA but also the subtle formation of circuits in the molecular top-

layer that count in facilitating transitions between states. The evolution of circuits is 

dependent on an easy-to-control parameter: the charge density in an area. These circuits 

dramatically influence the dominance of transition rules, as we have observed, and offer 

an efficient way to influence the computational behavior of the CA. The robust 

functioning of local circuits originates from the CA cell's one-to-many communication 

and interaction at a time.
30,18

 Generalization of this principle would change the existing 

concept of static circuit-based electronics and open up a new vista of emergent 

computing using an assembly of molecules.
27-29,6
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Methods: 

 

Correlating Diffusion parameters with the assembly states: 

The rate of change of electron flux φ is proportional to the variation of the gradient of electron 

flux, or ϕϕ 2∇=
∂
∂

D
t

; D is the diffusion coefficient. Here, ~ϕ2∇
2

2

A∂
∂ ϕ

 where A (~ 2.4 nm2) is the 

area enclosed by seven DDQ molecules (unit cell, Fig. 5a).  

In a unit cell, φ is the ratio of total excess electrons Q ( 321 StateofnumberStateofnumber ×+= ) 

and A. Now,
UCA

ϕϕ Δ
≈

∂
∂

; Δφ is ΔQ between two adjacent unit cells say 1 and 2 (or 3 and 4) of Fig. 

5a (inset - bottom), and UC is the non-overlapped region of two unit cells (~1.3A). The difference 

in 
A∂
∂ϕ

 between two neighboring unit cells say 1 and 3 of Fig. 5a (inset) is calculated as
2

2

A∂
∂ ϕ

 and 

the value is assigned to the center of unit cell 2 where 
t∂

∂ϕ
 is measured. Here, 

tt Δ
Δ

≈
∂
∂ ϕϕ

; Δt (40 

seconds) is the time lapse between two STM scans.  

Similarly, for every unit cell of the 24×27 matrix, we calculate 
2

2

A∂
∂ ϕ

 from an STM image at 

 and 0tt =
t∂

∂ϕ
 from two STM images at 0tt = and ttt Δ+= 0 . For each value of

2

2

A∂
∂ ϕ

, the 

corresponding values of 
t∂

∂ϕ
 are plotted in Fig. 5a. We have also plotted φ vs. ranking Z (0, 1, 

2….n) of the central molecule of the unit cells along a straight line in Fig. 5c. Therein, electron 

flux diffusion saturates in 4 minutes 40 seconds (noted as 4.40). We have taken the weighted 

average of flux to convert the staircase characteristic into a continuous trace in Fig. 5c; this is 

essential to find a formal quantitative solution. Equations of higher order and/or degree can be 

solved similarly. 

 

Correlating Cancer cell Evolution parameters with the assembly features: 

We have three coupled differential equations and two variables: states 1 and 3. Since state 1s can 

not be generated spontaneously, we encode state 1s using STM between two scans at a rate of 

1.75×10-2 minute-1 so that a mutation rate of u1 (1.3×10-1 minute-1) for state 0 is maintained. The 

evolution of state 0 follows 01
0 Xu

dt

dX
−= , where is the number of effective state 0s at time )(0 tX

 11



t, given by . Here, )exp()0()( 100 tuXtX −= )0(0 =tX ≈ (initial state 1s in the rings + 

externally encoded state 1s)/2, which is the number of effective normal cells (state 0s) involved in 

generating state 3s. The state 1s that leave the rings and the state 1s encoded via STM to 

compensate for the loss during state 3 production contribute together to the evolution of state 1, 

which  is described by  ; its solution is 

, where Neff = 2X0(t=0). State 1 mutates at a 

rate u2 to produce X3 number of state 3s following , which yields 

N3= . If state 2s are deleted between 

two scans, u2 decreases to ~1.18×10-5 minute-1 from ~1.79, ~2.70, and ~3.12 (×10-3) minute-1 for 

=128, 144, and 157 respectively. Thus, CIN increases u2 by ~ 102 times, which prompts us 

to simplify . For a smaller time scale that is considered in our experiment, a small 

population yields N3~ ; an intermediate population 

yields ; and a large population yields N3~ .26 The 

number of new red balls, N3, is obtained by comparing two consecutive STM images. The 

average values of N3 obtained by repeatedly evolving the same input patterns as demonstrated in 

Fig. 6c are plotted in Figs. 6a, 6b. In Figs. 6a and 6b, N = (state 1s + state 0s) initially inside the 

CG. 

1201
1 XuNXu

dt

dX
eff−=

])()()[0()( 12101
21 uuNeeuXtX eff

tuNtu eff −−= −−

12
3 XuN

dt

dX
eff=

])()(1)[0()( 121203
21 uuNeueuNXtX eff

tuNtu

eff
eff −−−= −−

)0(0X

)(3 tX

2)0( 2

210 tuuNX eff

tuuNX eff 210 )0( ~N3 2)0( 2

210 tuuNX eff
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Figure Captions: 

 
Figure 1. The concept of a wireless molecular circuit:  

a. The DDQ molecule. b. The DDQ bilayer’s atomic structure; side view (above); top view 

(below, Movie 1). T denotes a molecule on the top layer. c. STM images for four states (top); 

corresponding ball models and atomic structure (bottom). Current profiles of four states (black 

line) taken along the white lines having current heights of (at 0.68 V) ~ 0.15 nA (state 0), 0.25 nA 

(state 1), 0.28 nA (state 2) and 0.32 nA (state 3) respectively. The height profiles are ~ 0.9 nm 

wide. d. A 13×17 matrix (~400 nm2) and its ball representation (right). e. STM image at 0.2 V tip 

bias and 0.05 nA tip current. f. Zoomed region of the STM image and the corresponding circuit 

(below). The black rings represent molecules; number represents interconnecting lines (wires). g. 

