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Abstract The inviscid temporal stability analysis of

two-fluid parallel shear flow with a free surface, down

an incline, is studied. The velocity profiles are chosen

as piecewise-linear with two limbs. The analysis reveals

the existence of unstable inviscid modes, arising due to

wave interaction between the free surface and the shear-

jump interface. Surface tension decreases the maximum

growth rate of the dominant disturbance. Interestingly,

in some limits, surface tension destabilises extremely

short waves in this flow. This can happen because of

the interaction with the shear-jump interface. This flow

may be compared with a corresponding viscous two-

fluid flow. Though viscosity modifies the stability prop-

erties of the flow system both qualitatively and quanti-

tatively, there is qualitative agreement between the vis-

cous and inviscid stability analysis when the less viscous
fluid is closer to the free surface.

Keywords Free surface flow · Linear stability

analysis · Inviscid Instability · Wave interaction

1 Introduction

Motivated by different applications, a large number of
inviscid instability studies have been carried out on
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parallel shear flows that include flows between paral-

lel plates [1–5], flows bounded by two free surfaces or

wall bounded flows bounded by a free surface from

above [6–12]. These investigations have employed var-

ious piecewise linear velocity profiles in their models

and analysis, with different aims. As we shall describe

below, one of the recurrent aims has been to represent
viscous flows by selecting the closest inviscid flow pro-

files, to evaluate the inviscid nature of the instabilities
in viscous flows. Our aim here is the same, and the vis-
cous flow we would like to make a correspondence with
is that of a two-fluid film flow on an inclined surface.

The two fluids have different viscosities but the same

density, with viscosity varying from one fluid’s value to
the next within a thin layer of mixed fluid.

This study is in fact motivated by the recent study
on the linear stability of miscible two-fluid free-surface

flows of varying viscosity down an inclined substrate ex-

amined by Usha et al. [13]. The results reveal the occur-

rence of new instability modes when the critical layer of

dominant disturbance overlaps the viscosity gradient. A

configuration with a less viscous wall layer is identified
to be the most stable configuration at moderate misci-
bility, with respect to both overlap and surface modes.

However, when a less viscous fluid is adjacent to the free

surface, the configuration is unstable which is in con-

trast with the immiscible interface dominated two-fluid

free surface flow [14]. An increase in the inclination an-

gle enhances the destabilization. It is of interest to un-
derstand the physical mechanism responsible for flow
instabilities in the above flow system and one needs to

find out whether the instabilities arise due to viscosity

stratification and/or diffusivity and/or inviscid mecha-

nism. In view of this, in the present study, an inviscid

flow model of the above free surface flow problem is de-

veloped and the instability of two-fluid parallel shear

LaTex file of the revised Manuscript Click here to download Manuscript Inviscid_main.tex 

Click here to view linked References

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

33 

34 

35 

36 

37 

38 

39 

40 

41 

42 

43 

44 

45 

46 

47 

48 

49 

50 

51 

52 

53 

54 

55 

56 

57 

58 

59 

60 

61 

62 

63 

64 

65 



2 Ghosh et al.

flow down an incline separated by a jump in viscosity

is analyzed. For the inviscid model, we consider base

velocity profiles as continuous piecewise linear profiles

with a slope change across the viscosity interface such

that the asymptotic behaviour of the viscous velocity

profile is maintained (see Fig. 2).

It is worth mentioning that a similar analysis was

performed by Sahu and Govindarajan [15], in which

they have investigated the viscous instability of free

shear layer in the vicinity of a viscous stratified mixed

layer. Their results show that diffusivity has no influ-
ence on the stability of this class of shear flows but

viscosity stratification has a significant role on the sta-

bility characteristics. This requires an explanation as to

why there is no influence of diffusivity on the stability

in this system. The authors have pointed out that “it

could be due to viscosity stratification acting on the sta-

bility in an inviscid nondiffusive way”. In order to un-
derstand this, they have considered an inviscid model

flow with a slope change across the interfaces where

viscosity is stratified. The ratio of the slopes across the

middle interface represents the inverse of the viscos-

ity ratio. The existence of an unstable inviscid mode

for small wave numbers has been shown. In addition,
a qualitative agreement between viscous and inviscid
results through the trend of growth rate and the influ-

ence of the location of the slope change on the dom-

inant growth rate have been observed. These authors

have concluded that this broad qualitative agreement

between the viscous and the inviscid model results in-

dicate that an inviscid non-diffusive mechanism has a
role to play through a change in the velocity profile

above and below the stratified layer.

In line with the above investigation, our goal in the
present study is to understand the mechanism by which

viscosity stratification acts in free surface flows. It is im-

portant to note that viscosity stratification across two

different fluid phases can give rise to instabilities that

are neither inviscid nor of the TS type [16–21]. There

are also inviscid models of two-phase flows or free-shear

layer flows which are inviscidly unstable to infinitesimal

perturbations, under certain conditions. The inviscid

framework is sufficient to describe the disturbance evo-
lution at large Reynolds numbers [22–24]. In addition,

the present study provides information on the inviscid

analysis on wall bounded flows bounded by a free sur-

face from above.

