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Isolated 3-D Object Recognition through Next View

Planning

Sumantra Dutta Roy, Santanu Chaudhury, and Subhashis Banerjee

Abstract—In many cases, a single view of an object may not contain suf-
ficient features to recognize it unambiguously. This paper presents a new

on-line recognition scheme based on next view planning for the identifica-
tion of an isolated three-dimensional (3-D) object using simple features. The

scheme uses a probabilistic reasoning framework for recognition and plan-
ning. Our knowledge representation scheme encodes feature based infor-

mation about objects as well as the uncertainty in the recognition process.
This is used both in the probability calculations as well as in planning the

next view. Results clearly demonstrate the effectiveness of our strategy for
a reasonably complex experimental set.

Index Terms—Active vision, reactive planning, 3-D object recognition.

I. INTRODUCTION

In this paper, we present a new on-line scheme for the recognition

of an isolated three-dimensional (3-D) object using reactive next view

planning. A hierarchical knowledge representation scheme facilitates

recognition and the planning process. The planning process utilizes

the current observation and past history for identifying a sequence of

moves to disambiguate between similar objects.

Most model-based object recognition systems consider the problem

of recognizing objects from the image of a single view [1]–[4]. How-

ever, a single view may not contain sufficient features to recognize

the object unambiguously. In fact, two objects may have all views in

common with respect to a given feature set, and may be distinguished

only through a sequence of views. Further, in recognizing 3-D objects

from a single view, recognition systems often use complex feature sets

[2]. In many cases, it may be possible to achieve the same, incurring less

error and smaller processing cost using a simpler feature set and suit-

ably planning multiple observations. A simple feature set is applicable

for a larger class of objects than a model base specific complex feature

set. Model base-specific complex features such as 3-D invariants have

been proposed only for special cases so far (e.g., [3]). The purpose of

this paper is to investigate the use of suitably planned multiple views

and two-dimensional (2-D) invariants for 3-D object recognition.

A. Relation with Other Work

With an active sensor, object recognition involves identification of a

view of an object and if necessary, planning further views. Tarabanis

et al. [5] survey the field of sensor planning for vision tasks. We can

compare various active 3-D object recognition systems on the basis of

the following four issues.

1) Nature of the Next View Planning Strategy: The system should

plan moves with maximum ability to discriminate between views
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common to more than one object in the model base. The cost in-

curred in this process should also be minimal. The system should,

preferably be on-line and reactive—the past and present inputs

should guide the planning mechanism at each stage.

While the scheme of Maver and Bajcsy [6] is on-line, that of

Gremban and Ikeuchi [7] is not. Due to the combinatorial nature

of the problem, an off-line approach may not always be feasible.

2) Uncertainty Handling Capability of the Hypothesis Generation

Mechanism: The occlusion-based next view planning approach

of Maver and Bajcsy [6], as well as that of Gremban and Ikeuchi

[7] are essentially deterministic. A probabilistic strategy can

make the system more robust and resistant to errors compared to

a deterministic one. Dickinson et al. [8] use Bayesian methods

to handle uncertainty, while Hutchinson and Kak [9] use the

Dempster–Shafer theory.

3) Efficient Representation of Domain Knowledge: The knowledge

representation scheme should support an efficient mechanism

to generate hypotheses on the basis of the evidence received. It

should also play a role in optimally planning the next view.

Dickinson et al. [8] use a hierarchical representation scheme

based on volumetric primitives, which are associated with a high

feature extraction cost. Due to the non-hierarchical nature of

Hutchinson and Kak’s system [9], many redundant hypotheses

are proposed, which have to be later removed through consis-

tency checks.

4) Speed and Efficiency of Algorithms for Both Hypothesis Gen-

eration and Next View Planning: It is desirable to have algo-

rithms with low order polynomial-time complexity to generate

hypotheses accurately and fast. The next view planning strategy

acts on the basis of these hypotheses.

In Hutchinson and Kak’s system [9], although the poly-

nomial-time formulation overcomes the exponential time

complexity associated with assigning beliefs to all possible

hypotheses, their system still has the overhead of intersection

computation in creating common frames of discernment. Con-

sistency checks have to be used to remove the many redundant

hypotheses produced earlier. Though Dickinson et al. [8] use

Bayes nets for hypothesis generation, their system incurs the

overhead of tracking the region of interest through successive

frames.

The next view planning strategy that this paper presents is reactive

and on-line—the evidence obtained from each view is used in the hy-

pothesis generation and the planning process. Our probabilistic hypoth-

esis generation mechanism can handle cases of feature detection errors.

We use a hierarchical knowledge representation scheme which not only

ensures a low-order polynomial-time complexity of the hypothesis gen-

eration process, but also plays an important role in planning the next

view. The hierarchy itself enforces different constraints to prune the

set of possible hypotheses. The scheme is independent of the type of

features used, unlike that of [8]. We present results of over 100 exper-

iments with our recognition scheme on two sets of models. Extensive

experimentation shows the effectiveness of our proposed strategy of

using simple features and multiple views for recognizing complex 3-D

shapes.

The organization of the rest of the paper is as follows: Section II

presents our knowledge representation scheme. We discuss hypothesis

generation for class and object recognition in Section III. Section IV

1083-4427/00$10.00 © 2000 IEEE
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describes our algorithm for planning the next view. In Section V we

demonstrate the working of our system on two sets of objects. We sum-

marize the salient features of our scheme and discuss areas for further

work in Section VI.

II. THE KNOWLEDGE REPRESENTATION SCHEME

A view of a 3-D object is characterized by a set of features. With re-

spect to a particular feature set and over a particular range of viewing

angles, a view of a 3-D object is independent of the viewpoint. Koen-

derink and van Doorn [10] define aspects as topologically equivalent

classes of object appearances. Ikeuchi et al. generalize this definition:

object appearances may be grouped into equivalence classes with re-

spect to a feature set. These equivalence classes are aspects [11]. In this

context, we define the following terms:

Class A: Class (or, aspect-class) is a set of aspects, equiva-

lent with respect to a feature set.

Feature-Class: A feature-class is a set of equivalent aspects de-

fined for one particular feature.

Fig. 1 shows a simple example of an object with its associated aspects

and classes. The locus of view-directions is one-dimensional (1-D) and

we assume orthographic projection. The basis of the different classes is

the number of horizontal lines (h) and vertical lines (v) in a particular

view of the object. Thus, a class may be represented as hhvi. There

are six aspects of the object shown, belonging to three classes. In this

example, for simplicity we assume only one feature detector so that

each feature-class is also a class.

We propose a new knowledge representation scheme encoding do-

main knowledge about the object, relations between different aspects,

and the correspondence of these aspects with feature detectors. Fig. 2

illustrates an example of this scheme. We use this knowledge represen-

tation scheme both in belief updating as well as in next view planning.

Sections III and IV discuss these topics, respectively. The representa-

tion scheme consists of two parts.

1) The Feature-Dependence Subnet: In the feature-dependence

subnet

• F represents the complete set of features fFjg used for

characterizing views.

• A feature node Fj is associated with feature-classes fjk .

Factors such as noise and nonadaptive thresholds can introduce

errors in the feature detection process. Let pjlk represent the

probability that the feature-class present is fjl, given that the de-

tector for feature Fj detects it to be fjk . We define pjlk as the

ratio of the number of times the detector for feature Fj interprets

feature-class fjl as fjk, and the number of times the feature de-

tector reports the feature-class as fjk. The Fj node stores a table

of these values for its corresponding feature detector.

• A class node Ci stores its a priori probability, P (Ci). A

link between class Ci and feature-class fjk indicates that

fjk forms a subset of features observed in Ci. This ac-

counts for a PART-OF relation between the two. Thus, a

class represents an n-vector [f1j f2j � � � fnj ]. Since a

class cannot be independent of any feature, each class has

n input edges corresponding to the n features.

2 The Class-Aspect Subnet: The class-aspect subnet encodes the

relationships between classes, aspects, and objects.

• O represents the set of all objects fOig
• An object node Oi stores its probability, P (Oi).

• An aspect node aij stores its angular extent �ij (in de-

grees), its probability P (aij), its parent class Cj , and its

neighboring aspects.

• Aspect aij has a PART-OF relationship with its parent ob-

ject Oi. Thus, 3-tuple hOi; Cj ; �iki represents an aspect.

Fig. 1. Aspects and classes of an object.

