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Abstract

We consider the equation A%u = g(z,u) > 0 in the sense of distribution in Q' = Q \ {0} where
uw and —Au > 0. Then it is known that u solves A%u = g(z,u) + ady — BAJ, for some non-
negative constants o and 3. In this paper we study the existence of singular solutions to A2u =
a(z)f(u) + ady — BAJy in a domain Q C IR*, a is a non-negative measurable function in some
Lebesgue space. If A%u = a(x)f(u) in Q', then we find the growth of the nonlinearity f that
determines a and 8 to be 0. In case when a = 8 = 0, we will establish regularity results when
f(t) < Cet, for some C,~ > 0. This paper extends the work of Soranzo (1997) where the author
finds the barrier function in higher dimensions (N > 5) with a specific weight function a(x) = |z|°.
Later we discuss its analogous generalization for the polyharmonic operator.
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1. Introduction

Isolated singularities of elliptic operators are studied extensively, see for eg. [2],[10], [14], [15]
and [16]. In this paper we wish to address the following problem and the questions related to it
for the biharmonic(polyharmonic) operator in R*(IR*™):-

Question: If a non negative measurable function u is known to solve a PDE in the sense of
distribution in a punctured domain, then what can one say about the differential equation satisfied
by u in the entire domain?

In [2], Brezis and Lions answered this question for the Laplace operator with the assumption that
CAu= ) it 20 o N
0<—-Au= f(u)in Q\ {0}, u>0, htmlnf > 0, QC R”.
—00

With the above hypotheses it was proved that both u and f(u) belong to L'(Q2), and satisfy
—Au = f(u) + adg, for some a > 0. For the dimension N > 3, P.L.Lions[10] found a sharp
condition on f that determines whether « is zero or not in the previous expression. In [5], the
authors further extended the result for dimension N = 2 by finding the minimal growth rate of
the function f which guranteed « to be 0.

Taliaferro, in his series of papers (see for e.g. [15], [16], [8]) studied the isolated singularities of
non-linear elliptic inequalities. In [16] the author studied the asymptotic behaviour of the positive
solution of the differential inequality

0< —Au< f(u) (1.1)
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in a punctured domain under various assumptions on f. If N > 3 and the function f has a ”super-

critical” growth as in Lions[10], (i.e. lim: o JE = 00, ) then there exists arbitrarily ’large
tN=2

solutions’ of (1.1). When N = 2, it was proved that there exists a punctured neighborhood of the
origin such that (1.1) admits arbitrarily large solutions near the origin, provided that log f(t) has
a superlinear growth at infinity. Moreover author characterizes the singularity at the origin of all
solutions u of (1.1) when log f(¢) has a sublinear growth. Later Taliaferro, Ghergu and Moradifam
in [8] generalized these results to polyharmonic inequalities.

The study of the polyharmonic equations of the type (—A)™u = h(x, u) is associated to splitting
the equation into a non-linear coupled system involving Laplace operator alone. Orsina and
Ponce[12] proved the existence of solutions to

—Au = flu,v)+p in Q,
(1) -Av = g(u,v)+n inQ,
u =v =0 on 0N).

with the assumption that the continuous functions f and g are non increasing in first and second
variables respectively with f(0,t) = g¢(s,0) = 0. But here the authors assumed that p and 7
are diffusive measures and Dirac distribution is not a diffusive measure. Considerable amount of
existence/non-existence results have been proved for the problem (1) when f is a function of v
alone and g depends only on u and p,n are Radon measures. For eg. see [1] where the authors
assumed f(u,v) = vP, g(u,v) = u? and with non-homogenous boundary condition. In [6] authors
dealt with sign changing functions f and g, with a polynomial type growth at infinity and the
measure p and 1 were assumed to be multiples of dg.

Our paper is closely related to the work of Soranzo [14] where author considers the equation:

A%y = |z|7uP withu >0, —Au>0in Q@ C RY,N >4 and ¢ € (—4,0).

