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In this work, we study the effect of (anti)kaon condensation on the properties of compact stars
that develop hypernuclear cores with and without an admixture of ∆-resonances. We work within
the covariant density functional theory with the parameters adjusted to K-atomic and kaon-nucleon
scattering data in the kaonic sector. The density-dependent parameters in the hyperonic sector are
adjusted to the data on Λ and Ξ− hypernuclei data. The ∆-resonance couplings are tuned to the
data obtained from their scattering off nuclei and heavy-ion collision experiments. We find that
(anti)kaon condensate leads to a softening of the equation of state and lower maximum masses of
compact stars than in the absence of the condensate. Both the K− and K̄0-condensations occur
through a second-order phase transition, which implies no mixed-phase formation. For large values
of (anti)kaon and ∆-resonance potentials in symmetric nuclear matter, we observe that condensation
leads to an extinction of Ξ−,0 hyperons. We also investigate the influence of inclusion of additional
hidden-strangeness σ∗ meson in the functional and find that it leads to a substantial softening of
the equation of state and delay in the onset of (anti)kaons.

I. INTRODUCTION

Born in supernova explosions neutron (or compact)
stars (NSs) are the densest cosmic bodies in the mod-
ern Universe. They provide a unique domain of density
range to study the novel states of matter. Indeed, mat-
ter in compact stars is compressed by the gravitational
force to densities a few times nuclear saturation density,
n0 [1–4].

During the last decade electromagnetic as well as gravi-
tational wave observations placed a number of constraints
on the global properties of compact stars (masses, radii,
deformabilities, etc.) which significantly constrain the
range of admissible equation of state (EoS) models of
dense matter. We briefly list below the most important
observational results. The masses of massive M ∼ 2M⊙

compact star (millisecond pulsars) in binaries with white
dwarfs were determined for J1614 − 2230 (M = 1.908 ±
0.016M⊙) [5, 6], J0348 + 0432 (2.01 ± 0.04 M⊙) [7] and
J0740+6620 (2.14+0.20

−0.18M⊙ with 95% credibility) [8]. The
radius of a canonical 1.4M⊙ compact stars was inferred
from low-mass X-ray binaries in globular clusters in the
range 10 ≤ R ≤ 14 km [9]. The mass-radius measure-
ments of PSR J0030+0451 by the NICER experiment de-
termined M = 1.44+0.15

−0.14M⊙, R = 13.02+1.24
−1.06 km [10] and

M = 1.34+0.15
−0.16M⊙, R = 12.71+1.14

−1.19 km (with 68.3% cred-
ibility) [11]. The first multimessenger gravitational-wave
event GW170817 observed by the LIGO-Virgo collabora-
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tion (LVC) [12–14] set constraints on the tidal deforma-
bilities of involved stars which through a tight correla-
tion with the radii predict a radius 12 ≤ R1.4 ≤ 13 km
for the canonical-mass star M = 1.4M⊙. The LVC ob-
servation of the GW190425 event in gravitational waves
determined the component masses range 1.46− 1.87M⊙

[15]. Another event GW190814 suggests a binary with a
light component with a mass 2.59+0.08

−0.09M⊙ [16] which falls
in the “mass-gap” (2.5M⊙ ≤ M ≤ 5M⊙). The nature of
the lighter companion is still not resolved [17–21], but the
neutron star interpretation appears to be in tension with
formation of heavy baryons (hyperons, ∆-resonances) in
compact stars [22–24].

Due to large densities reached in the core region of
compact stars, new hadronic degrees of freedom are ex-
pected to nucleate in addition to the nucleons. One such
possibility is the onset of hyperons, as initially suggested
in Ref. [25]. This occurs in the inner core of compact stars
at about (2−3)n0. Even though the presence of hyperons
in compact stars may seem to be unavoidable, it leads to
an incompatibility of the theory with the observations
of massive pulsars mentioned above, as is evidenced by
many studies which used either phenomenological [26–30]
or microscopic [31–35] approaches. Specifically, hyperons
lead to a softening of the EoS and imply a low value of
the maximum mass of compact stars, below those ob-
served. This problem is known as the “hyperon puzzle”.
The studies prior to the discovery of massive pulsars,
the work during the last decade focused mainly on mod-
els which provide sufficient repulsion among the hadronic
interactions which guarantees stiffer EoS and larger max-
imum masses of hypernuclear stars; these have been car-
ried out mostly within the covariant density functional
theory [36–52]. But microscopic models have also been
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employed [53, 54].

Another fascinating possibility of the onset of non-
nucleonic degrees of freedom is the appearance of stable
∆-resonances in the matter. Whether ∆-resonances play
any role in the NSs is still a matter of debate [49, 55].
Early work [26, 56] indicated that the threshold density
for the appearance of ∆-resonances could be as high as
(9 − 10) n0. More recent works [49, 57–59] have shown
that indeed these non-strange baryons may appear in nu-
clear matter at density in the range (1 − 2) n0. In par-
ticular, the recent work which included both hyperons
and ∆-resonance [49, 60] showed that the inclusion of ∆-
resonances into the NS matter composition reduces the
radius of a canonical 1.4M⊙ mass compact star, whereas
the maximum mass implied by the EoS does not change
significantly. The onset of ∆-resonances also shifts the
onset of hyperons to higher densities [49, 57, 60].