Fig. 2. Example of the knowledge representation scheme.

Aspect node aij has exactly one link to any object (Oi)
and exactly one link to its parent class Cj .

III. HYPOTHESIS GENERATION

The recognition system takes any arbitrary view of an object as input.

Using a set of features (the feature-classes), it generates hypotheses

about the likely identity of the class. This is, in turn used for gener-

ating hypotheses about the object’s identity. The interaction of the hy-

pothesis generation part with the rest of the system is shown in Fig. 3.

Hypothesis generation consists of two steps namely, class identifica-

tion, and object identification.

A. Class Identification, Accounting for Uncertainty

Our algorithm suitably schedules feature detectors to perform prob-

abilistic class identification. In what follows, we discuss its various as-

pects. Fig. 4 presents the overall algorithm.

1) Ordering of Feature Detectors: A proper ordering of feature de-

tectors speeds up the class recognition process. At any stage, we choose

the hitherto unused feature detector for which the feature-class corre-

sponding to the most probable class has the least number of outgoing

arcs, i.e., the least out-degree. This is done in order to obtain that fea-

ture-class which has the largest discriminatory power in terms of the

number of classes it could correspond to. For example, in Fig. 2 if all

feature detectors are unused andC2 has the highest a priori probability,

F3 will be tried first, followed by F2 and F1, if required.
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Fig. 3. Flow diagram depicting the flow of information and control in our system.

Fig. 4. Class recognition algorithm.

2) Class Probability Calculations Using the Knowledge Represen-

tation Scheme: We obtain the a priori probability of class Ci as

P (Ci) =
p

P (Op) �
q

P (apqjOp) : (1)

Here, aspects apq belong to class Ci. Let NF , NC , and Na denote

the number of feature-classes associated with feature detector Fj , the

number of classes, and the number of aspects, respectively. P (apqjOp)
is �pq=360. We can computeP (Ci) from our knowledge representation

scheme by considering each aspect node belonging to an object and

testing if it has a link to node Ci; this takes O(NC + Na) time. (The

NC term is for the initialization of class probabilities to 0.)

Let the detector for feature Fj report the feature-class obtained to be

fjk . Given this evidence, we obtain the probability of classCi from the

Bayes rule

P (Cijfjk) =
P (Ci) � P (fjkjCi)

m

[P (Cm) � P (fjkjCm)]
(2)

P (fjkjCi) is 1 for those classes which have a link from feature-class

fjk. It is 0 for the rest. The computation of (2) takesO(NC) time—this

is done for each feature-class. Hence, the computation ofP (fjkjCi) for

all feature-classes fjk for feature detectorFj takes timeO(NF � NC).
For an error-free situation, P (Cijfjk) is P 0(Ci), the a posteriori

probability of class Ci. However, due to errors possible in the feature

detection process, a degree of uncertainty is associated with the evi-

dence. The value of P 0(Ci) is, then

P 0(Ci) =
l

P (Cijfjl) � pjlk (3)

where fjl’s are feature-classes associated with feature Fj . According

to our knowledge representation scheme, only one feature-class under

featureFj , say fjr has a link to classCi. The summation reduces to one

term, P (Cijfjr) � pjrk . Thus, our knowledge representation scheme

also enable recovery from feature detection errors.

B. Object Identification

Based on the outcome of the class recognition scheme, we estimate

the object probabilities as follows. Initially, we calculate the a priori

probability of each aspect as

P (aj k ) = P (Oj ) � P (aj k jOj ): (4)
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(a) (b)

Fig. 5. (a) The notation used (Section IV) and (b) a case when our algorithm
is not guaranteed to succeed (Section IV-A).

If there areN objects in the model base, we initializeP (Oj ) to 1=N
before the first observation. For the first observation, P (aj k jOjp) is

�j k =360. A priori aspect probability calculations take O(Na) time.

For any subsequent observation, we have to account for the move-

ment in the probability calculations. For example, a particular move-

ment may preclude the occurrence of some aspects for a given class

observed. The value of P (aj k jOj ) is given by

P (aj k jOj ) = �j k =360 (5)

where �j k (�j k 2 [0; �j k ]) represents the angular range pos-

sible within aspect aj k for the move(s) taken to reach this posi-

tion. Due to the movement made, we could have observed only m
(0 � m � r) aspects out of a total of r aspects belonging to class

Ci.

Experiments with Model Base I

Let the class recognition phase report the observed class to be Ci.

Let us assume that Ci could have come from aspects aj k , aj k ,

� � � ; aj k , where all j1; j2; � � � ; jm are not necessarily different.

We obtain the a posteriori probability of aspect aj k given this evi-

dence using the Bayes rule

P (aj k jCi) =
P (aj k ) � P (Cijaj k )

m

p=1

[P (aj k ) � P (Cijaj k )]

(6)

P (Cijaj k ) is 1 for aspects with a link to classCi, 0 otherwise. Finally,

we obtain the a posteriori probability

P (Oj ) =
l

P (aj k jCi) (7)

where aspects aj k belong to class Ci.

If the probability of some object is above a predetermined threshold

(experimentally determined, e.g., 0.87 for Model Base I), the algorithm

reports a success, and stops. If not, it means that the view of the object

is not sufficient to identify the object unambiguously. We have to take

the next view.

In our hierarchical scheme, the link conditional probabilities (rep-

resenting relations between nodes) themselves enforce consistency

checks at each level of evidence. The feature evidence is progressively

refined as it passes through different levels in the hierarchy, leading to

simpler evidence propagation and less computational cost. This is an

advantage of our scheme over that proposed in [9].

IV. NEXT VIEW PLANNING

The class observed in the class recognition phase could have come

from many aspects in the model base, each with its own range of po-

sitions within the aspect. Due to this ambiguity, one has to search for

Fig. 6. Partially constructed search tree.

Fig. 7. Object recognition algorithm.

the best move to discern between these competing aspects subject to

memory and processing limitations, if any. The parameters described

above characterize the state of the system. The planning process aims

to determine a move from the current step, which would uniquely iden-

tify the given object. We pose the planning problem as that of a forward

search in the state space which takes us to a state in which the aspect

list corresponding to the class observed has exactly one node. We use a

search tree for this purpose. A search tree node represents the following

information: [Fig. 5(a)] the unique class observed for the angular move-

ment made so far, the aspects possible for this angle-class pair, and for

each aspect, the range of positions possible within it (sij � eij). 
s
ij

and eij denote the two positions within aspect aij where the current

viewpoint can be, as a result of the movement made thus far. Here,

sij � eij ; and sij , eij 2 [0; �ij ], where �ij is the angular extent of

aspect aij . A leaf node is one which has either one aspect associated

with it or corresponds to a total angular movement of 360� or more

from the root node.

Fig. 6 shows an example of a partially constructed search tree. From

a view point, we categorize possible moves as follows.
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Fig. 8. Model Base I: The objects (from left) are O , O , O , O , O , O , O , and O , respectively.

(a)

(b)

(c)

(d)

Fig. 9. Some experiments with Model Base I: initial class h232i. The objects are O [(a) and (c)], and O [(b) and (d)], respectively. (a)

h232i ! h231(221)i ! h232i ! h221i ! h232i. (b) h232i ! h221i ! h221i ! h221i. (c) h232i ! h232i ! h221i. (d)

h232i ! h221i ! h221i ! h221i. The numbers above the arrows denote the number of turntable steps. A negative sign indicates a clockwise movement.
(The figure in parentheses shows an example of recovery from feature detection errors.)

Primary Move: A primary move represents a move from an aspect

by �, the minimum angle needed to move out of it.

Auxiliary Move: An auxiliary move represents a move from an as-

pect by an angle corresponding to the primary move of another com-

peting aspect.

Let�c
ij and�a

ij represent the minimum angles necessary to move out

of the current assumed aspect in the clockwise and counterclockwise

directions, respectively. Three cases are possible.

1) Type I Move: �
c
ij and �

a
ij both take us out of the current aspect

to a single aspect in each of the two directions—aip and aiq ,

respectively. We construct search tree nodes corresponding to

both moves.

2) Type II Move: Exactly one out of �c
ij and �

a
ij takes us to a single

aspect aip. For the other direction, the aspect we would reach

depends upon the initial position (2 
s
ij ; 

e
ij ]) in the current as-

pect. We construct a search tree node corresponding to the former

move.