It is to be noted that, in spite of a number of engi-

neering applications such as spilling breakers [6,7], coat-

ing of a substrate or manufacture of photographic films

[25, 26] and environmental flows such as rock glaciers

[8, 27] in which one comes across instabilities in a film

with a free surface, there are only few inviscid studies

on flows bounded by a free surface. Bakas and Ioan-

nou [10] have studied modal and non-modal growth
of inviscid planar perturbations in shear flows with a
free surface by approximating the mean flow with one

kind of piecewise linear profile. They have examined

the interaction of edge waves that arise at the density

discontinuity at the surface and vorticity waves that

are supported at the mean vorticity gradient disconti-

nuities in the interior. Renardy’s investigation [11] on

plane parallel shear flows bounded by two free surfaces

shows that the flow system has long-wave instabilities

for all types of velocity profiles that are not uniform.

Kaffel and Renardy [12] have considered the linear sta-
bility of plane Poiseuille flow between two parallel free

surfaces and the analysis reveals that there are short

wave instabilities for a velocity profile with a shear rate

increasing towards the free surface. However, a broad

class of wall bounded flows are stable and there is no

smooth velocity profile that is unstable to short waves.

Rayleigh’s criterion for wall bounded flows states

that the base flow profile must have an inflection point

for instabilities to exist. Yih [28] and Hur & Lin [29]

have extended Rayleigh’s criterion for wall bounded

flows to free surface flows. They have claimed that all
monotonic profiles with inflection points have long-wave
instabilities. Correcting the errors in the arguments pre-
sented by Yih [28] and Hur & Lin [29], Michael and

Yuriko Renardy [30] in their investigation on the linear

stability of inviscid parallel shear flow in a geometry

bounded by a wall at the bottom and with a free surface

subject to gravity show that the stability characteris-

tics of a free surface flow are different from those for

wall bounded flows. Their conclusions are based on the

three specific flows U(y) namely, Poiseuille flow (with

no inflection point but has velocity extremum), flow
with a hyperbolic tangent shear layer (has an inflection
point at y = 0, U and U 00 have opposite signs), and a

cubic base profile (has an inflection point at y = 0, U

and U 00 have same signs). The results show that while

neutral limiting modes must have a wave speed equal

to an inflection value of the base flow profile for wall

bounded case, a shear flow with a free surface can have

a wave speed equal to either the velocity at the bot-

tom or to an extremum value of velocity. Furthermore,

short waves are destabilized as the shear rate increases

towards the free surface.

Instabilities in shear flows have also been studied in

detail for base flows without inflection point, [12,30–32]

for flows with piecewise linear profiles [33, 34] and for

continuous profiles [35]. The stability of gravitational-

capillary waves in the presence of vertically non-uniform

current analysed by Voronovich et al. [34] shows that

long waves are stable. In their study, the bottom layer
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Inviscid instability of two-fluid free surface flow down an incline 3

is infinite and a vortex sheet is located at a fixed depth

below the surface. The velocity profile in the top layer

is linear. If however, it is constant, then, in the absence

of a vortex sheet, the long waves are unstable for an in-

finite depth (Theorem 1.2 in Bresch and Renardy [36]).

Bresch and Renardy [36] have revisited the problem

analyzed by Voronovich et al. [34] for a configuration

with a finite bottom layer, relaxing the assumption of

an irrotational flow and by including the gravity effects.

They have examined Kelvin-Helmholtz instability with

a free surface. The velocities of two-fluid layers are dif-

ferent. Long-wave stability for sufficiently small gravity

is shown for smooth monotone velocity profiles of base

flow. The scenario in the wall bounded case is different;

the flow is unstable to all wavenumbers. Instabilities

existing at large wavenumbers are localized and are in-

dependent of the boundary conditions.

Concerning shear flows without an upper free sur-

face, the classical inviscid problem considered by Kelvin

and Helmholtz that involves a vortex sheet (an infi-

nite surface of discontinuity) separating two unbounded

fluid layers of different velocity and density is always

unstable provided a velocity difference exists and it has
largest growth rate in the absence of density discontinu-

ity. Following this, numerous studies have attempted to

understand the instability characteristics of unbounded

parallel inviscid flows [37–41].

There are investigations on two-fluid flows stratified

by gravity and also between two rigid plates [1–5, 36].

The inviscid instability of immiscible fluids in a shear

layer examined by Pouliquen et al. [42] revealed the

existence of Holmboe waves for symmetric broken-line

profile. Though they ignored the viscosity effects, the
chosen velocity profile satisfied the condition of continu-

ity of shear stress at the interface. When the symmetry

is broken (the two fluids have different densities with

zero velocity at the interface), they observed a single
mode propagating in the same direction as the less vis-

cous fluid at high wavenumbers. The linear stability of
inviscid density-stratified shear layer flows are discussed
in detail by Redekopp [43]. The effects of surface ten-

sion, density and velocity profile on inviscid instability
of an unbounded shear layer are examined by Alab-
duljalil and Rangel [44]. In this study, they have taken
the background velocity profiles as (a) piecewise linear

profile and (b) error-function profile. The results reveal
that surface tension has a destabilizing effect and that

the unstable mode induced by surface tension is weak as

compared to the dominant mode. Instabilities at large

wavenumbers are observed with a background viscosity

jump at the interface. Although the above studies deal

with inviscid stability analysis of an unbounded shear

layer of two fluids, the viscosity has its role to play on

the background flow and influences the stability charac-

teristics of the flow. In the inviscid analysis presented,
the effect of viscosity appears through its influence on

the background velocity profile.