Yet another possibility of a new non-nucleonic degree
of freedom at high densities is the appearance of vari-
ous meson (pion, kaon, ρ-meson) condensates. Initially,
pion-condensation and its implications for neutron star
physics was studied [61–63]. Later, the focus shifted
towards the strangeness-carrying (anti)kaons (K̄) con-
densate, initially suggested within a chiral perturbative
model in Refs. [64, 65]; for further models and develop-
ments see [28, 66, 67]. It has been then realized that the
repulsive optical potential developed by the K+ mesons
in the nuclear matter disfavors the presence of kaons in
neutron star matter. Several authors [68–74] have stud-
ied the (anti)kaon condensation in nuclear as well as
hypernuclear matter. The onset of (anti)kaons in the
compact star matter is very sensitive to the K− opti-
cal potentials as well as the presence of hyperons. In
the latter case, it is observed that the threshold density
of (anti)kaons is shifted to even higher matter densities
[75]. A generic feature of the onset of the condensates is
the softening of the EoS and the reduction of the maxi-
mum masses of compact stars, which could become po-
tentially incompatible with the observations of massive
pulsars. The onset of (anti)kaon condensation affects
many properties of compact stars beyond the equation
of state, such as superfluidity [76], neutrino emission via
direct Urca processes [77, 78], and bulk viscosity [79].
This is a direct consequence of the changes in the single-
particle spectrum of fermions, e.g., the Fermi momenta,
effective masses, etc.

In the present work, we explore the possibility of
(anti)kaon condensation in β-equilibrated ∆-resonance
admixed hypernuclear matter in the core region of com-
pact stars within the framework of covariant density
functional (CDF) model. To construct the EoS, we im-
plement the DD-ME2 parametrization of density func-
tional with density-dependent couplings [80]. This model
has been extended previously to the ∆-resonance ad-
mixed hypernuclear matter without (anti)kaon conden-
sation [49, 60], showing that the resulting EoS is broadly
compatible with the available astrophysical constraints.
It has been also extended to include the effect of strong

magnetic fields [81]. This work, therefore, will focus on
the novel aspects that are introduced by the (anti)kaon
condensation.

The paper is arranged as follows. In Sec. II we briefly
describe the density-dependent CDF formalism and its
extension to (anti)kaons condensation in ∆-resonances
admixed hypernuclear matter. Sec. III is devoted to nu-
merical results and their discussions. The conclusions
and future perspectives are given in Sec. IV. We use nat-
ural units ~ = c = 1 throughout.

II. FORMALISM

A. Density Dependent CDF Model

In this work, we consider the density dependent CDF
model to study the transition of matter from hadronic
to (anti)kaon condensed phase in β-equilibrated ∆-
resonance admixed hypernuclear matter. The matter
composition is considered to be of the baryon octet
(b ≡ N,Λ,Σ,Ξ), ∆-resonances (d ≡ ∆++,∆+,∆0,∆−),
(anti)kaons (K̄ ≡ K−, K̄0) alongside leptons (l) such as
electrons and muons. The strong interactions between
the baryons as well as the (anti)kaons are mediated by
the isoscalar-scalar σ, σ∗, isoscalar-vector ωµ, φµ and
isovector-vector ρ

µ meson fields. The additional hid-
den strangeness mesons (σ∗, φµ) are considered to medi-
ate the hyperon-hyperon as well as (anti)kaon-hyperon
interactions. The total Lagrangian density consisting
of the baryonic, leptonic and kaonic parts is given by
[49, 68, 69, 82]

L =
∑

b

ψ̄b(iγµD
µ

(b) −m∗
b)ψb +

∑

d

ψ̄dν(iγµD
µ

(d) −m∗
d)ψ

ν
d

+
∑

l

ψ̄l(iγµ∂
µ −ml)ψl +D(K̄)∗

µ K̄Dµ

(K̄)
K −m∗2

K K̄K

+
1

2
(∂µσ∂

µσ −m2
σσ

2) +
1

2
(∂µσ

∗∂µσ∗ −m2
σ∗σ∗2)

− 1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρµν · ρµν +

1

2
m2

ρρµ · ρµ

− 1

4
φµνφ

µν +
1

2
m2

φφµφ
µ

(1)
where the fields ψb, ψ

ν
d , ψl correspond to the baryon

octet, ∆-baryon and lepton fields. mb, md, mK and ml

represent the bare masses of members of baryon octet,
∆-quartet, isospin doublet for (anti)kaons and leptons
respectively. The covariant derivative in Eq.(1) is

Dµ(j) = ∂µ + igωjωµ + igρjτ j · ρµ + igφjφµ (2)

with j denoting the baryons (b, d) and (anti)kaons (K̄).
The density-dependent coupling constants are denoted
by gpj where ‘p’ index labels the mesons. The isospin op-
erator for the isovector-vector meson fields is represented
by τj . The gauge field strength tensors for the vector
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meson fields are given by

ωµν = ∂νωµ − ∂µων ,

ρµν = ∂νρµ − ∂µρν ,

φµν = ∂νφµ − ∂µφν .