3) Type III Move: Whether we move in the clockwise or the coun-

terclockwise direction, the aspect reached depends on the initial

position in the current aspect. We choose the move which leads
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 10. Some experiments with Model Base I: initial class h221i. Primary moves alone (a) O : h221i ! h221i ! h423i. (b) O : h221i !

h221i ! h221i ! h221i ! h221i. (c) O : h221i ! h232i ! h232i. Primary and auxiliary moves (d) O : h221i ! h221i ! h423i. (e)

O : h221i ! h221i ! h322i. (f) O : h221i ! h232i ! h232i ! h221i ! h232i. The numbers above the arrows denote the number of
turntable steps. A negative sign indicates a clockwise movement.

us to the side with the largest angular range possible in any reach-

able aspect.

We expand a nonleaf node by generating child nodes corresponding

to primary moves for all competing aspects in its aspect list. We can

also generate additional child nodes by considering auxiliary moves.

We assign a code to each move, a higher code to a less preferred move.

We assign a code 0 to Types I and II primary moves and 1 to Type II

auxiliary moves. Type III primary moves get a code of 2, and Type III
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Fig. 11. Variation of object probabilities: two examples (see text).

Fig. 12. Model Base II: The objects (in row major order) are heli 1, heli 2,
plane 1, plane 2, plane 3, plane 4, and biplane.

TABLE I
THE AVERAGE NUMBER OF MOVES FOR A

GIVEN NUMBER OF COMPETING ASPECTS

(a)

(b)

(c)

(d)

(e)

Fig. 13. Experiments with the initial class as h332i. (a) biplane: h332i !

h420i. (b) plane_1: h342(332)i ! h410i. (c) plane_1: h332i ! h410i.

(d) heli_1: h332i ! h540i. (e) heli_2: h332i ! h510i ! h510i.
(The figure in parentheses shows an example of recovery from feature detection
errors.) In each of these cases, the results for planning with primary moves alone,
and those for both primary and auxiliary moves are identical.

auxiliary moves, 3. The weight associated with a node is 4i
� Code,

where i is the depth of the node in the search tree. We use three levels

of filtering to determine the best leaf node. First, we consider those

on a path from the most probable aspect(s) corresponding to the previ-

ously observed node. Among these, we consider those having paths of

least weight. From these, we finally select one with the minimum total

movement.

A. The Planning Process and Object Recognition

In our object identification algorithm, aspect and object probabilities

are initialized to their a priori values. We use our class identification al-

gorithm (Section III-A) to identify the class corresponding to this view

of the object. It then calculates the a posteriori object probabilities.

If the probability of some object is above a predetermined threshold,

then the algorithm declares that object as being present and exits. Else,

the algorithm initiates the search process to get the best distinguishing

move to resolve the ambiguity associated with this view. It then decides

on the best move and takes the next view. All the above steps starting at



74 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART A: SYSTEMS AND HUMANS, VOL. 30, NO. 1, JANUARY 2000

(a)

(b)

(c)

(d)

(e)

(f)

Fig. 14. Experiments with the initial class as h411i. Primary moves alone (a)

plane_2: h411i ! h114i. (b) plane_2: h411i ! h114i. (c) plane_1:

h411i ! h332i. Primary and auxiliary moves (d) plane_2: h411i !

h114i. (e) plane_2: h411i ! h215(214)i. (f) plane_1: h411i ! h332i.
(The figure in parentheses shows an example of recovery from feature detection
errors.)

the class identification phase are repeated. Fig. 7 presents our overall

object identification algorithm in detail. Fig. 3 shows the interaction of

the next view planning part with the rest of the system.

Search tree node expansion is always finite due to the following rea-

sons: the number of aspects is finite, and no aspect is repeated along

a search tree path. Further, even if competing objects have the same

aspects, search tree expansion stops when the total movement along

a path is 360�. Primary moves eliminate redundant image processing

operations, while auxiliary moves enable better aspect resolution. Our

planning scheme is global—its reactive nature incorporates all previous

movements and observations both in the probability calculations (Sec-

tion III-B) as well as in the planning process. Our robust class recog-

nition algorithm can recover from many feature detection errors at the

class recognition phase itself (Section III-A-2). If the view indeed cor-

responds to the most probable aspect at a particular stage, then our

search process using primary and auxiliary moves is guaranteed to per-

form aspect resolution and uniquely identify the object in the following

step, assuming no feature detection errors. Even if the view does not

correspond to the most probable aspect, the list of possible aspects a

view could correspond to is refined at each observation stage. The plan-

ning process is initiated with the new aspect list. This illustrates the re-

active nature of our planning strategy.

Assuming no feature detection errors, our algorithm is guaranteed

to succeed except in three cases. The first is for objects with the same

aspect structure (i.e., the layout of classes in the aspect graph) but dif-

ferent aspect angles. Further, our strategy does not handle the case when

the aspect angles are greater than or equal to 180�. Fig. 5(b) shows an

example of the third case. Let us suppose that we have to move coun-

terclockwise. Let  denote the angular extent of the smallest aspect

observed so far. The current viewpoint lies in this angular range. Let

aij+1 be a unique aspect for the assumed object. The counterclock-

wise movement will be by an angle  +!. If  +! > �ij+1, we may

miss this unique aspect altogether.

B. Bounds on the Number of Observations

It is instructive to consider bounds on Tavg(n), the number of ob-

servations required to disambiguate between a set of n aspects (cor-

responding to the initially observed class). For a simple case to serve

as a benchmark, let us assume the number of aspects reachable from

any aspect as 1, and no movement or image processing errors. We also

assume no errors in either movement or image processing. We choose

a move that partitions the initial aspect set into more than one equiva-

lence class. If the size of the aspect list in one such equivalence class

is j, the expected additional number of observations is Tavg(j), where

j 2 [1; n). We have Tavg(n) = 1 + ( n�1

j=1
Tavg(j))=(n� 1), and

Tavg(1) = 1. By induction, we can show that Tavg(n) = O(loge n).

V. RESULTS AND DISCUSSION

Our experimental setup has a camera connected to a MATROX

image processing card and a stepper motor-controlled turntable.

The turntable moves by 200 steps to complete a 360� movement.

We use simple and robust features with low feature extraction cost,

compared to systems using complex features (e.g., [8] uses volumetric

primitives).

We have experimented extensively with two object sets as model

bases. We have chosen such objects in our model base that most of them

have more than one view in common. The list of possible aspects asso-

ciated with one initial view is quite large. Our experiments have been

with both strategies—to have primary moves alone, and both primary

and auxiliary moves for expanding the search tree node corresponding

to an observation.

1) Polyhedral Objects: We use as features, the number of hori-

zontal and vertical lines (hhvi), and the number of nonbackground seg-

mented regions in an image (hri). We represent a class as hhvri. We

use a Hough transform-based line detector [12]. For getting the number

of regions in the image, we perform sequential labeling (connected

components: pixel labeling) [12] on a thresholded gradient image. We

have chosen this model base so that most objects have more than one

view in common—the degree of ambiguity associated with a view is

very large. Fig. 8 shows the objects in this model base. Figs. 9 and 10

show some experiments with the objects in the first model base. For
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 15. Experiments with the initial class as h410i. Primary moves alone (a)

plane_1: h410i ! h411i. (b) plane_1: h410i ! h411i. (c) plane_4:

h410i ! h212i. Primary and auxiliary moves (d) plane_1: h410i !

h411i. (e) plane_1: h410i ! h411i. (f) plane_4: h410i ! h212i.

Fig. 9, the initial class observed in each case is h232i, while it is h221i
in Fig. 10. We make the following observations.

2) Primary and Auxiliary Moves: In most cases, the number of

image processing steps required is less in the latter case compared to

the former. When memory and search times are limited, the planning

process may use primary moves alone. An interesting case is observed

in Fig. 10(c) and (f)—an opportunistic case when the number of steps

with primary moves is less than the one with both primary and auxiliary

moves. At step 2, the move planned was not for the aspect eventually

observed in step 3. Due to the move, however, the sequence of moves

turns out to be unique for object O3.

3) Ordering of Feature Detectors: The third image in Fig. 9(a)

shows advantage of our scheduling of feature detectors. The line

detector reports the feature-class present to be h23i. For the objects

in our model base, this could correspond to classes h232i and h233i.

Our probability calculations account for the movement taken around

the object. The probability of class h232i for the movement made so

far exceeds the class probability threshold (0.87). Hence, the system

does not need to use the other feature detector.