There are also some earlier work relevant to the
present study [45, 46, 48]. The viscous temporal stabil-
ity problem of a planar gas-liquid mixing layer with

a single interface and without confinement is analyzed

by Yecko et al. [45] and Boeck & Zaleski [46] for ba-
sic velocity profiles characterized by boundary layers

adjacent to the interface. Boeck and Zaleski [46] per-
formed the inviscid computations for a piecewise lin-
ear velocity profile with slopes corresponding to the
boundary layers associated with the viscosity profile.

When the base velocity profiles are smooth and mono-

tonic, the above investigations show that there are three

characteristic unstable modes in different bandwidth

of wavenumbers. These modes arise due to (i) the dif-

ference in free-stream velocity responsible for inviscid

Kelvin-Helmholtz mechanism, (ii) the TS mechanism

in the gas boundary layer and (iii) the viscosity con-

trast mechanism. These modes occur distinctly in the

limiting case of large Reynolds numbers. They have ob-

served difference between the viscous and inviscid com-

putations and they have attributed this to the viscosity-

contrast instability mechanism. The instability that arises

due to viscosity contrast occurs at the interface between

the two fluids, occurs for short-wavelengths when vis-

cosity rather than inertia is the dominant physical ef-

fect. The instability mechanism for the short-wavelength

instability due to viscosity contrast was analysed by

Hinch [47], who postulated that this instability requires

a large viscosity contrast and a significant vorticity dif-

fusion (i.e. a high Schmidt number).

The viscous linear stability analysis of the gas-liquid

mixing layers considered by Otto et al. [48] depends

on the basic velocity profiles, the density ratio and on

the Reynolds number. Their inviscid computations for

growth rates is only favourable for low air velocities

when the experimental frequencies are used and a small

or moderate velocity deficit is incorporated. Their spa-
tial stability analysis predicts results that agree very
well with measured growth rates obtained in air-water

experiments.

The above investigations [45,46,48] indicate that it

is possible to gain insight into the perturbation growth

mechanism in the present study by understanding the

modal instabilities in terms of the interaction between

the interfaces, namely the free surface with or without

surface tension and the liquid-liquid interface with vis-

cosity jump. The paper is organized as follows: Section

2 presents the governing equations, the base state pro-

files and the derivation of the dispersion relation. The
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4 Ghosh et al.

results are discussed in Section 3; the equation for the

total rate of disturbance kinetic energy is derived in

Section 3.4; and the concluding remarks are given in

Section 4. The present study is only a model to check

if inviscid mechanism is important and hence the focus

is on investigating a base state which is just a pro-

file mimicking the viscous base state. In other words,

we perform the stability analysis of an inviscid base
profile which follows the characteristics and asymptotic
behaviour of viscous base profile.

2 Mathematical Formulation

2.1 Base state

As mentioned before, the idea is to investigate whether

viscosity change across a film flow can have an invis-

cid effect on the stability, via changes in the velocity

profile. An inviscid and non-diffusive analogue of the
miscible two-fluid viscosity stratified flow down an in-

clined substrate (Usha et al. [13]) is constructed (Fig.
1). As is common in inviscid analyses [15, 46], contin-

uous piecewise linear velocity profiles are used as base

flow as shown in Fig. 2(a). The jump in shear stress at

the interface is taken to be equal to the inverse of the

viscosity jump we are interested in comparing with. The

corresponding velocity profiles in a viscous film are con-

structed by the approach described in Usha et al. [13],
and are shown in Fig. 2(b). The viscosity jump across

the mixed layer is modelled by a corresponding jump

in the slope of the velocity profile at y = d for the in-

viscid analysis. The inviscid flow now supports two sets

of waves, one at the liquid-liquid interface (y = d) and
another at the free surface (y = 0).

Let U1B(y) and U2B(y) denote the base velocity pro-

files in fluid layers 1 and 2 respectively. Taking the

base profiles as piecewise linear and using the condi-

tions U1B(y = 1) = 0, U2B(y = 0) = 1 and U1B(y =

d) = U2B(y = d), these are obtained as

U1B(y) =
K1

Y
(1� y), (1)

U2B(y) =
K2

Y
(d� y) +

K1

Y
(1� d), (2)

where the factor Y = K2d + 1 � d appears upon scal-

ing the velocity with its value at the free surface. In
what follows, K1 is fixed as K1 = 1 without loss of gen-

erality. For comparing with a viscous flow of viscosity

ratio m = µ2/µ1, an appropriate choice of K2 is 1/m

(as m = 1/K2 makes the shear stress continuous in the

viscous case with viscosity ratio m). The base velocity

profiles for different values K2 (0.5, 1, 1.5) in the upper

layer are presented in Fig. 2(a). Fig. 2(a) suggests that,

when K2 < 1 (K2 > 1), the velocity profile is convex

(concave) function of y. K2 = 1 presents a single fluid
flow with linear velocity profile. The value K2 > 1 cor-

responds to m < 1 and K2 < 1 to m > 1 profiles in

Fig. 2(b) for the viscous case.