(3)

The Dirac effective baryon and (anti)kaon masses in

Eq.(1) are given by

m∗
b = mb − gσbσ − gσ∗bσ

∗, m∗
d = md − gσdσ,

m∗
K = mK − gσKσ − gσ∗Kσ

∗ (4)

In the relativistic mean-field approximation, the meson
fields obtain expectation values which are given by

σ =
∑

b

1

m2
σ

gσbn
s
b +

∑

d

1

m2
σ

gσdn
s
d +

∑

K̄

1

m2
σ

gσKn
s
K̄
, σ∗ =

∑

b

1

m2
σ∗

gσ∗bn
s
b +

∑

K̄

1

m2
σ∗

gσ∗Kn
s
K̄
,

ω0 =
∑

b

1

m2
ω

gωbnb +
∑

d

1

m2
ω

gωdnd −
∑

K̄

1

m2
ω

gωKnK̄ , φ0 =
∑

b

1

m2
φ

gφbnb −
∑

K̄

1

m2
φ

gφKnK̄

ρ03 =
∑

b

1

m2
ρ

gρbτ b3nb +
∑

d

1

m2
ρ

gρdτ d3nd +
∑

K̄

1

m2
ρ

gρKτ K̄3nK̄

(5)

where ns = 〈ψ̄ψ〉 and n = 〈ψ̄γ0ψ〉 denote the scalar and
vector (number) densities respectively. The explicit form
of scalar and vector density of baryons in the T = 0 limit
is

ns
j =

2Jj + 1

4π2
m∗

j

[

pFj
EFj

−m∗2

j ln

(

pFj
+ EFj

m∗
j

)]

,

nj =
2Jj + 1

6π2
p3Fj

(6)

respectively with Jj , pFj
and EFj

being the spin, Fermi
momentum and Fermi energy of the j-th baryon. For the
case of s-wave (anti)kaons, the number density is given
as

nK−,K̄0 = 2

(

ωK̄ + gωKω0 + gφKφ0 ±
1

2
gρKρ03

)

= 2m∗
KK̄K.

(7)

Here, ωK̄ represents the in-medium energies of
(anti)kaons and are given by (considering isospin pro-
jection as ∓1/2 for K−, K̄0)

ωK−,K̄0 = m∗
K − gωK − gφKφ0 ∓

1

2
gρKρ03. (8)

In case of leptons (l), the number density is given by
nl = p3Fl

/3π2. The chemical potential of the j-th baryon
is

µj =
√

p2Fj
+m∗2

j +ΣB , (9)

where ΣB = Σ0 +Σr denotes the vector self-energy with

Σ0 = gωjω0 + gφjφ0 + gρjτ j3ρ03, (10)

Σr =
∑

b

[

∂gωb

∂n
ω0nb −

∂gσb
∂n

σnsb +
∂gρb
∂n

ρ03τ b3nb

+
∂gφb
∂n

φ0nb

]

+
∑

d

(ψb −→ ψν
d ).

(11)

Eq.(11) is the rearrangement term which is required in
case of density-dependent meson-baryon coupling models
to maintain the thermodynamic consistency [83]. Here,
n =

∑

j nj represents the total baryon number density.

The threshold condition for the onset of j-th baryon
into the nuclear matter is given by [69]

µj = µn − qjµe (12)

where qj is the charge of the j-th baryon. µe = µn − µp

is the chemical potential of electron with µn, µp denot-
ing the same for neutron and proton. With increasing
density, the Fermi energy of electrons increases and once
it reaches the rest mass of muons i.e. µe = mµ, muons
start to appear in the nuclear matter.

In case of (anti)kaons, the threshold conditions are
governed by the strangeness changing processes such as,
N ⇋ N + K̄ and e− ⇋ K− [1, 70] and are given by

µn − µp = ωK− = µe, ωK̄0 = 0. (13)

The total energy density due to the fermionic part is
given by



4

εf =
1

2
m2

σσ
2 +

1

2
m2

ωω
2
0 +

1

2
m2

ρρ
2
03 +

∑

j≡b,d

2Jj + 1

2π2

[

pFj
E3

Fj
−
m∗2

j

8

(

pFj
EFj

+m∗2
j ln

(

pFj
+ EFj

m∗
j

))]

+
1

2
m2

σ∗σ∗2 +
1

2
m2

φφ
2
0 +

1

π2

∑

l

[

pFl
E3

Fl
− m2

l

8

(

pFl
EFl

+m2
l ln

(

pFl
+ EFl

ml

))]

.

(14)

And the energy density contribution from the kaonic mat-
ter is

εK̄ = m∗
K(nK− + nK̄0) (15)

giving the total energy density as ε = εK̄ + εf . Now,
because (anti)kaons being bosons are in the condensed
phase at T = 0, the matter pressure is provided only by
the baryons and leptons and is given by the Gibbs-Duhem
relation

pm =
∑

j≡b,d

µjnj +
∑

l

µlnl − εf . (16)

The rearrangement term in Eq. (11) contributes explic-
itly to the matter pressure term only through the vector
self-energy term.