A complete description of the singularity was provided when 1 < p < %Jj‘i for N >5,orl <p<oo

when N = 4. In this work we prove that the results of Soranzo can be improved for the dimension
N =4 by replacing u? by more general exponential type function.

2. Preliminaries

We assume that  is a bounded open set in IR, N > 4 with smooth boundary and 0 € . We
denote Q' to be Q\ {0}. In this section we discuss some of the well known results for biharmonic
operator.

Theorem 2.1. (Brezis - Lions [2]) Let u € L}, () be such that Au € L}, .(Q) in the sense of
distributions in ', u > 0 in Q such that

—Au+au>g a.ein

where a is a positive constant and g € L}, (Q). Then there exist ¢ € L}, .(Q) and o > 0 such that

loc loc

—Au = ¢+ ady in D'(Bg) (2.1)

where &y is the Dirac mass at origin.In particular, w € M! (Bgr) * where p = N/N — 2 when
N >3 and 1 < p < oo is arbitrary when N = 2.

Theorem 2.2. (Weyl Lemma, Simader(13]) Suppose G C RY be open and let u € L}, (G)
satisfies

/ ul*pdr = 0 for all p € C°(G), i.e. A%u =0 in D'(G).
€

Then there exists & € C*(G) with A*u =0 and u = a.e in G.

1 ppP

1 (BRr) denotes the Marcinkeiwicz space



Theorem 2.3. (Weak mazimum principle:) Let u € W4T (Q) be a solution of

Ay =f(x) >0 inQ
u>0,—Au>0 on 9

Then we have v > 0 and —Au > 0 in .

Proof of maximum principle easily follows by splitting the equation into a (coupled) system of
second order PDE’s say: w = —Awu and —Aw = f with the corresponding boundary conditions.
Using similar ideas we can infact prove a maximum principle with weaker assumptions on the the
smoothness of u, which is stated below:

Theorem 2.4. Let u,Au € L'(Q) and A%u > 0 in the sense of distributions. Also assume that
u, Au are continuous near 02 and u > 0, —Au > 0 near 0Q. Then u(z) >0 in Q.

Definition 2.1. Fundamental solution of A% is defined as a locally integrable function ® in IR
for which A2® = 6y and precisely expressed as

|4 if N2>5
log 2 if N=4

- ||
®@) =an gy if N=3
|z|2log 2 if N =2

||
for some constant an > 0.

Theorem 2.5. Suppose g : ' x [0,00) — IR" be a measurable function and let u, Au and A%u €
Li, (). Let A%u = g(x,u) in D'(Q) withu > 0 and —Au > 0 a.e in Q. Then u, g(x,u) € L}, .(Q)

loc

and there exist a non-negative constants o , 3 such that A%u = g(x,u) + ady — BASy in D' ().

Proof: Let us write w = —Aw. Then —Aw = g(z,u) > 0 in D'(Q') and also given that w, g(z,u) €

L, .(€). Now as a direct application of Brezis-Lions Theorem 4.4, we obtain

—Aw = g(x,u) + ady for some a > 0 (2.2)
and w, g(x,u) € L}, .(Q). Since —Au =w > 0 in Q' again by Theorem 4.4 u € L}, () and
—Au = w + [dg for some § > 0.
Now substituting w = —Au — $dp in (2.2) we get
A%y = g(x,u) + ady — BAS. (2.3)

Extending g(z,u) to be zero outside Q we get A?(u— f(u)*®—a®—BT) = 0in D'(Q). By Weyl’s
lemma for biharmonic operators, there exists a biharmonic function h € C*°(2) and

u=g(z,u)*®+a®+ T+ hae in Q.

Note that I'(x) belongs to Marcinkeiwicz space M %(Q) when N > 2. By the property of the
N

convolution of an L! function with the functions in M ¥ (R™) we obtain u € M, (). O.
The above result has been proved in [14](see Theorem 2) as an application of their main result on
the system of equations. Proof is essentially based on the idea of Brezis-Lions type estimates. We
have instead given a direct alternative proof for the same result. Theorem 2.5 can be extended
for polyharmonic operator in a standard way, for details see Theorem 4.1 .