4) Recovering from Feature Detection Errors: The second image

in Fig. 9(a) shows a situation where the system recovers from an error

in the feature detection process. Due to the thresholds we use, the cor-

rect class is h221i. The line detector, however, reports the probabilities

of classes h221i and h231i as 0.004 and 0.856, respectively. The prob-

ability of no class is above the threshold. The other feature detector is

now scheduled, which reports the number of regions to be 1. The prob-

ability calculations of (3) result in the probabilities of the two as 0.997

and 0.002, respectively.

5) Variation of Object Probabilities: Fig. 11 shows the variation in

object probabilities with each observation. The two cases shown here

are for the moves in Fig. 9(a) and Fig. 10(b). The latter shows an in-

teresting case. Aspects belonging to class h221i occupy a large extent

for object O4. The sequence of moves until observation 3 could corre-

spond to O4, O5, O6, and O7 with probabilities 0.877, 0.102, 0.014,

and 0.007, respectively. The reactive nature of our strategy ensures a

correct and progressively refined aspect list corresponding to each ob-

servation (sizes: 17, 8, 6, 4, and 1, respectively). The move leading to

observation 4 reduces the number of competing aspects from 6 to 4.

The aspects, the angular extents possible within the aspects and hence,

their probabilities depend upon the sequence of moves from the initial

viewpoint. The probabilities ofO4 andO5 are 0.740 and 0.225, respec-

tively. The sequence of moves leading to observation 5 is unique only

for O5, identifying it uniquely.

6) Some Sample Search Tree Details: We now consider some cases

in detail. For each row in Fig. 9, the initial view could have come from

18 aspects belonging to objects in our model base and for Fig. 10, the

corresponding number is 17. For the strategy involving primary moves

alone, the total number of search tree nodes generated for Figs. 9(a) and

(b), 10(a) and (b) are 53, 48, 34, and 48, respectively. For the strategy in-

volving both primary and auxiliary moves [Fig. 9(c) and (d), Fig. 10(d)

and (e)], the corresponding numbers are 324, 279, 127, and 127, re-

spectively. Let us consider Fig. 10(e). The algorithm plans a move of

77 steps. The second observation reports the number of aspects pos-

sible as 6. The next move by 72 steps corresponds to a unique aspect.

7) Average Number of Observations for a Given Number of Com-

peting Aspects: The upper part of Table I gives an idea of the average

number of observations for a given number of competing aspects for

the experiments with the first model base. The average is computed

over 46 experiments.

A. Experiments with Model Base II

Aircraft Models: We use the number of horizontal and vertical lines

(hhvi), and the number of circles (hci) as features. We represent a

class as hhvci. We use Hough transform-based line and circle detectors

[12]. We have chosen this relatively feature-rich model base to demon-

strate the effectiveness of our system using simple features and multiple

views. Fig. 12 shows the objects in this model base.

For most of the 58 experiments (Figs. 13–15), the number of obser-

vations required with primary moves alone, is the same as that consid-

ering auxiliary moves also.

This can be attributed to the lower degree of uncertainty associated

with a view for an object in this model base (a maximum of ten), com-

pared to that for the first (18). The second images in Fig. 14(a), (b),

and (d) show cases where the system does not need to use the second

feature detector. In the first image in Fig. 13(b), due to the shadow of

the wing on the fuselage of the aircraft, the feature detector detects
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four vertical lines instead of three, the correct number. Our recovery

mechanism (Section III-A-2) corrects this error. For the experiments

shown in Fig. 14, the number of search tree nodes constructed for pri-

mary moves alone is 14, whereas the corresponding number for both

primary and auxiliary moves is 125. The corresponding numbers for

the experiments in Fig. 15 are 14 and 41, respectively.

VI. CONCLUSIONS

This paper presents an integrated approach for the recognition of

an isolated 3-D object through on-line next view planning using prob-

abilistic reasoning. Our knowledge representation scheme facilitates

planning by exploiting the relationships between features, aspects, and

object models. The recognition scheme has the ability to correctly iden-

tify objects even when they have a large number of similar views. If a

feature set is not rich enough to identify an object from a single view,

this strategy may be used to identify it from multiple views. We demon-

strate that the proposed recognition strategy works correctly even under

processing and memory constraints due to the incremental reactive

planning strategy. No related work has addressed this problem.

While we use simple features for the purpose of illustration, one may

use other features such as texture, color, specularities, and reflectance

ratios. Over 100 experiments demonstrate the effectiveness of using

simple features and multiple views even on a relatively complex class

of objects with a high degree of ambiguity associated with a view of

the object. Our experiments show that one may use simple features to

recognize objects with complex 3-D shapes (as in Fig. 12).

Major areas for further work include multiple object recognition

and searching for an object in a cluttered environment. This would re-

quire suitably incorporating occlusion handling techniques (e.g., those

in [13]). An extension of this work would take movement errors into

account.
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Fuzzy Critical Path Method Based on Signed Distance

Ranking of Fuzzy Numbers

Jin-Shing Yao and Feng-Tse Lin

Abstract—In this paper, we apply a signed distance ranking method for

fuzzy numbers to a critical path method for activity-on-edge (AOE) net-
works. We use signed distance ranking to define ordering simply, which

means we can use both positive and negative values to define ordering. The
primary result obtained in this paper is the use of signed distance ranking
of fuzzy numbers obtaining Properties 3 and 4. We conclude that the fuzzy

AOE network is an extension of the crisp AOE network, and thus the fuzzy
critical path in a fuzzy AOE network, under some conditions, is the same

as the crisp critical path in a crisp AOE network.

Index Terms—Activity-on-edge (AOE) network, critical path method,
fuzzy number, signed distance ranking.

I. INTRODUCTION

Activity-on-edge (AOE) networks have proved very useful for per-

formance evaluation of some types of projects. This evaluation includes

determining certain aspects about the project, e.g., what is the least

amount of time in which the project may be completed, and which in-

dividual activities should be speeded to reduce overall project length,

etc. [2]. Since the activities in an AOE network can be carried out in

parallel, the minimum time to complete the project is the length of the

longest path from the start of project to its finish. The longest path is

the critical path. To identify the critical path, three parameters for each

of its activities are determined:

1) earliest event time;

2) latest event time;

3) slack time.

The critical path is the one from the start of project to the finish of

project where the slack times are all zeros. The purpose of the critical

path method (CPM) is to identify critical activities on the critical path

so that resources may be concentrated on these activities in order to

reduce project length time. Besides, CPM has proved very valuable

in evaluating project performance and identifying bottlenecks. Thus,

CPM is a vital tool for the planning and control of complex projects.

The successful implementation of CPM requires the availability of

a clear determined time duration for each activity. However, in prac-

tical situations this requirement is usually hard to fulfill since many of

activities will be executed for the first time. Hence, there is always un-

certainty about the time duration of activities in the network planning,

leading to the development of fuzzy critical path methods. In devel-

oping the fuzzy critical path approach, several approaches have been
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proposed over the past years. Gazdik [1] assumes that in a fuzzy net-

work the duration of activities and some other input variables are im-

precise and biased, and the imprecision is summarized to four classes.

This work proposed a technique called FNET based on a combination

of fuzzy sets and the theory of graphs. The membership function ex-

pressing the activity duration time for FNET depends on such diverse

factors as expert opinions; the availability of means of production, ma-

terials, or staff; and personal experience. The task is then to simulate

quasideterministic outcomes of a process based on those imprecise or

subjectively biased input data. An extension of FNET was proposed by

Nasution [4]. In this paper, it is shown that fuzzy numbers can be ex-

ploited further in the network. This is to be done by first introducing

an interactive fuzzy subtraction in the backward calculations; then ob-

serving that if time were represented by fuzzy numbers only the non-

negative times should be taken into account, since the negative times

have no physical meaning. Based on these two assumptions, it is pos-

sible to obtain the latest allowable event time and the slack of each event

in the network. Therefore, with this approach CPM can be generalized

by accepting imprecise, fuzzy data for the duration of the activities.

Since FNET never uses any method for ranking fuzzy numbers, some

assumptions are required for the fuzzy numbers to facilitate this fuzzy

CPM.

In this paper, we propose a method for ranking fuzzy numbers

without the need for any assumptions. We use signed distance ranking

to define ordering simply, which means we can use both positive and

negative values to define ordering. The signed distance we use here

has some properties very similar to those signed distances introduced

in real numbers. We use signed distance for ranking fuzzy numbers,

and then applying it to CPM. Therefore, our work is quite different

from the previous methods proposed in the literature [1], [4].