Two additional constraints – the charge neutrality and
global baryon number conservation – should be taken
into account to calculate the equation of state self-
consistently. The charge neutrality condition is given by

∑

b

qbnb +
∑

d

qdnd − nK− − ne − nµ = 0. (17)

B. Coupling parameters

In the density dependent CDF model implemented in
this work, DD-ME2 [80] coupling parametrization is in-
corporated. The coupling functional dependence of the
scalar σ and vector ω-meson on density is given by

giN (n) = giN (n0)fi(x), for i = σ, ω, (18)

where, x = n/n0, n, n0 being the total baryon number
density and nuclear saturation density respectively with

fi(x) = ai
1 + bi(x+ di)

2

1 + ci(x+ di)2
(19)

For the case with ρ-meson, the density dependence cou-
pling functional is defined as

gρN (n) = gρN (n0)e
−aρ(x−1) (20)

The parameters of the meson-nucleon couplings in DD-
ME2 parametrization model is given in Table I. The co-
efficients associated with DD-ME2 model are fitted to
reproduce nuclear phenomenology; the details of which
can be found in Ref. [80]. Since the nucleons do not
couple to the strange mesons, gσ∗N = gφN = 0. The

TABLE I. The meson masses and parameters of the DD-ME2
parametrization used in Eq. (18) and (19).

Meson (i) mi (MeV) ai bi ci di giN

σ 550.1238 1.3881 1.0943 1.7057 0.4421 10.5396

ω 783 1.3892 0.9240 1.4620 0.4775 13.0189

ρ 763 0.5647 7.3672

masses of the additional hidden strangeness mesons are
taken as mσ∗ = 975 MeV and mφ = 1019.45 MeV. The
nuclear saturation properties are provided in Table II.
The parameters E0, K0, Q0 denote the saturation en-
ergy, incompressibility, and skewness in isoscalar sector,
and Esym, Lsym for symmetry energy coefficient and its
slope in isoscalar sector, all evaluated at the saturation
density. It should be noted, that the experimentally ob-
tained values of some of these parameters have an un-
certainty range given by n0 ∈ [0.14 − 0.17] fm−3 [84],
−E0 ∈ [15−17] MeV [84], K0 ∈ [220−260] MeV [85, 86],
Esym ∈ [28.5−34.9] MeV [87, 88]. Once the parameters of
the model are fixed to particular values within the range
indicated above, the EoS is obtained by straightforward
extrapolation to the high-density regime. At present, the
high-density properties of dense matter are constrained
by astrophysics of compact stars and modeling of heavy-
ion collision experiments, both of which carry uncertain-
ties of their own.

TABLE II. The nuclear properties of the density-dependent
CDF model (DD-ME2) at n0.

n0 E0 K0 Q0 Esym Lsym m∗
N/mN

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

0.152 −16.14 250.9 478.9 32.3 51.3 0.57

The bare masses of the members of the baryon octet,
∆-quartet and (anti)-kaons considered in this work are,
mΛ = 1115.68 MeV, mΞ0 = 1314.86 MeV, mΞ− =
1321.71 MeV, mΣ+ = 1189.37 MeV, mΣ0 = 1192.64 MeV,
mΣ+ = 1197.45 MeV, m∆ = 1232 MeV, mK = 493.69
MeV.

For the meson-hyperon vector coupling parameters, we
incorporated the SU(6) symmetry and quark counting
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rule [72, 89] as

1

2
gωΛ =

1

2
gωΣ = gωΞ =

1

3
gωN ,

2gφΛ = 2gφΣ = gφΞ = −2
√
2

3
gωN ,

1

2
gρΣ = gρΞ = gρN , gρΛ = 0.

(21)

The scalar meson-hyperon couplings are calculated by
considering the optical potentials of Λ, Σ, Ξ as −30 MeV,
+30 MeV and −14 MeV respectively [81]. Furthermore,
the scalar strange meson σ∗-hyperon coupling is evalu-
ated from the measurements on light double-Λ nuclei and
fitted to the optical potential depth UΛ

Λ (n0/5) = −0.67
MeV [90]. The scalar meson-hyperon couplings for the
other strange baryons can be obtained from the relation-
ship,

gσ∗Y

gφY
=
gσ∗Λ

gφΛ
, Y ∈ {Ξ,Σ}. (22)

Table III provides the numerical values of the meson-
hyperon couplings at nuclear saturation density, where
RσY = gσY /gσN , Rσ∗Y = gσ∗Y /gσN denote the scal-
ing factors for non-strange and strange scalar mesons
coupling to hyperons respectively. Because experimen-

TABLE III. Scalar meson-hyperon coupling constants for DD-
ME2 parametrization.

Λ Ξ Σ

RσY 0.6105 0.3024 0.4426

Rσ∗Y 0.4777 0.9554 0.4777

tal information on the ∆-resonance is scarce, the meson-
∆ baryon couplings are treated as parameters. In the
subsequent discussion we consider gωd = 1.10 gωN and
gρd = gρN for vector-meson couplings [49, 91]. For the
scalar meson-∆ baryon couplings we use two values of the
isoscalar potentials viz. V∆ = VN and 5/3 VN with VN
being the nucleon potential [23, 49]. These values were
extracted from the studies of electron and pion scattering
off nuclei studies as well as studies of heavy-ion-collisions
which involved ∆-resonance production.