3. Biharmonic operator in IR*

In this section we will restrict ourselves to the dimension N = 4 and g(z,u) to take a specific
form g(x,u) = a(x)f(u). Let Q be a bounded open set in IR*, 0 € Q and denote Q' = Q\ {0}. We

assume

(H1) f:[0,00) — [0,00) is a continuous function which is nondecreasing in IR and f(0) = 0.
(H2) a(x) is a non-negative measurable function in L*(Q) for some k > 3.

(H3) There exists ro > 0 such that essinfp, a(x) > 0.

Let u be a measurable function which solves the following problem:

P) { A%y = a(x)f(u) in @

u>0 —Au>0 in

)

From Theorem 2.5 we know that v is a distributional solution of (P, g)

A% =a(x)f(u) + ady — BAS
(Pag) u>0 —Au>0 5
a,B >0, uand a(z)f(u) € LY(Q).

The assumption (H3) suggests that the presence of such a weight function does not reduce the
singularity of a(z)f(u) at origin. In particular, if a(x) = |z|? for o € (=3,0), then a(z) satisfies
(H2) and (H3).
Now assume that

lim —= =c € (0, o). (3.1)

ie. f(t) grows atleast at a rate of > near infinity. Then for some to large enough, we have
f@) > gt2 for all ¢ > t¢. Suppose u is a solution of (P, g) and f satisfies 3.1. Then we know that

for some biharmonic function h

u(z) =a(z)f(u) *®+a®+ T +hae in Q
where ® is the fundamental solution of biharmonic operator in IR* and I' is the fundamental
solution of —A in IR*. Since a and a(x)f(u) are non-negative, we have u(z) > SI'(z) + h(z). If

B #0, fix an 7 € (0,79) such that u(z) > to whenever |z| < 7. Now,

>_ =
= 2222

/B;a(af)f(u) > o/B; 2]~ = o0

which is a contradiction since a(z)f(u) € L*(Q2). Thus 8 = 0 if f(t) grows at a rate faster than 2
near infinity. We state this result in the next lemma.

Lemma 3.1. Let f satisfies the condition (3.1) and u solves (P). Then for some o non-negative
A%y = a(z) f(u) + ady in D'(Q).

Now onwards we assume that f satisfies (3.1). We would like to address following questions in
this paper:

1. Can we find a sharp condition on f that determines whether a = 0 or not in (Py,9)?
2. If @ =0, is it true that u is regular in Q7



Definition 3.1. We call f a sub-exponential type function if

lim f(t)e"" < C for some ~,C>0.

t—o00
We call f to be of super-exponential type if it is not a sub-exponential type function.

We will show that the above two questions can be answered based on the non-linearity being a
sub-exponential type function or not.

Theorem 3.1. (Removable Singularity) Let f be a super-exponential type function and u is a
distributional solution of (P). Then u extends as a distributional solution of (Py).

Proof: Given u solves (P), we know that A%u = a(z) f(u) +ady — BAS, for some a, B > 0. To show
the extendability of the distributional solution we need to prove a = 3 = 0. Since f is of super
exponential type function, from Lemma 3.1 it is clear that 8 = 0. Let us assume that o > 0 and

o)
derive a contradiction. Note that we can find an r small enough such that u(z) > — =

T
whenever |z| < r. Since f is not a sub-exponential type function, for a given v > 0 there exists

to > 0 such that f(t) > et for all t > ty. Thus,

log ||

o
1672

flu(z)) > f (— 10g|:v|) > e ez o8l for 2] << 1.
Now if we choose v = % in the above inequality, it contradicts the fact a(x)f(u) € L(Q). Thus
a=p=0in (P,g). O

Theorem 3.2. If f(t) = t* where 1 < p < 32 and a(z) = |z|?, for o € (—2,0) then (P p) is
solvable for o, 8 small enough.