It is worth mentioning here that according to the
inviscid theory, a flow system with convex base velocity

profile is more inviscidly stable [2]. Our goal is to de-
velop an inviscid model for the miscible two-fluid flow
system to check if inviscid mechanism is important or

not.

2.2 Linear stability equations

The equations and the boundary conditions governing

the inviscid instability of the gravity-driven free surface
flow of two-fluids down an incline on 0  y  H (Fig.

1) are non-dimensionalized using the following scales:

x⇤ =
x

H
, y⇤ =

y

H
, t⇤ =

V

H
t, (u⇤

n, v
⇤

n) =
1

V
(un, vn),

p⇤ =
p

ρV 2
, d⇤ =

d

H
, h⇤

n =
hn

H
, (3)

where V is the characteristic velocity at the free sur-

face, H is the height of the unperturbed film and ρ is
the fluid density; the sub-index n = 1, 2 denotes to the

flow variables in fluid layers ‘1’ (d  y  1) and ‘2’

(0  y  d) respectively; un, vn are the velocity com-

ponents in the x and y directions, respectively; pn and

t correspond to the pressure and time. h1(x, t), h2(x, t)

are the deflections of the liquid-liquid interface and the
free surface with respect to y = d and y = 0, respec-

tively (see Fig. 1).

The boundary conditions are the no-slip condition

at the inclined plane (y = 1), the continuity of normal

velocity, pressure and kinematic condition at the fluid-

fluid interface (y = h1(x, t)) together with the kine-

matic condition and the balance of pressure at the free
surface (y = h2(x, t)). They are linearized about the

base flow and in terms of disturbances ũn, ṽn, p̃n and h̃n

(n = 1, 2) proportional to ei(αx�ωt) with proportional-

ity constants ûn, v̂n, p̂n and ĥn (n = 1, 2) respectively,

where i ⌘
p
�1, α and ω = αc are the wave number

and the frequency of the infinitesimal two-dimensional

disturbances; c is the complex wave speed. This re-
sults in the following eigenvalue problem in the form

of Rayleigh equations for the two-dimensional pertur-

bations on the domain 0  y  1 (after suppressing hat

(ˆ) symbols):

(UnB � c)(D2 � α2)vn � U 00

nBvn = 0. (4)

Note that since the velocity profiles are linear, U 00

nB = 0.

The boundary conditions are given by

v1 = 0 at y = 1, (5)
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Inviscid instability of two-fluid free surface flow down an incline 5

Fig. 1 Schematic of the geometry for the flow system considered. Fluids ‘1’ and ‘2’ occupy the regions near the inclined plane
(y = H) and near the free surface (y = h2(x, t)) respectively. y = h1(x, t) represents the liquid-liquid interface and θ is the
angle of inclination.

(a) (b)
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U
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1

y

m = 0.5
m = 1.0
m = 1.5

Fig. 2 Base velocity profiles: (a) for inviscid two-fluid free surface flow with slope change interface located at d = 0.4 and (b)
for the corresponding viscous miscible two-fluid flow in Fig. 2 of Usha et al. (2013) [13] ; curves with star symbols represent
base viscosity profiles.

v1 = v2 at y = d, (6)

p1 = p2 at y = d, (7)

v1 = iαh1(U1B � c) at y = d, (8)

v2 = iαh2(U2B � c) at y = 0, (9)

p2 = �α2Sh2 �G cot(θ) at y = 0. (10)

In the above, G = gH sin(θ)
V 2 is the dimensionless grav-

ity parameter, S = σ
ρV 2H

is the dimensionless surface

tension parameter, where σ, g are the surface tension

coefficient between fluid-2 and air, and acceleration due

to gravity, respectively.

The solutions of Eq. (4) are

v1(y) = P1e
αy +Q1e

�αy, (11)

v2(y) = P2e
αy +Q2e

�αy, (12)

where P1, Q1, P2, Q2 are arbitrary constants to be de-

termined. Substitution of v1, v2 in the boundary condi-

tions (5)� (10) yields the following dispersion relation
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6 Ghosh et al.

in wave speed ‘c’ and wave number ‘α’:
h

α(c� Ud
1B)(e

αd + eα(2�d)) + Ud
1By(e

αd � eα(2�d))
i

= M3

⇥

α(c� Ud
2B)(e

αd �M2e
�αd)

+Ud
2By(e

αd +M2e
�αd)

⇤

,

(13)

where

M1 = α(c� U0
2B),

M2 =

"

M1(M1 + U0
2By) + (α3S + αG cot(θ))

M1(M1 � U0
2By)� (α3S + αG cot(θ))

#

,

M3 =



eαd � eα(2�d)

eαd +M2e�αd

�

.

and Ud
nB and U0

nB (n = 1, 2) represent the values of

base velocity at y = d and y = 0 respectively. The

dispersion relation (13) is cubic in c for a given value

of α. Eq. (13) can be simplified since the base velocity

profiles are piecewise linear and U0
2B = 1, K1 = 1.