The numerical values of scalar meson-∆-baryon cou-
pling parameters with V∆ = VN is Rσd = 1.10 and that
with V∆ = 5/3 VN is Rσd = 1.23, where Rσd = gσd/gσN
denotes the non-strange scalar meson coupling to ∆-
resonances. Similar to the nucleons, ∆-resonances do not
couple to σ∗, φ-mesons, i.e, gσ∗d = gφd = 0.

The meson-(anti)kaon couplings are fixed according to
Refs. [75, 92] and are taken as density indepedent. The
vector meson-(anti)kaon coupling parameters are evalu-
ated from the isospin counting rule [75] and are given
as

gωK =
1

3
gωN , gρK = gρN . (23)

And in case of the additional hidden strange force medi-
ating mesons, the couplings are given as [72]

gσ∗K = 2.65, gφK = 4.27. (24)

The scalar meson-(anti)kaon coupling constants are
calculated by fitting to the real part of K− optical po-
tential at nuclear saturation density. The readers may
refer to Ref. [74] for details. Refs. [63, 93, 94] show that
the (anti)kaons experience an attractive potential in nu-
clear matter whereas the opposite is true for the case
with kaons in nuclear matter [95, 96]. Different model
calculations [93, 94, 97–99] have provided the K− opti-
cal potential in normal nuclear matter to be in the range
from −40 MeV to −200 MeV. We have chosen a K− op-
tical potential range of −120 ≤ UK̄ ≤ −150 MeV in this
work and numerical values of gσK for the mentioned op-
tical potential range is provided in Table IV.

TABLE IV. Scalar σ meson-(anti)kaon coupling parameter
values in DD-ME2 parametrization at n0.

UK̄ (MeV) −120 −130 −140 −150

gσK 0.4311 0.6932 0.9553 1.2175

III. RESULTS

In this section we report our numerical results for mat-
ter composition with (anti)kaons and (a) Nucleons + Hy-
perons (NY), (b) Nucleons + Hyperons + ∆-resonances
(NY∆) for varying values of (anti)kaon optical poten-
tials. The case of pure nuclear matter with (anti)kaons
was considered already in Ref. [74] and the reader is re-
ferred to that work. From calculations, it is found that
the phase transition to (anti)kaon condensed phase is of
the second-order for both NY and NY∆ compositions. In
all the calculations the K−-meson is observed to appear
before the onset of K̄0. Table V provides the threshold
densities of (anti)kaons for different values of ∆-baryon
as well as UK̄ potentials for two matter compositions.

It is observed that the (anti)kaons do not appear at
all in case of UK̄ = −120 MeV for all matter compo-
sitions. (Anti)kaons are observed to appear only after
UK̄ = −130 MeV with V∆ = 5/3 VN . This happens as
the higher ∆-potential shifts the onset of hyperons to
higher densities making the way for the (anti)kaons. In
all the cases considered, it is observed that with the in-
clusion of ∆-resonances into the composition of matter
the threshold densities of onset of (anti)kaon is shifted to
higher densities.

Figure 1 shows the in-medium (effective) energies of
K̄ mesons as a function of baryon (vector) number den-
sity in NY∆ matter described by the DD-ME2 CDF. The
onset of K− mesons condense in the compact star mat-
ter occurs when the respective effective energy crosses
the electron chemical potential, which then marks the
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FIG. 1. The effective energy of (anti)kaons as a function of
baryon number density in NY∆ matter for ∆-potential val-
ues V∆ = 1 (top panels) and 5/3 VN (bottom panels). Left
and right panels show the energies of K− and K̄0 respectively.
The chemical potential of electron for the same matter compo-
sition is depicted by the dashed curve. The solid, dash-dotted,
dotted lines represent the UK̄ values of −130,−140,−150 MeV
respectively.

TABLE V. Threshold densities, nu for (anti)kaon conden-
sation in NY and NY∆ matter for different values of ∆-
potentials and K− optical potential depths UK̄(n0).

Config. NYK̄ NY∆K̄

V∆ = VN V∆ = 5/3 VN

UK̄ nu(K−) nu(K̄0) nu(K−) nu(K̄0) nu(K−) nu(K̄0)

(MeV) (n0) (n0) (n0) (n0) (n0) (n0)

−120 − − − − − −

−130 − − − − 5.86 6.79

−140 3.97 6.95 4.26 6.92 4.37 5.05

−150 3.06 5.59 3.33 5.39 3.90 4.37

threshold density. In the case K̄0 mesons, the conden-
sate appears when their in-medium energy value reaches
zero. With the increase in the values of UK̄ , the density
threshold for the onset of the (anti)kaons is shifted to
lower densities.

The EoSs with NY and NY∆ matter compositions in
the absence as well as in presence of (anti)kaon degrees
of freedom are shown in Fig. 2. In the case with no
(anti)kaons in the matter, the EoSs of NY∆ matter is
stiffer than the EoS of NY matter in the high-density
regime and the opposite is true in the low-density regime.
This is consistent with the results of Ref. [49] found
within the same DD-ME2 parametrization.

The middle and right panels of Fig. 2 include
(anti)kaons with potential values UK̄ = −140,−150 MeV
respectively. It is seen that the onset of (anti)kaon con-
densation softens the EoS, which is marked by a change
in the slope of EoSs beyond the condensation thresh-

old. Furthermore, the softening is more pronounced in
the case of NY∆ composition, which reverses the high-
density behavior seen in the left panel: the EoS with
NY∆ composition is now the softest among all consid-
ered cases. It is further seen that the higher the value of
UK̄ the more pronounced is the softening of the EoSs.