Proof follows from Theorem 4(ii)) of Soranzo[14]. The idea was to split the equation into a coupled
system and find a sub and super solution for the system. In the next theorem when f satisfies 3.1,
we find a super solution for (P,,) directly without splitting the equation into a coupled system
and then use the idea of monotone iteration to show the existence of a non-negative solution for
« small enough. When 8 # 0, such a direct monotone iteration technique is not applicable as Adg
is not a positive or a negative distribution, ie ¢ > 0, does not imply (Adg, ¢) > 0 or < 0.
Theorem 3.3. Let f and a satisfy the hypotheses (H1)—(H3). Additionally assume lim;_, o, % =
¢ € (0,00]. Then there exists an o, > 0 such that for all a < a, the problem (Pyo) admits a
solution in B,.(0).

Proof: We use the idea of sub and super solution to construct a distributional solution for (P, o)
for o small enough. Clearly uy = 0 is a subsolution for (P,,). Given that f is a sub-exponential
type nonlinearity, there exists a ¥ > 0 and a C' > 0, such that f(t) < Ce?* for all t € IRT.

Now define
_ —logl|z| +C¢ .
u(r) = —=——— in
v

where ¢ is the unique solution of the following Navier boundary value problem,

B1(0). (3.2)

~a(x) .
A%2¢p = ——Slog|z|in B;1(0) (3.3)

p= 0 =Ag¢ondB0).

We notice that since a(z) € L¥(€2), for some k > %, the term a(z)|z|~'log|z| € LP(By) for some
p > 1. Hence the existence of a unique weak solution ¢ € W*P(By) is guarenteed by Gazzolla [7],
Theorem 2.20. Now by maximum principle we have ¢ > 0, —A¢ > 0.
Therefore,

7> 0 in By(0), (3.4)



2 C
AT=—2_ _Z A > 0. 3.5
e (32

and

1) C

2— 0

= 4+ — I . .
u=g 2 + lela(:zr) [log |=|| (3.6)

Note that a(z) f(u) < Qa(z)ec¢. By Sobolev embedding, we know W4?(Q) — C(2), and hence

||

1
¢©? is bounded in B;(0). Now we fix an 7 > 0 where ¢“? < Hog |zl| i

n B, (0). We let Q = B,.(0)

(where r depends only on v and C) be a strict subdomian of B (0) where a(x)|log|z|| >

<
vz

a(x)f(u). Now from the choice of r and equations 3.4) , (3.5) and (3.6) it is obvious that @ is a

super solution of (P,,o) where o = . Now let us define inductively with ug =0

82y
A?uy, = a(x)f(un_1) +ady  in D'(Q)

(PYo) Up >0, —Au, >0 in Q

Up = Au, =0  on 99

Existence of such a sequence {u,} can be obtained by writing u,, = w, + a«® where

A%w, = a(@) f(un-1) in 2,
wy, = —ad®, Aw,, = —aAd on I,
wy, € WHT(Q) for some 7 > 1.

Existence of wy is clear since f(0) = 0 and from Theorem 2.2 of [7]. First let us show the
positivity of u; and —Aw; in Q. Since w; is bounded, we can choose e¢ small enough so that
u; = wi +a® > 0and —Au; > 0 in B.. In 2\ B, by weak comparison principle we can show that
w1 > 0 and —Awuy > 0. Next we need to show that u; < w. Note that by construction, @ > 0 and
—Aw > 0in B, \ {0}. Then, @ — u; satisfies the set of equations

A%2(u—wup) >0 in D(Q),
u—u; >0,—A(TW—u1) >0 near oS

Now using the maximum principle for distributional solutions (Theorem 2.4) we find u; < .
Assume that there exists a function uy solving (P4 ) for k=1,2---n and

0<ui<uy...<u, <uwin Q.

Since f is non-decreasing we have a(z) f(u,) € LP(S2), for some p > 1. Thus by Sobolev embedding
there exists a wy,+1 € C(Q) N W*HP(Q). Also,

A?(uns1 — un) = a(@) f(un) — a(@) f(up-1) > 0 in O
Upt1 = Up, Aty = Auy, on 0.