The paper is organized as follows. Section II outlines the prelimi-

naries, in which we consider the definition of a signed distance ranking

system for fuzzy numbers. In Section III, we list some definitions of

the AOE network and give an example to explain crisp CPM. Then, we

make the AOE fuzzy network by using fuzzy numbers and then elimi-

nate its fuzziness by using signed distance ranking for fuzzy numbers

to construct the AOE network in the fuzzy sense. The results are listed

in Properties 3 and 4. Finally, the concluding remarks of the paper are

stated in Section IV.

II. PRELIMINARIES

For a fuzzy critical path method, all pertinent definitions of fuzzy

sets are given below.

Definition 1—Fuzzy Point: Let~b1 be a fuzzy set onR = (�1;1).
It is called a fuzzy point if its membership function is

�~b (x) =
1; x = b

0; x 6= b:
(1)

Definition 2—Level � Fuzzy Interval: Let [a�; b�] be a fuzzy set on

R = (�1;1). It is called a level � fuzzy interval, 0 � � � 1, if its

membership function is

�[a ; b ](x) =
�; a � x � b

0; otherwise.
(2)

Definition 3—Fuzzy Numbers: Let ~A be a fuzzy set on

R = (�1;1). It is called a fuzzy number, if its membership

function is

�~A(x) =

x� a

b� a
; a � x � b

c� x

c� b
; b � x � c

0; otherwise,

(3)

where a< b< c. In addition, we let the family of all fuzzy numbers be

denoted by FN = f(a; b; c)j 8 a< b< c; a; b; c 2 Rg. In particular,

the fuzzy number (a; b; c) will be regarded as the degenerated case of

the fuzzy point (b; b; b) = ~b1, if a = c = b.

Before defining the ranking of fuzzy numbers on FN as in Yao and

Wu [5], we should first consider the definition of the signed distance

on R.

Definition 4—The Signed Distance: We define d�(b; 0) = b when

b, 0 2 R.

Remark 1: Geometrically, 0<b means that b lies to the right of the

origin 0 and the distance between b and 0 is denoted by b = d�(b; 0).
Similarly, b< 0 means that b lies to the left of 0 and the distance be-

tween b and 0 is denoted by �b = �d�(b; 0). Therefore, d�(b; 0) de-

notes the signed distance of b, which is measured from 0.

Let ~A = (a; b; c) 2 FN . From (3) we know the �-cut of ~A is

A(�) = [AL(�); AR(�)], 0 � � � 1, where AL(�) = a+(b� a)�
is the left endpoint of the �-cut and AR(�) = c� (c� b)� is the right

endpoint of the �-cut.

Fig. 1 shows that P 0 and Q0 are the signed distances measured

from the origin 0, 0 � � � 1. From Definition 4, we find the signed

distance of P 0 is d�(AL(�); 0) = AL(�) and also that of Q0 is

d�(AR(�); 0) = AR(�). Hence, the signed distance of interval

[AL(�); AR(�)], which is measured from the origin 0, is defined as

d
�([AL(�); AR(�)]; 0)

= 1
2 [d

�(AL(�); 0) + d
�(AR(�); 0)]

= 1
2
[a+ c+ (2b� a� c)�]

where 0 � � � 1. In addition, for each � 2 [0; 1], because the

intervals [AL(�); AR(�)] and [AL(�)�; AR(�)�] have a one-to-one

mapping (Fig. 1), therefore, we can define the signed distance of

[AL(�)�; AR(�)�], which is measured from ~01 (y-axis), as

d([AL(�)�; AR(�)�]; ~01) =
1
2
[a+ c+ (2b� a� c)�]:

Notice that the function � is continuous over the interval where 0 �
� � 1. Consequently, we can use the method of integration as an ex-

planatory tool for obtaining the mean value of the signed distance.

Definition 5—Signed Distance of ~A: Let ~A = (a; b; c) 2 FN .

Then, d( ~A; ~01) is the signed distance of ~A, which is measured from
~01 (y-axis) as defined by

d( ~A; ~01) =
1

0

d([AL(�)�; AR(�)�]; ~01) d� = 1
4
(2b+ a+ c):

Note that if ~A = (a; a; a) = ~a1, then d(~a1; ~01) = a.

Definition 6—The Ranking: For ~A, ~B 2 FN , we define the fol-

lowing rankings on FN

~A � ~B iff d( ~A; ~01)<d( ~B; ~01)

~A � ~B iff d( ~A; ~01) = d( ~B; ~01):

From [3] and [6] we have the following properties of binary operations.

Property 1: For ~A = (a; b; c) and ~B = (p; q; r) 2 FN , we have

1) ~A � ~B = (a + p; b + q; c + r)
2) ~A 	 ~B = (a � r; b � q; c � p).

Property 2: For ~A = (a; b; c) and ~B = (p; q; r) 2 FN , we have

1) d( ~A � ~B; ~01) = d( ~A; ~01) + d( ~B; ~01)
2) d( ~A 	 ~B; ~01) = d( ~A; ~01) � d( ~B; ~01).

Proof: From Property 1 and Definition 5, we obtain Property 2.

III. FUZZY CRITICAL PATH METHOD

In this section, we begin with some definitions of AOE networks

and also with an example to explain the crisp CPM. Next, we present a

procedure based on signed distance ranking of fuzzy numbers, to obtain

the fuzzy CPM.
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Fig. 1. The �-cut of fuzzy number ~A.

Fig. 2. Crisp AOE network N = (V;A; T ).

A. CPM in Crisp Case

An AOE network is a directed acyclic graph in which the vertices

represent events and the edges represent project activities or tasks to be

performed on a project [2]. Formally, an AOE network is represented

by N = (V;A; T ). Let V = fv1; v2; � � � ; vng be a set of vertices

representing a set of events, where v1 is the start of the project, vn is

its completion, and A � V �V is the set of directed edges connecting

the vertices. The tasks to be performed on the project are represented

by directed edges. For each activity b 2 A, a magnitude tb 2 T is

defined, where tb is the time required for the completion of activity b

[1], [4].

Example 1: Finding a crisp critical path in an AOE network, N =
(V;A; T ).

Fig. 2 is an example of an AOE network for a hypothet-

ical project with seven events and ten tasks or activities. Let

V = fvj = j � 1jj = 1; 2; � � � ; 7g be the set of seven events; A

= f(v1; v2), (v1; v3), (v1; v4), (v2; v3), (v3; v4), (v2; v5), (v3; v6),
(v4; v6), (v5; v6), (v6; v7)g be the set of ten activities; and T =
ftv v , tv v , tv v , tv v , tv v , tv v , tv v , tv v , tv v , tv v g
be the number associated with each activity representing the time

needed to perform that activity, where tv v = t01 = 3, tv v = t02
= 4, tv v = t03 = 6, etc. Thus, the activity (v1; v2) requires three

days, whereas (v1; v3) requires four days. Usually, these times are

only estimates. The critical path of this network is (v1; v2), (v2; v3),
(v3; v4), (v4; v6), (v6; v7).

In an AOE network, N = (V;A; T ), where V = fv1; v2; � � � ; vng.

Let tv v be the processing time for each activity (vi; vj). We define

the earliest event time for event vi and the latest event time for event vj
as tEv and tLv , respectively. Assume that the values of tv v , tEv ,

and tLv are already known. From Fig. 3 we see that tEv and tLv ,

representing the earliest event time for event vj and the latest event

time for event vi, satisfy the following equations:

tEv = tEv + tv v (4)

tLv = tLv � tv v : (5)

Also, letTv v be the total available time for activity (vi; vj). We obtain

Tv v = tLv � tEv : (6)

Fig. 3. Diagram of t ; t ; t ; t ; t , and T in

N = (V;A; T ).

Fig. 4. A triangular fuzzy number ~t .