The mass-radius (M -R) relations corresponding to the
EoSs in Fig. 2 were obtained by solving the Tolman-
Oppenheimer-Volkoff (TOV) equations for static non-
rotating spherical stars [1] and are shown in Fig. 3. For
the crust region, the BPS EoS [100] is used. The in-
clusion of additional exotic degrees of freedom reduces
the maximum mass of NSs in comparison to nucleonic
matter from 2.5 M⊙ to ∼ 2 M⊙. The compactness is
also observed to be enhanced due to the appearance of
∆−-resonance at lower densities. The parameter values
of the maximum mass stars are provided in a tabulated
form in Table VI. From Tables V and VI it can be in-
ferred that K− meson appears in all the EoS models with
UK̄ = −140,−150 MeV. But K̄0 meson does not appear
in the hypernuclear star with UK̄ = −140 MeV and ∆-
baryon admixed hypernuclear star with V∆ = VN and
UK̄ = −140 MeV. Consistent with the (anti)kaon soften-
ing of the EoS seen in Fig. 2 the maximum masses of the
stars with NY∆ composition and (anti)kaon condensa-
tion lie below those without ∆ resonances, which is the
reverse of what is observed when (anti)kaon condensation
is absent.

From the analysis above, we conclude that compact
stars containing (anti)kaons are consistent with the as-
trophysical constraints set by the observations of massive
pulsars, the NICER measurements of parameters of PSR
J0030 + 0451, the low-mass X-ray binaries in a globular
cluster, and the gravitational wave event GW190425, see
Sec. I. Although we do not provide here the deforma-
bilities of our models, from the values of the radii ob-
tained it is clear that our models are also consistent with
the GW170817 event. Finally, our models are inconsis-
tent with the interpretation of the light companion of the
GW190814 binary as a compact star. Including the ro-
tation even at its maximal mass-shedding limit will not
be sufficient to produce a ∼ 2.5M⊙ mass compact star,
see Refs. [22, 23].

Figure 4 shows the particle composition in NY matter
with (anti)kaons as a function of baryon number den-
sity and for UK̄ = −140,−150 MeV. At low densities,
before the onset of strange particles, the charge neu-
trality is maintained among the protons, electrons and
muons. At somewhat higher density (≥ 2n0) Λ and Ξ−

appear in the matter (because of the repulsive nature
of Σ-potential in dense nuclear matter, Σ-baryons do not
appear in the composition). Finally, the (anti) kaons and
Ξ0 appear in the high-density regime (≥ 4n0). Compar-
ing the upper and lower panels of the figure, we observe
that the higher UK̄ value implies a lower density thresh-
old of the onset of (anti)kaon, as expected. The onset
of (anti)kaons also affects the population of leptons; K−

are efficient in replacing electrons and muons once they
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appear, thus they contribute to the extinction of leptons,
which occurs at lower densities for higher values of UK̄ .
In the case of UK̄ = −150 MeV, the Ξ− fraction is seen to
be strongly affected with the appearance of K− mesons.
This is expected as K− being bosons are more energeti-
cally favorable for maintaining the charge neutrality com-
pared to fermionic Ξ−. The composition in the case of

UK̄ = −140 MeV, does have K̄0 mesons (nu ∼ 6.95 n0)
whereas for UK̄ = −150 MeV, K̄0 appears at onset den-
sity nu ∼ 5.59 n0 which leads to an additional softening
of the EoS. Figure 5, which is analogous to Fig. 4, shows
the particle population in NY∆-matter as a function of
baryon number density for UK̄ = −140 MeV. It is ob-
served that for V∆ = VN only ∆− resonance appears,



8

TABLE VI. Properties of maximum mass stars for various compositions and values of (anti)kaon potential UK̄(n0). For each
composition/potential value the enteries include: maximum mass (in units of M⊙) the radius (in units of km), and central
number density (in units of n0).

Configuration NYK̄ NY∆K̄

V∆ = VN V∆ = 5/3 VN

UK̄ (MeV) Mmax(M⊙) R(km) nc(n0) Mmax(M⊙) R(km) nc(n0) Mmax(M⊙) R(km) nc(n0)

0 2.008 11.651 6.107 2.021 11.565 6.160 2.049 11.226 6.349

−140 2.005 11.652 6.096 2.019 11.566 6.151 2.032 11.343 6.214

−150 1.994 11.664 6.13 2.006 11.61 6.143 1.973 11.448 6.028
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FIG. 4. Particle abundances ni (in units of n0) as a function
of normalized baryon number density in NY matter for values
of UK̄ − 140 MeV (top panel) and −150 MeV (bottom panel).

whereas for V∆ = 5/3 VN the onset of the entire quartet
of ∆-resonances is possible. It seen that in general the
∆-resonances effectively shift the threshold densities of
hyperons to higher densities, thus diminishing their role.
This concerns both the neutral Λ as well as Ξ−-hyperon.
This shift is stronger for larger values of V∆. Resonances
also suppress the lepton fraction by lowering the den-
sity at which they disappear in NY∆-matter, this effect
being magnified for larger values of V∆. In the high-
density regime the negative charge is provided by ∆−–
Ξ−–K− mixture and it is seen that the rapid increase in
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FIG. 5. Same as Fig. 4 but for NY∆ matter for V∆ = VN