Again from weak comparison principle 0 < 4, < t,41 and 0 < —Awu,, < —Auy,11. As before one
can show that u,+1 < u. Now if we define u(x) = lim,, o uy, () one can easily verify that u is a

solution of (P,) for a = gﬂlz»y' For a given f sub-exponential type function we have found a ball
1

of radius r such that (P,,) posed on B,(0) has a solution u, for a = . This solution u, is

82y
a supersolution for (P, o) posed in B,(0) and for o/ € (0, ). Thus one can repeat the previous
iteration and show that for all o’ € (0, «) there exists a weak solution for (P, o) in B;(0). O

Corollary 3.1. Suppose for a given v > 0 there exists a C such that f(t) < Cye?* for all
t € RT. Then (P.o) has a solution in B,_(0) for all o € (0,00). In particular if f(t) = tP,p > 2

oret’ 5 <1 then (Pao) is solvable for all a > 0.



Next we recall a Brezis-Merle [3] type of estimate for Biharmonic operator in IR*. Let h be a
distributional solution of
(2) { A%h = f in Q

h=Ah=0 on 0.
where  is a bounded domain in IR*.

Theorem 3.4. (C.S Lin [9]) Let f € LY(Q) and h is a distributional solution of (2). For a given
§ € (0,3272) there exists a constant Cs > 0 such that the following inequality holds:

/ exp ( ”f”l)dx < Cs(diamQ)*

where diam Q denote the diameter of 2.

Theorem 3.5. Let f be a sub-exponential type function. Let u be a solution of (Poo) with
uw=Au=0 on 0. Then u is reqular in 2.

Proof: Let u be a solution of A?u = a(x)f(u) in Q with Navier boundary conditions. Write
g(z) = a(x)f(u), then g € L'(Q). Fix a l > 0 and split g = g1 + g2 where [|g1]l1 < 7 and
g2 € L*°(Q). Let ua be the unique solution of

A?uy = gy in Q,
ug = 0, Aus = 0 on 9.

Then
A?u; = g1 in Q,
u1 = 0, Au; = 0 on 9.

Choosing § = 1 in Theorem 3.4, we find / exp( || || ) < Cy(diam Q)*. Thus el“1l € L1(Q). Since
1

uy € L®(Q), we have e!l*l € L1(Q) for all | > 0. We use this higher intergrability property of u in
establishing its regularity.
We can show that a(x)f(u) € L"(Q2) for some r > 1. In fact,

[ @y < ¢ [ a@rem

(o) () <

if we choose p,r > 1 close enough to 1 so that 1 < p.r < k, where a(x) € L¥(£2). Now let v be the

unique weak solution of
A%y = a(z)f(u) in Q,
v =0,Av =0 on 9.

IN

IN

We have v € 37 (Q) for all v/ € (0,1). Now u = v+ h for some biharmonic function h. Therefore
ue C3(Q). 0.

Remark 3.1. The previous theorem is true even if a(x) € L¥(Q) for some k > 1.

When f is super exponential in nature an arbitrary solution of A%u = a(x)f(u) in D’(£2) need not
be bounded. We consider the following example.

Example 3.1. Let w(z) = (— 410g|:1c|) for some p > 1. Then one can verifty that whenever

x #0,
A?w = by w T byw? — by

for some positive constants b;. Since f(w) = bye®” w'=* [byw?* —bs] is super exponential in nature,
w extends as an unbounded distributional solution of A?w = f(w) in B,(0) for r small enough.



4. Polyharmonic Operator in R?™

We suppose 2 is a bounded domain in RY, N > 2m with smooth boundary and 0 € . We
denote €' as 2\ {0}.