Let Dj = fvijvi 2 V and (vi; vj) 2 Ag be a set of events obtained

from event vj 2 V such that (vi; vj) 2 A and vi<vj . In Example 1,

for instance, if vj = v4(= 3) then D4 = fvijvi 2 V and (vi; v4) 2
Ag = fv1; v3g = f0; 2g. Clearly, from Fig. 3, we can obtain tEv for

event vj by using the following equations:

tEv = max
v 2D

[tEv + tv v ] and tEv = tLv = 0: (7)

Similarly, let Ei = fvj jvj 2 V and (vi; vj) 2 Ag be a set of events

obtained from event vi 2 V , such that (vi; vj) 2 A and vi<vj . For

instance in Example 1, if vi = v3(= 2) then E3 = fvj jvj 2 V and

(v3; vj) 2 Ag = fv4; v6g= f3; 5g. Then, we obtain tLv for event vi
by using the following equations:

tLv = min
v 2E

[tLv � tv v ] and tLv = tEv : (8)

Finally, when

Tv v = tv v ; i.e., tLv = tEv + tv v (9)

we conclude that activity (vi; vj) is definitely on the critical path of the

crisp network.

B. Fuzzy CPM Based on Signed Distance Ranking of Fuzzy Numbers

As noted earlier in this section, for each activity (vi; vj), we as-

sume that the values of tv v , tEv , and tLv are already known and

tEv , tLv , and Tv v can be obtained from (7), (8), and (6), respec-

tively. However, this assumption may cause severe difficulties in prac-

tice. Therefore, here we consider tv v is only an estimate and is im-

precise. Thus, we make tv v fuzzy by using the following triangular

fuzzy number (Fig. 4)

~tv v = (tv v ��v v 1; tv v ; tv v +�v v 2);

0<�v v 1<tv v ; 0<�v v 2: (10)

By Definition 5, we have d(~tv v ; ~01) = tv v + 1

4
(�v v 2��v v 1).

It is the signed distance of ~tv v measured from ~01. Since d(~tv v ; ~01)
= 1

4
(3tv v + �v v 2) +

1

4
(tv v � �v v )> 0, we conclude that

d(~tv v ; ~01) is a positive distance between ~tv v and ~01. In other words,

the processing time is measured from the origin 0. Thus, we define
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t�v v to be an estimate of the processing time for activity (vi; vj) in

the fuzzy sense, i.e.

t
�

v v = d(~tv v ; ~01) = tv v + 1

4
(�v v 2 ��v v 1): (11)

Remark 2: If �v v 1 = �v v 2, i.e., the triangle in Fig. 4 is

an isosceles triangle, then we have t�v v = tv v . In particular, if

�v v 1 = �v v 2 = 0, then the fuzzy case will become crisp.

As we mentioned above, in the crisp AOE network, N = (V;A; T ),
the earliest event time tEv for event vi, the latest event time tLv
for event vj , and the total available time Tv v for activity (vi; vj)
are directly derived from (7), (8), and (6), respectively. However,

in practice, the decision-maker should realize that these time vari-

ables are imprecise and consider them in a fuzzy sense. Thus, an

estimate of the earliest event time for event vi is in the interval

[tEv � �EEv 1; tEv + �Ev 2], 0<�Ev 1<tEv , 0<�Ev 2,

where tEv is a known number. In considering the accuracy, we find

that when the earliest event time is exactly tEv , the error rate is

definitely 0. Clearly, greater imprecision of time will produce larger

error rates. When an estimate eventually approaches one of the two

ends of the interval, i.e., tEv ��Ev 1 or tEv +�Ev 2, the error rate

becomes largest. However, it is preferable to use the term “confidence

level” rather than “error rate.” Thus, when the earliest event time is

exactly tEv , we obtain the confidence level is 1. On the other hand,

when an estimate approaches one of the two ends of the interval, the

confidence level becomes the smallest. In this section, we will use

the fuzzy number from (12) below and use the membership grade to

represent the confidence level.

Similar to the above tv v in (10), which corresponds to the interval

[tEv � �Ev 1; tEv + �Ev 2], we then define the fuzzy number of

tEv as

~tEv = (tEv ��Ev 1; tEv +�Ev 2) (12)

where 0<�Ev 1<tEv , 0<�Ev 2, and the parameters satisfy (15)

and (23) below. We then define t�Ev to be an estimate of the earliest

event time for event vi in the fuzzy sense, i.e.,

t
�

Ev = d(~tEv ; ~01) = tEv + 1

4
(�Ev 2 ��Ev 1) (>0): (13)

From (4), i.e., tEv = tEv + tv v , we fuzzify both sides of the

equation to obtain ~tEv � ~tEv � ~tv v . Note that � is the ranking for

FN , as defined in Definition 6. From Definitions 5 and 6, and also from

Property 2, we have d(~tEv ; ~01) = d(~tEv � ~tv v ; ~01) = d(~tEv ; ~01)

+ d(~tv v ; ~01). From (11) and (13), we obtain the following equation:

t
�

Ev = t
�

Ev + t
�

v v : (14)

Thus, we have

tEv + 1

4
(�Ev 2 ��Ev 1)

= tEv + tv v + 1

4
[�Ev 2 ��Ev 1 + (�v v 2 ��v v 1)]:

According to (4), we obtain the following condition for parameters:

�Ev 2 ��Ev 1 = (�Ev 2 ��Ev 1) + (�v v 2 ��v v 1):

(15)

Similarly, the fuzzy number of tLv is defined as

~tLv = (tLv ��Lv 1; tLv ; tLv +�Lv 2) (16)

where 0<�Lv 1<tLv and 0<�Lv 2, and the parameters must sat-

isfy (19) and (23) below. Then, we define t�Lv to be an estimate of the

latest event time for event vj in the fuzzy sense, i.e.

t
�

Lv = d(~tLv ; ~01) = tLv + 1

4
(�Lv 2 ��Lv 1): (17)

Fuzzifying both sides of (5), tLv = tLv � tv v , yields ~tLv �

~tLv 	 ~tv v . From Definitions 5 and 6, and from Property 2, we ob-

tain d(~tLv ; ~01) = d(~tLv ; ~01)� d(~tv v ; ~01). From (11) and (17) we

obtain the following equation:

t
�

Lv = t
�

Lv � t
�

v v : (18)

Then, we have

tLv + 1

4
(�Lv 2 ��Lv 1)

= tLv � tv v + 1

4
[(�Lv 2 ��Lv 1)

� (�v v 2 ��v v 1)]:

According to (5), we obtain the following condition for parameters

�Lv 2 ��Lv 1 = (�Lv 2 ��Lv 1)� (�v v 2 ��v v 1): (19)

The fuzzy number of the total available time tv v is defined as

~Tv v = (Tv v �$v v 1; Tv v ; Tv v +$v v 2) (20)

where 0<$v v 1<Tv v and 0<$v v 2, and the parameters must

satisfy (23) and (24) below. Let T �

v v be an estimate of the total avail-

able time for activity (vi; vj) in the fuzzy sense, i.e.

T
�

v v = d( ~Tv v ; ~01) = Tv v + 1

4
($v v 2 �$v v 1): (21)

Fuzzifying both sides of (6), Tv v = tLv � tEv , yields ~Tv v �

~tLv 	 ~tEv . From Definitions 5 and 6, and from Property 2, we have

d( ~Tv v ; ~01) = d(~tLv ; ~01) � d(~tEv ; ~01). From (13), (17), and (21)

we obtain the following equation

T
�

v v = t
�

Lv � t
�

Ev : (22)

Therefore we have

Tv v + 1

4
($v v 2 �$v v 1)

= tLv � tEv + 1

4
[�Lv 2 ��Lv 1 + (�Ev 2 ��Ev 1)]:

From (6), we obtain the following condition for parameters:

$v v 2 �$v v 1 = (�Lv 2 ��Lv 1)� (�Ev 2 ��Ev 1): (23)

Finally, fuzzifying both sides of (9), Tv v = tv v , yields ~Tv v �

~tv v . Similarly, we obtain T �

v v = t�v v and also have

Tv v + 1

4
($v v 2 �$v v 1) = tv v + 1

4
(�v v 2 ��v v 1):

Since Tv v = tv v , we obtain the condition for parameters

$v v 2 �$v v 1 = �v v 2 ��v v 1: (24)

Furthermore, from (15), (19), (23), and (24) we obtain the following

conditions for parameters,

�Lv 2 ��Lv 1 = �Ev 2 ��Ev 1

�Lv 2 ��Lv 1 = �Ev 2 ��Ev 1

and

(�Lv 2 ��Lv 1)� (�Ev 2 ��Ev 1)

= �v v 2 ��v v 1: (25)

Remark 3: Here we compare the crisp AOE network for the efforts

made by a decision-maker with the fuzzy AOE network. Consider each

activity (vi; vj) in the crisp AOE network. The values of tv v , tEv ,

and tLv are already known, however, the values of tEv , tLv , and

Tv v are determined according to (6)–(8). On the other hand, for each

activity (vi; vj) in the fuzzy AOE network, the fuzzy number ~tv v

in (10) must satisfy 0<�v v 1<tv v and 0<�v v 2. The other

fuzzy numbers ~tEv , ~tLv , and ~Tv v , as defined in (12), (16), and

(20), respectively, are determined as follows. Since the values of tEv ,

tEv , tLv , tLv , and Tv v , as well as the values of tv v , �v v 1,

and �v v 2 in (10) are already known; the decision-maker can choose

appropriate values for �Ev q , �Ev q , �Lv q , �Lv q , and $v v q ,

where q = 1; 2 to satisfy (15), (19), (23), and (24), respectively. (See

Example 2 and Remark 4.)