(top panel) and V∆ = 5/3 VN (bottom panel) and fixed value
of UK̄ = −140 MeV.

the K− population suppresses the ∆−-Ξ− abundances
for V∆ = 5/3 VN , as kaons are energetically more favor-
able than the heavy-baryons. Note also that the onset
of K̄0 meson abruptly decreases the abundance of Ξ−,
as seen in the lower panel; (in the upper panel, i.e. for
UK̄ = −140 MeV and V∆ = VN , the K̄0 mesons do not
appear). There is some qualitative differences between
the two cases V∆ = 1 and 5/3 VN : (a) the ∆− baryon
disappears at higher matter densities for V∆ = 1 but its
abundance is almost constant in for V∆ = 5/3 VN ; (b)
the Λ hyperon dominates over the neutron fraction at



9

higher density for ∼ 5.5 n0 in case of V∆ = VN compared
to ∼ 4.5 n0 in case of V∆ = 5/3 VN .
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FIG. 6. Same as Fig. 5 but for a larger (absolute) value of
potential UK̄ = −150 MeV.

Figure 6 shows the same as in Fig. 5 but for UK̄ = −150
MeV. The particle fractions show identical trends as in
Fig. 5 until the appearance of (anti)kaons. The larger
potential favors earlier onset of (anti)kaons in matter;
for example, the K− sets in before the Ξ− and it is now
the dominant negatively charged component shortly after
the density increases beyond the onset value. The effect
of the onset of K̄0 on the Ξ− and ∆−, which is medi-
ated via changes in the abundances of K−, is seen clearly
again. As before, for a large value of V∆ = 5/3 VN , all
the members of the quartet of ∆-resonances are present
in the matter composition. Another notable fact is the
complete extinction of Ξ−,0 baryons, which is consistent
with the trends seen in Figs. 4 and 5. Interestingly,
in the case V∆ = 5/3 VN the (anti)kaons abundances
are the largest among all particles in the high-density
regime, which leads also to the softening of the EoS ob-
served above. Figure 7 shows the (anti)kaon effective
mass as a function of normalized baryon number den-
sity for various strengths of UK̄ with different matter
compositions. The effective mass of (anti)kaons tends
to decrease rather steeply in case of higher strengths of
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mK̄) as a function of baryon number density for NY and NY∆
matter compositions and two values of (anti)kaon potential
depth.

UK̄ . It is observed that in the low-density regime, the
(anti)kaon effective mass decreases relatively quickly in
the case of ∆-resonances admixed matter compared to
that with the only hyperonic matter. The reason is the
larger scalar potential values arising from the onset of
additional non-strange baryons at lower densities. And
at higher densities, the (anti)kaon effective mass values
are observed to be larger in the former case than the lat-
ter one. This may be attributed to the delayed onset of
hyperons because of the ∆-resonances appearance.
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The ∆-potential value is fixed at 5/3VN .

The matter pressure as a function of energy density
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for different matter compositions with and without σ∗

meson for the hyperon-hyperon interactions is shown in
Fig. 8. Being a scalar, σ∗ meson makes the EoS softer
as is evident from the figure. It is observed that incor-
porating σ∗ meson rules out the possibility of (anti)kaon
phase transition with UK̄ = −120 MeV. This is because
this scalar meson further reduces the effective mass of
(anti)kaons halting their onset in the matter. The phase
transition from the purely hadronic to (anti)kaon con-
densed phase is second-order. The results of mass-radius
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FIG. 9. The M -R relations corresponding to the EoSs in
Fig. 8 are shown for NY matter (left panel) and NY∆ matter
(right panel) with (anti)kaon potential UK̄ = −120 MeV in-
cluding σ∗ meson (dashed lines) and without it (solid lines).
The ∆-potential value is fixed at 5/3VN . The astrophysical
observables (constraints) are similar as in Fig. 3.

(M -R) relationship obtained by solving the TOV equa-
tions for non-rotating spherical stars corresponding to
the EoSs in Fig. 8 are presented in Fig. 9. It is observed
that in both cases of NY for NY∆ matter the inclusion of
σ∗ meson leads to lower maximum mass. It is also seen
that the addition of ∆’s reduces the radius of the of the
stars and mildly increases the maximum, which consis-
tent with the findings without (anti)kaon condensation.
Table VII provides the stellear maximum masses, radii
and corresponding central densities evaluated from the
EoSs in Fig. 8 with UK̄ = −120 MeV.

Figure 10 shows the particle abundances in case of hy-
pernuclear matter with UK̄ = −120 MeV with and with-
out σ∗ meson. The main qualitative difference is thatK−

appears for n ≥ 5.4 n0 in the first case and it does not
appear up to n ∼ 7 n0 in the second case. Consequently,
the charge neutrality is maintained between e−Ξ−+K−

and protons in the first case and only e − Ξ− and pro-
tons in the second case. Given by more than one order
of magnitude smaller abundance of electrons, the abun-
dances of Ξ− and protons almost coincide in the second
case. Another feature seen in Fig. 10 is that the electron

TABLE VII. Properties of maximum mass stars for various
compositions, UK̄ = −120 MeV, V∆ = 5/3 VN in the cases
with σ∗ meson and without. In both cases we list the maxi-
mum mass (in units of M⊙) the radius (in units of km), and
central number density (in units of n0).