Also, from equations (1) and (2), one obtains Ud
1B =

Ud
2B = (1 � d)/Y , Ud

1By = �1/Y , Ud
2By = �K2/Y ,

U0
2By = �K2/Y . Defining

f ⌘ G cot θ + Sα2, (14)

and for ease of algebra, setting q ⌘ sinh[α(1 � 2d)]/

(coshα), r ⌘ cosh[α(1� 2d)]/(coshα), x = 1� d, K2 =

k, y = kd and t = tanh(α), equation (13) is rewritten

after some algebra as

c3 +Bc2 + Cc+D = 0, (15)

where

B =
1

(x+ y)



�3x� 2y +
(k + 1)t+ q(1� k)

2α

�

, (16)

C =
1

(x+ y)2



(x+ y)(3x+ y)

� t

α

⇥

x+ k � f + 2(x+ y)f + d2(k � 1)2f
⇤

+
(k � 1)

2α2
[k(r � 1) + 2α(x+ y)q]

�

, (17)

D = � 1

(x+ y)

⇢

x� kxt

α(x+ y)

+
1

2α
[(k � 1� 2xf)t+ q(k � 1)]

+
(r � 1)(k � 1)

2α2



f +
k

(x+ y)

��

. (18)

For a cubic equation with real coefficients, the only

two possibilities are that either all roots are real, or
that one root is real and the other two are complex
conjugates of each other. Therefore, the flow system is

stable (unstable) accordingly as the discriminant,

∆ = C2(B2 � 4C)� 4B3D � 27D2 + 18BCD (19)

is positive (negative).

3 Stability Results

3.1 Limiting cases

Before presenting the complete solution, it is revealing

to obtain some limiting solutions of this problem. First,

when d = 0 and k = 1, equation (15) reduces to that for

a single fluid, which, upon regrouping, can be written

as

(c� 1)
⇥

�αc2 + c(2α� tanh(α))
⇤

+ (c� 1) [(f + 1) tanh(α)� α] = 0. (20)

The roots of Eq. (20) are

c1 = 1,

c2,3 =
(2α� tanh(α))⌥

q

tanh2(α) + 4αf tanh(α)

2α
,

which may be seen to be all real, since α � 0. Thus, a

film of a single fluid with a linear profile flowing down

an incline is inviscidly stable at all wavenumbers for

any surface tension and any inclination. We return to

the piecewise linear velocity profile, with k 6= 1.

3.1.1 Vertical wall, no surface tension

We notice that gravity and surface tension appear in the

problem only as the combination f , given by equation

14. For a vertical wall (θ = 90�), in the absence of
surface tension (S = 0), we have f = 0. It may be

checked that 1 +B +C +D = 0, showing that c = 1 is
a root of the cubic equation (15). The other two roots

are those of the quadratic equation

c2 + (1 +B)c�D = 0. (21)

The discriminant of equation (21) becomes (after some

algebra)),

∆ =
(1� k)

(x+ y)2



2k

α2
(r � 1) +

y

α
(t+ q) +

t2

4α2
(1 + 3k)

+
q2

4α2
(1� k) +

tq

2α2
(1 + k)

�

+
1

(x+ y)2



y � kt

α

�2
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Inviscid instability of two-fluid free surface flow down an incline 7

Case(i) Short waves (α ! 1):Here,∆ = k2d2/(kd+

1� d)2 which is positive, showing that the roots of Eq.
(21) are real. Therefore, there is no short wave instabil-

ity for f = 0.

Case(ii) Long waves (α ! 0): In this case, ∆ =

(1� d)2/(kd+ 1� d)2 and it is positive again, so long-
waves too are stable for any k when f = 0.

3.1.2 Horizontal wall or large surface tension

In the limit of either cot θ or S becoming extremely

large, f becomes very large. An examination of the dis-

criminant makes it evident that stability is decided in

this limit by the sign of �4C3. In this limit,

C = �
✓

tf

α

◆

. (22)

It is immediately evident that the discriminant is al-

ways positive, which makes the flow always stable when

either the wall inclination goes to 0 or surface tension

is very large.

For the case when f 6= 0 but is finite, we examine

below the limits of diverging and vanishing shear ratios.

3.1.3 Diverging shear ratio k

As the ratio of the slopes of the linear velocity profiles

tends to infinity (k ! 1), we have the velocity of the

lower fluid going to 0. One obtains from Eqs. (16)�(18),

Bk!1 = �2 +
t� q

2dα
,

Ck!1 = 1 +
1

2α2d2
(r + 2αdq � 1)� tf

α
,

Dk!1 =
1

2α2d2
[(1� r)(1 + df)� αd(q + t)] .

Case(i) Short waves: We note that,

lim
α!1

t

α
= 0, lim

α!1

q

α
= 0, lim

α!1

q

α2
= 0, lim

α!1

r � 1

α2
= 0.