While T �

v v = t�v v , i.e., t�Lv = t�Ev + t�v v , we conclude that

the activity (vi; vj) is on the fuzzy critical path. Next, the processing
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time tb(2 T ) is considered for each activity b(2 A) in the crisp AOE

network, N = (V;A; T ). We fuzzify tb as ~tb, and then obtaining an

estimate of the processing time for activity b in the fuzzy sense, t�b =
d(~tb; ~01). Let T � = ft�b j8 tb 2 T; b 2 A; t�b = d(~tb; ~01g. Hence, we

construct a fuzzy AOE network, N� = (V;A; T �). From the previous

discussions we summarize the following property.

Property 3: Consider the fuzzy AOE network, N� = (V;A; T �).
The fuzzy numbers of tv v , tEv , tLv , and Tv v , are ~tv v , ~tEv ,
~tLv , and ~Tv v , respectively. When those fuzzy numbers satisfy (15),

(19), (23), and (24), we obtain the following significant results.

1) An estimate of the processing time of activity (vi; vj) in the

fuzzy sense is

t
�

v v = tv v + 1

4
(�v v 2 ��v v 1):

2) An estimate of the earliest event time of event vi in the fuzzy

sense is

t
�

Ev = tEv + 1

4
(�Ev 2 ��Ev 1):

3) An estimate of the latest event time of event vj in the fuzzy sense

is

t
�

Lv = tLv + 1

4
(�Lv 2 ��Lv 1):

4) An estimate of the total available time of activity (vi; vj) in the

fuzzy sense is

T
�

v v = Tv v + 1

4
($v v 2 �$v v 1):

5) t�Ev = t�Ev + t�v v ; t�Lv = t�Lv � t�v v , and T �

v v = t�Lv �
t�Ev .

6) When T �

v v = t�v v , i.e., t�Lv = t�Ev + t�v v , the activity

(vi; vj) is on the fuzzy critical path.

Now, from (7) we know tEv + tv v � tEv , 8 vi 2 Dj , and also

know there is at least one equal sign which holds. When both sides

of the above equation are fuzzified, we obtain ~tEv � ~tv v ~tEv ,

8 vi 2 Dj , and also know there is at least one�which holds. The sym-

bols � are � the ranking on FN (see Definition 6). From Definitions

5 and 6 and also from Property 2, we obtain the following equations

d(~tEv ; ~01) + d(~tv v ; ~01) � d(~tEv ; ~01), 8 vi 2 Dj , and also know

there is at least one equal sign which holds. Furthermore, from (11) and

(13) we know t�Ev + t�v v � t�Ev , 8 vi 2 Dj , and also know at least

one equal sign holds there. Hence, we obtain the following equation:

t
�

Ev = max
v 2D

(t�Ev + t
�

v v ): (26)

Since t�Ev + t�v v � t�Ev , 8 vi 2 Dj , we obtain

tEv + tv v + 1

4
f(�Ev 2 ��Ev 1) + (�v v 2 ��v v 1g

� tEv + 1

4
(�Ev 2 ��Ev 1); 8 vi 2 Dj :

In fact, the above equation can be derived directly from (15) and tEv +
tv v � tEv , 8 vi 2 Dj . Therefore, no additional conditions for pa-

rameters are needed in (26).

Next, consider the equation tEv = tLv = 0. After fuzzifying both

sides of the equation, we obtain ~tEv � ~tLv � ~01 and d(~tEv ; ~01) =
d(~tLv ; ~01) = d(~01; ~01). Hence, we obtain t�Ev = t�Lv = 0, but

it requires an additional condition, �Ev 2 = �Ev 1 = �Lv 2 =
�Lv 1 = 0.

Similarly, from (8) we have tLv � tLv �tv v , 8 vj 2 Ei, and also

have at least one equal sign which holds. We use the same procedure

to fuzzify both sides of the equation, obtaining ~tLv ~tLv 	 ~tv v ,

8 vj 2 Ei and also determine that at least one � holds. From Def-

initions 5 and 6, and also from Property 2, we derive the equation,

d(~tLv ; ~01) � d(~tLv ; ~01)�d(~tv v ; ~01),8 vj 2 Ei, where at least one

equal sign holds. Furthermore, from (11) and (17) we obtain t�Lv �

t�Lv � t�v v , 8 vj 2 Ei, where at least one equal sign holds. Thus we

derive the following equation:

t
�

Lv = max
v 2E

(t�Lv � t
�

v v ): (27)

Similar to (26), the above equation can be derived from (19) and

tLv � tLv � tv v , 8 vj 2 Ei. Therefore, no additional conditions

for parameters are needed in (27). Finally, we consider the equation

tLv = tEv . After fuzzifying the equation, we obtain ~tLv � ~tEv
and d(~tLv ; ~01) = d(~tEv ; ~01). Then, by (13) and (17), we obtain

t�Lv = t�Ev and an additional condition for parameters:

�Lv 2 ��Lv 1 = �Ev 2 ��Ev 1: (28)

If t�Ev = t�Lv , then an estimate of the earliest event time for event

vj in the fuzzy sense is equal to an estimate of the latest event time

for event vj in the fuzzy sense. Obviously, this indicates there is no

slack time. In conclusion, we summarize the above statements in the

following property.

Property 4: Consider the fuzzy AOE network, N� = (V;A; T �).
If �Ev 2 = �Ev 1 = �Lv 2 = �Lv 1 = 0, and �Lv 2 � �Lv 1

= �Ev 2 � �Ev 1, as well as the conditions in Property 3 hold, we

summarize the following results.

1) An estimate of the earliest event time for event vj in

the fuzzy sense is t�Ev , which can be derived from

t�Ev = maxv 2D (t�Ev + t�v v ) and t�Ev = t�Lv = 0.

2) An estimate of the latest event time for event vi in the fuzzy sense

is t�Lv , which can be derived from t�Lv = minv 2E (t�Lv �
t�v v ) and t�Lv = t�Ev .

3) The activity (vi; vj) will on the critical path if t�Ev = t�Lv and

t�Ev = t�Lv .

Proof: Equations (1) and (2) can be proved directly from (26) and

(27). Since t�Ev = t�Lv and t�Ev = t�Lv , from (5) of the Property 3,

we obtain t�v v = t�Ev � t�Ev = t�Lv � t�Ev = T �v v . By (6) of

Property 3, we have proved (3).

Example 2: Construct a fuzzy AOE network, N� = (V;A; T �),
from the crisp AOE network, N = (V;A; T ), of Example 1. Let ~tv v

= (2.1, 3, 3.8), ~tv v = (3.5, 4, 5), ~tv v = (5, 6, 7.2), ~tv v = (3.2,

4, 4.8), ~tv v = (4, 5, 6.3), ~tv v = (4.1, 5, 6.1), ~tv v = (2.8, 4, 5),
~tv v = (4.9, 6, 7.2), ~tv v = (1.5, 2, 2.7), ~tv v = (3.8, 5, 6). After

calculating by (1) of Property 3, we obtain the following estimates of

processing time in the fuzzy sense, i.e. t�v v = 2.975, t�v v = 4.125,

t�v v = 6.05, t�v v = 4, t�v v = 5.075, t�v v = 5.05, t�v v = 3.95,

t�v v = 6.025, t�v v = 2.05, and t�v v = 4.95. We let T � = ft�v v ,

t�v v , t�v v , t�v v , t�v v , t�v v , t�v v , t�v v , t�v v , t�v v g. Hence, we

construct a fuzzy AOE network, N� = (V;A; T �), as shown in Fig. 5.