Config. NYK̄ NY∆K̄ (V∆ = 5/3 VN )

Mmax R nc Mmax R nc

(M⊙) (km) (n0) (M⊙) (km) (n0)

σωρφ 2.124 11.673 5.973 2.137 11.023 6.538

σωρσ∗φ 2.008 11.651 6.107 2.049 11.226 6.349
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FIG. 10. Particle abundances ni (in units of n0) as a function
of normalized baryon number density in NY matter for value
of UK̄ = −120 in the case of σωρφ exchange (top panel) and
σωρσ∗φ (bottom panel). (Anti)kaons are absent in the second
case.

and muon populations disappear faster with increasing
density in the case where the σ∗ meson is included.

Figure 11, which is similar to Fig. 10, shows the com-
position of particles in NY∆ matter and for UK̄ = −120
MeV. In this case also, (anti)kaons are observed to appear
only in the EoS where σ∗ meson is excluded. It is seen,
that the main difference between the two cases is that
σ∗ driven interactions prefer lower threshold density of
Ξ0 and their larger fraction, which effectively leads to an
exclusions of (anti)kaons in the density range considered.
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Unlike the case with only hypernuclear matter, in this
case the lepton fractions are unaffected by the exclusion
or inclusion of σ∗ meson, because of the negative charge
is supplied by the ∆−-resonance.

IV. SUMMARY AND CONCLUSIONS

In this work, we discussed the second-order phase tran-
sition to Bose-Einstein condensation of (anti)kaons in hy-
pernuclear matter with and without an admixture of ∆-
resonances within the framework of density-dependent
CDF theory. The resulting EoS, matter composition,
and the structure of the associated static, spherically
symmetrical star models were presented. The strong in-
teractions viz. baryon-baryon and (anti)kaon-baryon are
handled on the same footing. The mediators considered
in this work are σ, ω, ρ for the non-strange baryons and
two strange particle interaction mediating mesons- σ∗, φ.
The K− optical potentials (−120 ≤ UK̄ ≤ −150 MeV)
at nuclear saturation density are considered in a range
which fulfills the observational compact star maximum
mass constraint (∼ 2M⊙).

We find that the (anti)kaon condensates cannot appear
in the hypernuclear matter, within our parametrization,

if UK̄ ≤ −130 MeV. K̄0 condensation is absent in max-
imum mass compact stars with UK̄ = −140 MeV. The
inclusion of hyperons into the matter composition shifts
the onset of (anti)kaons to higher density regimes in com-
parison to the case without hyperons, i.e. only nuclear
matter, c.f. to Ref. [74]. For higher UK̄ values, the ap-
pearance of both the (anti)kaons becomes possible in the
maximum mass models. The K− meson fraction is seen
to dominate over the Ξ− baryon for high UK̄ strengths.
This can be attributed to the fact that the K− parti-
cle being bosons is more favored over the fermionic Ξ−-
particles.

Next, in the case of ∆ baryon admixed hypernuclear
matter, the onset of (anti)kaons is shifted to even higher
densities compared to only hyperonic matter. (Anti)kaon
condensation is absent with UK̄ ≤ −120 MeV. The con-
densed phase is observed to appear in matter with UK̄ =
−130 MeV and V∆ = VN . However, K̄0 condensation
is absent for this particular UK̄ strength. Larger values
of ∆-potentials V∆ imply that the entire ∆-resonances
quartet is present in matter. It is also observed that
in a particular matter composition (UK̄ = −150 MeV,
V∆ = VN ), the onset of K− occurs even before that
of Ξ− particles. Moreover, for higher strengths of UK̄

and V∆, the ∆-baryons and (anti)kaons take over the
Ξ−,0 particles leading to their complete suppression in
the matter. Lepton populations are suppressed with in-
creasing density more quickly in case of higher strengths
of V∆. We find that the effective mass of (anti)kaons
is weakly dependent on the composition of matter and
decreases almost linearly in the relevant density range
2 ≤ n/n0 ≤ 6, which reflects the density dependence of
the scalar potential.

The influence of the strange scalar interaction mediat-
ing meson σ∗ on the composition and EoS are twofold:
firstly, including the σ∗ meson softens the EoS sig-
nificantly leading to lower maximum masses of com-
pact stars. Secondly, exclusion of σ∗ meson allows for
(anti)kaon K− to appear for weakly attractive potential
strength UK̄ ∼ −120 MeV in both the hyperonic as well
as ∆ admix hypernuclear matter.

As indicated in the discussion (Sec. III) the present
model with a suitable choice of parameters characterizing
the (anti)kaon condensate is consistent with the currently
available astrophysical constraints listed in Sec. I. The
present model can, therefore, be used to model physical
processes in (anti)kaon condensate featuring ∆-admixed
hypernuclear star. Examples include cooling processes,
bulk viscosity, thermal conductivity, to list a few.
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