Theorem 4.1. Suppose g : Q' x [0,00) — IR is a measurable function and A*u € L}, ()
for k= 0,1,.m. Let (=A)™u = g(x,u) in D'(V) with (—A)*u >0 for k = 0,1,..,m — 1 a.e
in . Then u,g(m,u) 6 L}, () and there exist non-negative constants g, ..., am—1 such that

(—A)"u = gz, u) + Z ai(=A)i8y in D'(Q).
Now we restrict ourselves to dimension N = 2m and g(z,u) to take a specific form g(z,u) =
a(x)f(u). Throughout this section we make the following assumption:

:[0,00) = [0, 00) is a continuous function which is non-decreasing in R and f(0) = 0.

HY) f
(H2') a(z) is non negative measurable function in L¥(Q) for some k > 22—
)

(H3') There exists ro > 0 such that essinfp, a(z) > 0.

Let u be a measurable function which satisfies the problem below,

(=A)"u =a(z)f(u) in
(Ph) (=Afu>0inQ, k=0,.,m—1
u € C*m(Q)\ {0}).

Then by 4.1 we know that u is a distribution solution of (P}, . )

(—A)™y ) + Z ai(—A)'6 in

(=A)Yru >0, k=0,. —11nQ’
a; >0, fori= O,..,m— 1 and u,a(z)f(u) € L}(Q).

(Pa )

X0, Xm—1

In [4], Soranzo et.al considered a specific equation (—A)™u = |z|7u? in ', with o € (—2m,0)
and (—A)*u >0, for k=0,1,...m. By Corollary 1 of [4], if N = 2m and p > max{1, 2£2} then
o1 =02 ="'"=0qn-1=0In (Polm,...am,l)' This result can be sharpened for any weight function
a(x) satisfying (H3) in a standard way and we skip the details of the proof.

t
Remark 4.1. Let u satisfy (P') and tlim ? = c¢ € (0,00]. Then we have a1 = g = .. =
—o0 (™M

Q-1 =0 in (P}
m Q.

orcom 1) @nd hence u is a distributional solution of (—=A)™u = a(z)f(u) + ado

Now the following theorem gives us a sharp condition on f which determines ap = 0 in
(Pl o...0) and the proof is as similar to Theorem 3.1.

Theorem 4.2. Let f be a super- e:cponential type function and u is distribution solution of (P1).

[RRE}

t
Theorem 4.3. Let f and a satisfy the hypotheses (H1")— (H3'). Additionally assume hrn 0 =

—o0 tm
¢ € (0,00]. Then there exists an ag > 0 such that for all o < ag the problem (Pa,o,... ) admits a
solution in B,.(0), where the radius of the ball depends on the nonlinearity f.



Proof: We proceed as in Theorem 3.3, by constructing sub and super distributional solution for
(Plo...0) for all a small enough. We note that ug = 0 is a sub-solution, and let

_ —loglal +C9

u(x) 5

B1(0) (4.1)

where ¢ is the unique solution of the following Navier boundary value problem,

my _ _02) .
(—A)"g = Tl log |z] in B1(0) (42)
p=A0¢ = ..=(A)""1¢on 8B;(0).

Then % is a supersolution of (P, ) in a small ball B,.(0). Rest of the proof follows exactly as
in the case of biharmonic operator. o
Next we state a Brezis-Merle type of type of estimates for poly-harmonic operator in R?™.

Theorem 4.4. (Martinazzi [11]) Let f € L'(Bgr(z0)), Br(zo) C R*™, and let v solve

(=A)"v = f in Bg(xo),
v=A%=... = A"y =0 on dBg(z0)
Tm

0, ——"—), we have e>™?I’l € LY (Bg(z0)) and
1 £1l21(BR(z0))

Then, for any p € (

/ eQmp\’u|dI < C«(p)]{Qm7
BR(I[))

@m = 1! |
15

Finally with the help of above theorem we prove a regularity result for the polyharmonic
operator.

where v, =

Theorem 4.5. Let a(z) and f satisfies the properties as in (H1") — (H3') and also assume that f
be a sub-exponential type function. Let u be a solution (Pol,o,..,o) withu = Au = ... = A"ty =0
on Q. Then u € C>"=17(Q), for all v/ € (0,1).
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