Next, we should choose appropriate values for the parameters,

i.e., �Ev 1, �Ev 2, �Ev 1, �Ev 2, �Lv 1, �Lv 2, �Lv 1, �Lv 2,

$v v 1, and $v v 2, to satisfy Properties 3 and 4. Then we calculate

t�Ei and t�Ej by using (1) and (2) of Property 4 in the following table

(see Remark 4).

In Table I, for example, we calculate t�E3 by using (1) of Property 4

as follows. Since j = 3, we have Dj = fij(i; j) 2 Ag = fi = 0; i =
2g (see Fig. 5). From Table I, we find that t�E0 = 0, t�E2 = 6:975,

t�03 = 6:05, and t�23 = 5:075. Thus, we obtain

t
�

E3 = maxft�E0 + t
�

03; t
�

E2 + t
�

23g

= maxf0 + 6:05; 6:975 + 5:075g = 12:05:

In Table II, for example, we calculate t�L2 by using (2) of Property 4

as follows. Since i = 2, we have Ei = fjj(i; j) 2 Ag = fj = 3; j =
5g (see Fig. 5). From Table II, we find that t�L3 = 12:05, t�L5 = 18:075,

t�23 = 5:075, and t�25 = 3:95. Thus, we obtain t�L2 = minft�L5 � t�25,

t�L3 � t�23g = minf18:075� 3:95, 12:05� 5:075g = 6:975.

From Tables I and II, we obtain Table III. Table III shows the process

of finding a fuzzy critical path in N�. According to the rule of (3) in
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Fig. 5. Fuzzy AOE network N = (V;A; T ).

TABLE I
COMPUTATION OF t , THE EARLIEST

EVENT TIME FOR EVENT i IN THE FUZZY SENSE

TABLE II
COMPUTATION OF t , THE EARLIEST EVENT TIME FOR EVENT

j IN THE FUZZY SENSE

TABLE III
PROCESSES OF FINDING A FUZZY CRITICAL PATH IN N = (V;A; T )

Property 4, we find a critical path 0! 1! 2! 3! 5! 6 (i.e., v1
! v2 ! v3 ! v4 ! v6 ! v7). The total time of the path is t� =
23:025. However, in the crisp case of Example 1, the critical path of

N = (V;A; T ) is also 0! 1! 2! 3! 5! 6, and the total time

of the path is t = 3 + 4 + 5 + 6 + 5 = 23 (see Table IV).

Remark 4: An example to explain our approach for determining

the appropriate values for those parameters to satisfy the conditions

of Properties 3 and 4. Here we only consider the activity (v5; v6).
Since ~tv v = (1.5, 2, 2.7), we obtain �v v 1 = 0.5 and �v v 2 =
0.7 by simple subtraction. Property 3 states that the fuzzy numbers

TABLE IV
COMPUTATION OF THE TOTAL TIME OF A CRITICAL PATH IN N = (V;A; T )

should satisfy (15), (19), (23), and (24). Hence, �Ev 2 � �Ev 1 =
(�Ev 2��Ev 1)+0:2,�Lv 2��Lv 1 = (�Lv 2��Lv 1)�0:2,

$v v 2 � $v v 1 = (�Lv 2 � �Lv 1) � (�Ev 2 � �Ev 1),
$v v 2 � $v v 1 = 0:2. Since vj = j � 1, from Table IV we

have tEv = tE4 = 8, tLv = tL4 = 16 (etc.), tEv = 18,

tLv = 18, Tv v = tLv � tEv = 10, tEv = tLv = 0, and

tEv = tLv = 23. Subsequently, we take the following equations

�Ev 2 � �Ev 1 = �Lv 2 � �Lv 1 = 0:3, �Ev 2 � �Ev 1 =
�Lv 2 ��Lv 1 = 0:1, and $v v 2 �$v v 1 = 0:2, where �Ev q ,

�Ev q , �Lv q , �Lv q , $v v q , q = 1; 2, to satisfy the following

criteria, 0<�Ev 1<tEv = 8, 0<�Ev 2, 0<�Ev 1< 18,

0<�Ev 2, 0<�Lv 1< 16, 0<�Lv 2, 0<�Lv 1< 18,

0<�Lv 2, 0<$v v 1<Tv v = 10, and 0<$v v 2. Finally, we

could choose appropriate values for the above parameters to satisfy

Property 3. For example, we choose �Ev 2 = 0:2, �Ev 1 = 0:1,

�Ev 2 = 0:5, �Ev 1 = 0:2, �Lv 2 = 0:3, �Lv 1 = 0:2,

�Lv 2 = 0:4, �Lv 1 = 0:1, $v v 2 = 0:3, and $v v 1 = 0:1.

Then, we obtain ~tEv = (8�0:1; 8; 8+0:2), ~tEv = (17:8; 18; 18:5),
~tLv = (15:8;16; 16:3), ~tLv = (17:9; 18; 18:4), and
~Tv v = (9:9; 10; 10:3). From (13), (17), and (21) we obtain

t�Ev = t�E4 = 8:025, t�Lv = t�L4 = 16:025 (etc.), t�Ev = 18:075,

t�Lv = 18:075, and T �

v v = 10:05 (= t�Lv � t�Ev ). Notice that we

have the same results here as in Table III.

IV. CONCLUDING REMARKS

This paper has presented a ranking method for fuzzy numbers in

a CPM of AOE networks. The focus of the paper was to introduce

the signed distance ranking of fuzzy numbers, and use them to obtain

fuzzy critical paths. In Section III, we discussed fuzzy CPM based on

a signed distance ranking of fuzzy numbers. When the processing time

for activity (vi; vj) in the crisp case is tv v and the fuzzy number

of tv v is ~tv v = (tv v � �v v 1; tv v ; tv v + �v v 2), where

0<�v v 1<tv v , and 0<�v v 2, then an estimate of the processing

time in the fuzzy sense is given by t�v v = tv v + 1

4
(�v v 2 �

�v v 1). Interpretation of the result is as follows, viz. Fig. 4. When

�v v 1<�v v 2, the triangle goes to the right side (larger tv v ), and

we obtain tv v <t�v v . Conversely, when �v v 2<�v v 1, the tri-

angle goes to the left side (smaller tv v ), and we obtain t�v v <tv v .

However, if �v v 2 = �v v 1, then it is an isosceles triangle, so we

have tv v = t�v v . We conclude that if the following criteria a)–d)

hold, the fuzzy AOE network, N� = (V;A; T �), which is defined in

Properties 3 and 4, becomes the crisp AOE network, N = (V;A; T ),
which is defined in Section III-A.

1) For each activity (vi; vj), if �v v 2 = �v v 1, which is defined

in (11), then

t
�

v v = tv v :

2) For each event vj , if �Ev 2 = �Ev 1, as defined in (13), then

t�Ev = tEv .

3) For each event vj , if �Lv 2 = �Lv 1, as defined in (17), then

t�Lv = tLv .

4) For each activity (vi; vj), if $v v 2 = $v v 1, as defined in

(21), then T �

v v = Tv v .
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Consequently, we conclude that the fuzzy AOE network,

N� = (V;A; T �), is an extension of the crisp AOE network,

N = (V;A; T ).
In addition, we let (vj ; vj ), (vj ; vj ); � � � ; (vj ; vj ), where

0<m<n, j0 = v1, and vm = vn, be the critical path in the

network N = (V;A; T ). The processing times for each activity

on the critical path are tv v , tv v ; � � � ; tv v and they

satisfy Tv v = tv v , p = 1; 2; � � � ;m, in (9). We

make both sides of Tv v = tv v fuzzy, thus obtaining

~Tv v �
~Tv v . By Definition 6 we have d( ~Tv v ; ~01)

= d(~tv v ; ~01). Then, from (11) and (21) we obtain

T
�

v v = t
�

v v ; p = 1; 2; � � � ;m: (29)

Therefore,

Tv v + 1

4
($v v 2 �$v v 1)

= tv v + 1

4
(�v v 2 ��v v 1):

Since Tv v = tv v , we obtain the following condition for

parameters

$v v 2 �$v v 1

= �v v 2 ��v v 1; p = 1; 2; � � � ;m: (30)

In summary, we conclude that if we hold (29) and (30), then by (6) of

Property 3 and (3) of Property 4, the fuzzy critical path in a fuzzy AOE

network is the same as the critical path in a crisp AOE network.
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