Eight possible circuits (left) in image e are detected (right). The red lines are Voronoi cell 

boundaries. 

  

 

Figure 2. Discrete logic-state transport rules:  

Rule 1: Convergent Universe: A charge moves a distance d towards PPC (left). To calculate 

PPC, we neglect those areas that have charge(s) in between (right). Rule 2: Creation of spatial 

Δx and temporal limit Δt: The <Δx> (experiment) and <Δt> (simulation) are plotted for four 

surfaces initially covered with state 0s, 1s, 2s, or 3s. Rule 3: Divergent Universe: Examples of 

collisions; arrows denote the direction of motion of logic-states. Rule 4: Life of logic states: 

Trail of state 2 for motion of state 1 and 3 (top); the death of a cluster of state 2 (bottom). Rule 5: 

Collapse of space: Four examples of group formation of state 1s, 3s. Rule 6: Transformation: 

Fusion of two state 1s to create a state 3 (left); breaking of state 3 to create two state 1s (right). 

Rule 7: Priority of Rules: Correlating input patterns, initial circuits and the dominant Rules (see 

Movie 4 for details and SI text online for the algorithm to program these rules).  

 

 

Figure 3. Information encoding, retrieving, transport and Logic Gate operation: 

a. STM image (left) and its equivalent ball representation (right) are shown in four steps (top to 

bottom) of an event where all state 0s in a 6×7 grid are converted into state 1s. b. Top row -

schematic representation of an information packet. The shaded region has a higher electron 

density, which determines the direction of motion. A real packet is shown to its right. Middle 

row- a simulated transport of an information packet comprised of a few state 1s (left-input). 

 17



Yellow balls trace the transport path for 2000 steps (right-output). Bottom row- STM images for 

initial (left) and final steps (right) of information transport (scale bar 7.5 nm). c. Truth table for an 

AND gate (left). STM images (right; scale bar 2.8 nm) show A=1, B=1, C=0 (top-input) and A=1, 

B=1, C=1 (bottom-output). d. AND gate operation with [A=1, B=0] and [A=0, B=1] should not 

have evolved state at location C; A or B should retain logic state 1. 35 state 1s used to create A; 

simulation shows that state 1s collapse to maintain the logic state 1 (A=1). 

 

 

Figure 4. Computing constructs, Density classification and Voronoi Decomposition: 

a. Relations among density distribution, circuit type and dominating CA rules. b. Schematic 

representation: all CA cells in state 0 (circuit 7, left); the encoded input pattern (middle); the 

derived composition of circuits (right). c. STM image of a CA grid (6×5) comprised of state 0s 

(circuit 7), ball representation below. Two patterns (colored balls, right) are encoded. One pattern 

converts the grid to circuit 1 (top) another to circuit 4 (bottom). Scale bar is 1 nm. d. 13×15 CA 

grid at state 0 (left); a pattern is encoded that converts it into a composition of circuits (middle) 

noted by circuit number. Voronoi decomposed cells containing the Voronoi points (black dots) 

derived from the middle image (right). 

 

 

Figure 5. Mimicking natural phenomenon I: Electron diffusion: 

a. Electron flux rate 
t

t

∂
∂ )(ϕ

 vs. surface-electron concentration variation
2

2 )(

A

t

∂
∂ ϕ

. Inset (top) - 

transition scheme of DDQ logic-states. Inset (bottom) - a linear array of unit cells and their 

ranking (1, 2, 3, 4). The shaded green and blue regions are unit cells. b. STM images (24×27 nm) 

at 0.68 V tip bias and 0.05 nA tip current (right) with corresponding simulation (left) shown side-

by-side with time (minute) (Movie 5). c. Temporal (minute) variation of electron concentration φ 

along a linear array of 10 unit cells (Z: 1 to 10) in the white ring of panel b is plotted.  

 

  

Figure 6. Mimicking natural phenomenon II: Evolution of cancer cells:  

a. Measured half-life t1/2 (seconds) to produce state 3 vs. tissue population N on a log-log scale. 

First row (inset) - a real cell with green lines as TSG with corresponding ball representation 

(second row). Third row – a scheme for 2 one-TSG-deactivated cells creating one cancer cell and 

one CIN cell. b. Number of State 3s produced (N3) vs. time for different N. c. Simulated (left) 
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and corresponding STM images (24×27 nm) at 0.68 V tip bias and 0.05 nA tip current (right) are 

paired and ordered in a row with time (minutes). Simulations with N = 286, 456, or 627 having 

149 (~50%, top), 196 (~40%, middle), or 222 (~34%, bottom) state 1s respectively. After each 

STM scan of 40 seconds, 5 (top), 8 (middle), and 11 (bottom) new state 1s are written inside the 

respective CGs within 20 seconds (Movie 5).  
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Figure 3 
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Figure 4 
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Figure 6. 
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