For short waves, in the absence of surface tension,Bk!1

= �2, Ck!1 = 1 and Dk!1 = 0. The discriminant ∆

(Eq. 19) is zero in this case, showing that short waves

are stabilized as k ! 1 and S = 0. On the other

hand, when surface tension is present but small, i.e., in

the limit S 6= 0 but αS << 1, then, for short waves
Bk!1 = �2, Ck!1 = 1 � tSα and Dk!1 = S(1�r)

2d

and the discriminant (19) becomes,

∆ = � 1

4d2
⇥

8dS(1� r) + 27S2(1� r)2
⇤

.

Since 1 � r > 0 for large α, ∆ < 0 showing that short

waves are unstable in the presence of surface tension as
k ! 1. This result shows that surface tension has a

destabilising effect on short waves in this inviscid flow.

The reason for this counter-intuitive effect is the fact

that there is an interaction with the layer of shear jump,
which can phase-lock the waves on the two layers in an

unstable configuration. Such phase locking will be seen
below in the solution of the complete problem.
Case(ii) Long waves: For long waves, we have

lim
α!0

t

α
= 1, lim

α!0

q

α
= 1� 2d, lim

α!0

r � 1

α2
= 2d(d� 1),

the coefficients are Bk!1 = �1, Ck!1 = �G cot θ and

Dk!1 = G cot θ(1� d). The discriminant ∆ is then,

∆ = 4G3 cot3 θ +G2 cot2 θ(3d� 2)2

�12G2 cot2 θ(3d� 1)(d� 1) + 4G cot θ(1� d).

The stability properties are independent of surface ten-

sion for long waves. Now, for a vertical wall (θ = 90�),

∆ = 0 and the system is stable. For any θ 6= 90�, the
system is stable for 1

3 < d < 1, while at other d the flow

may be stable or unstable.

3.1.4 Vanishing shear ratio k

We note that due to the presence of a no penetration

surface at y = H and a free surface at y = 0, the

limits k ! 1 and k ! 0 will not yield the same result.

We therefore consider the latter case separately here,

where the upper fluid is at a constant velocity of 1.

When k ! 0, we have from Eqs. (16)� (18),

Bk!0 = �3 +
1

2αx
(t+ q),

Ck!0 = 3� 1

αx
(t+ q)� tf

α
,

Dk!0 = �1 +
1

2αx
(t+ q) +

tf

α
� f

2α2x
(r � 1). (23)

Case(i) Short waves: In the case of short waves,

Bk!0 = �3, Ck!0 = 3� tSα,

Dk!0 = �1 + tSα+
S

2x
(r � 1)

. The inclination of wall has no influence on the stability

properties. In the absence of surface tension, Bk!0 =

�3, Ck!0 = 3, Dk!0 = �1 and ∆ = 0; hence the short

waves are stable.

If surface tension is present but Sα << 1 then Bk!0 =
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Fig. 3 Real and imaginary parts of eigenmodes as a function of wave number α when K1 = 1,K2 = 1.5, d = 0.4 and G = 5/6:
Fig. (a), (b) for θ = 90�, S = 0; Fig. (c), (d) for θ = 45�, S = 0. Fig. (e), (f) are for surface tension parameter S = 0.02 with
θ = 90�. Here cr and ci represent real and imaginary parts of the eigenmodes.
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Inviscid instability of two-fluid free surface flow down an incline 9
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Fig. 4 Influence of upper layer slope (K2) and effect of distance between the two interfaces (d) on the growth rate ωi = αci
for K1 = 1, θ = 90�, G = 1/Y . Fig. (a), (b) are without surface tension (S = 0) and in Fig. (c), (d) surface tension S = 0.02.
In Fig. (a), (c), d = 0 and in Fig. (b), (d), K2 = 1.5.

�3, Ck!0 = 3, Dk!0 = �1 + S
2x (r � 1). The discrimi-

nant is

∆ = �27

4

✓

S2

x2

◆

(r � 1)2,

and is negative for all x and r. Therefore, in the pres-

ence of small surface tension, the short waves (α ! 1)
are destabilized.

Case(ii) Long waves: For long waves, Bk!0 = �2,

Ck!0 = 1 � G cot θ and Dk!0 = G cot θ(1 � d). The

discriminant in this case is

∆ = 4G cot θ(G cot θ � 1)2 + 9G2 cot2 θ(1 + 3d)(1� d),

which is zero for a vertical wall (θ = 90�) and positive

for any other wall inclination (θ) less than 90�. There-
fore there is no long wave instability when k ! 0.

Although the configurations and base state profiles

are different, it is worth mentioning the different limit-

ing cases examined by Bresch and Renardy [36] for the

Kelvin-Helmholtz instability with a free surface for the
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10 Ghosh et al.

wall bounded case. The authors exhibit scenarios sim-

ilar to the limiting cases of the present study for long

and short wavelengths for constant-shear base velocity

profiles. They have shown that there is no long-wave

instability (α ! 0) when gravity (G) satisfies the con-

dition 0  G  1/2. In the case of short waves (α ! 1)
there is Kelvin-Helmholtz type instability and it is in-

dependent of gravity. Farther, the results reveal that
stability of long waves for small gravity generally holds
for monotone profiles. The base velocity profiles in the

present study are always monotone.

Having examined these limiting cases for long and

short waves for extreme values of k, we move on to the
stability results for finite k and moderate wave num-

bers. These are obtained numerically from the disper-
sion relation and presented in the next section.

3.2 Numerical Results

The equation (15) describes the stability problem for

the two layer inviscid fluid flow system. It is an equation

for the wave speed c with real coefficients. The stabil-

ity of the base flow, approximated by a piecewise linear

profile is considered. The behaviour of eigenmodes for

the case when surface tension S = 0, 0.02 and gravita-

tional parameter G 6= 0 is first examined.
Fig. 3 provides a typical result showing the real (cr)

and imaginary (ci) parts of the eigenvalues of Eq. (13)

as functions of wavenumber α, when K1 = 1,K2 =

1.5 (m < 1), d = 0.4, G = 5/6, for two different values

of S = 0 (Figs. 3(a), (b) for θ = 90� and Figs. 3(c), (d)

for θ = 45�) and S = 0.02 (Figs. 3(e), (f) for θ = 90�).

Figs. 3(a), (b) shows the three modes for the case when
f = 0 (zero surface tension and vertical wall). In this

case the existence of the third mode with cr = 1 and

ci = 0 has been shown in the subsection 3.1.1. When

surface tension is non-zero or the wall is not vertical,
this third mode displays a phase speed different from 1,

but is always neutrally stable. In each case instability
occurs in a window of wave numbers, where two of the
eigenvalues occur in a complex conjugate pair, with one

decaying and the other growing. Outside this window,

the modes are all neutrally stable and travel with dif-

ferent phase speeds. The figure thus suggests that both

long and short waves are inviscidly stable for a verti-

cally falling two-fluid film. Surface tension dampens the
maximum growth rate for the unstable mode (compare
Fig. 3 (b), (f)) for a vertical wall. In the configuration

with θ = 45�, surface tension has a strong stabilising

effect, and S = 0.02 is stable for all wave numbers (as

we shall see in Fig. 7 (c)).
The dimensionless disturbance growth rates ωi =

αci as a function of wave number α are presented in

Fig. 4, when S = 0 (Fig. 4(a), (b)) and S = 0.02 (Fig.

4(c), (d)) for different upper layer slopes (K2) (Fig.
4(a), (c); d = 0.4) and for different distances between

two interfaces d (Fig. 4(b), (d); K2 = 1.5). The other

parameters are K1 = 1, θ = 90� and G. Here G is taken

as G = 1/(K2d + 1 � d). Fig. 4(a) reveals that an in-
crease in slope discontinuity (K2) enhances the growth

rate and widens the bandwidth of unstable wave num-

bers for a vertically falling film in the absence of surface

tension. As the location of the liquid-liquid interface (d)

approaches the solid substrate, the unstable region is

shifted towards the smaller wave numbers (Fig. 4(b);

K2 = 1.5). The long-wave cut-off emerges and reveals
the bandwidth of unstable wave numbers in the long-

wave regime. The wavelength of the dominant pertur-

bation scales with the distance d between the liquid-

liquid interface and the free surface. There is diminish-

ing of growth rate, destabilization of long waves and

stabilization of short waves. The αmax in the range of

unstable wave numbers [αmin,αmax] decreases as the
lower layer/upper layer thickness decreases/increases.

This may be due to the weak wave interaction between

the liquid-liquid interface and free surface when the dis-

tance between them (d) increases.

When S = 0.02 (Fig. 4(c)), the bandwidth of un-

stable wave numbers [αmin,αmax] is such that αmin

decreases with an increase in K2 indicating destabiliza-
tion of long waves and αmax has non-monotonic be-

haviour. When d = 0.2, the growth rate is zero (for all
α values considered) for S = 0.02 (Fig. 4(d)), while it

is positive for S = 0 (Fig. 4(b)). On the other hand, for

d = 0.4, the short waves are destabilized when S = 0.02

in contrast to the stabilization of this configuration for

S = 0. There is dampening of maximum growth rate
for S 6= 0 as compared to S = 0 for each value of d.

The influence of surface tension (S) on the growth
rate as a function of wave number (α) is evident from

Fig. 5(a), when K2 = 1.5, d = 0.4, θ = 90�, G = 5/6.

Recall from the previous section that in the limit of

high surface tension, this flow was expected to be sta-

ble under all circumstances. Consistent with this, we

see that increasing surface tension has a significant sta-

bilising effect, with the wave-number range and growth
rate of instability at S = 0.03 much lower than that at

S = 0. The limiting case of short waves above had given

us to expect that surface tension could have an inter-

esting and counter-intuitive destabilising effect on short

waves. Consistent with this, we see that the growth rate

of the instability displays a non-monotonic behaviour

at higher wave numbers. Increasing the surface tension

from zero has a significant destabilising effect on the

short waves.
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Fig. 5 (a) Influence of surface tension on the growth rate (ωi) and (b) Phase lag between the waves, at the free surface (h2)
and the liquid-liquid interface (h1) for different surface tension parameter (S) value. The other parameters are K2 = 1.5, d =
0.4, θ = 90�, G = 5/6.

That this counterintuitive effect is caused by the in-

teraction with the shear-jump interface is seen in Fig.
5(b), which shows the phase lag/phase shift between
the maxima in disturbance heights, h2 of the free sur-

face, and h1 of the shear-jump interface, as a function

of wave number (α). We may check that in the range

of wave numbers where the phase lag locked into a pos-
itive value, the flow has positive growth rate (see Fig.

5(a)). It is clear that at small values of surface tension,
short waves are destabilised by the increase of surface
tension, but as the surface tension is further increased,

the phase-locking into a positive value is restricted to a

small range of wavenumbers, and short waves are sta-

bilised. The mechanism for instability in the inviscid

system may thus be attributed to the interaction be-

tween the waves at the two interfaces. (The positive

phase lag (more than 0� and less than 180�) corre-

sponds to the inviscid interaction between the waves

at the free surface and the liquid-liquid interface. On

the other hand, zero phase lag indicates that there is

no wave-wave interaction.) The effect of the magnitude

and the location of the slope change, as well as surface

tension, on the most unstable eigenmode is summarised

in Fig. 6 by the contour plot of maximum growth rate

ωi,max in the K2�d plane. Fig. 6 presents results in the

absence of surface tension (S = 0) (a) and in its pres-

ence (b). For a fixed d, as K2 decreases (m increases),
the flow becomes more stable. In addition, the flow is

always more stable in the presence of surface tension.
The strongest stabilisation due to surface tension is seen
at low d, i.e. when the separation between the jump in

shear stress and the free surface is small. We note that
for K2 < 1 (m > 1), the configuration is inviscidly

stable for all values of d in the range considered. At
extremely small values of K2, extremely short waves

are destabilised by surface tension, but this limit is not

shown here.

As the slope of the inclined substrate is decreased

(Fig. 7(a); S = 0), the growth rate is decreased and the

unstable region is shifted towards shorter wave lengths.
However, the bandwidth of unstable wave numbers is
decreased, indicating the stabilizing effect of decrease

in inclination angle θ. In the presence of surface ten-

sion (Fig. 7(b); S = 0.02), a decrease in θ decreases the

maximum growth rate, reduces the bandwidth of un-

stable wave numbers and stabilizes both long and short

waves.

3.3 Comparison to viscous results

Having examined various aspects of the inviscid insta-

bility, we return to the flow which motivated this study,

namely the viscous miscible two-fluid film flow on an in-

clined wall, whose base state was seen in figure 2(b). It

is not possible to make a firm statement on whether the

instability due to viscosity stratification is caused by in-

viscid means or not. We therefore restrict ourselves to
pointing out, by means of Fig. 8, that the two instabil-
ity growth rates display a qualitative similarity in terms

of the range of unstable wavenumbers, and in terms of

the increase in growth rate with increasing viscosity

contrast 1/m (or K2), when θ = 90� (S = 0 in Fig.

8(a) and S = 0.02 in Fig. 8(b)).

The present inviscid analysis shows the existence

of an unstable mode, with cr < 1 at moderate wave

numbers for a wide range of parameters (Fig. 3). The

growth rate of this mode decreases with an increase

in the distance between the liquid-liquid interface and

the free surface (Fig. 4). These results are observed for
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Fig. 6 Contour plot of maximum growth rate ωi,max in K2 − d plane: (a) in the absence of surface tension (S = 0); (b) for
surface tension parameter S = 0.02. The other parameters are K1 = 1, θ = 90�, G = 1/Y .
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Fig. 7 Influence of angle of inclination θ on the growth rate ωi = αci for K1 = 1,K2 = 1.5, d = 0.4: S = 0 in Fig. (a) and
S = 0.02 in Fig. (b). The dimensionless gravity parameter, G = 5/6.
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Fig. 8 Comparison of inviscid result (I) with viscous results (V): (a) S = 0 and (b) S = 0.02. In the inviscid case, ωi,max

is given as a function of the distance (d) between the liquid-liquid interface and free surface for different upper layer slopes
(K2). In the viscous case, ωi,max is presented as a function of the distance (d) of the thin mixed layer from the free surface
for different viscosity ratios (m). Here m = 1/K2. The other parameters are, in the viscous case Re = 100, θ = 90�, Sc = 100
and in the inviscid case θ = 90�, K1 = 1, G = 1/Y .
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Fig. 9 Comparison of eigenvalues (Figs. (a), (b)) and growth rates (Figs. (c), (d)) between viscous and inviscid flow. In Fig.
(a) θ = 90�, S = 0 and in Fig. (b) θ = 45�, S = 0.02. The other parameters are m = 0.67, Re = 100, θ = 90�, Sc = 100 in
the viscous case and in the inviscid case K2 = 1.5, θ = 90�, K1 = 1, G = 5/6. The curves with circle symbols in Fig. (c) (for
S = 0.0) and Fig. (d) (for S = 0.02) present the inviscid results.

the configuration with K2 > 1 which corresponds to

m < 1 in the viscous case (see Fig. 8 for comparison).

As the slope (K2) of the upper layer increases from
one, maximum growth rate (ωi,max) increases (Fig. 8).

Moreover, the stabilizing effect of θ and S observed in

the inviscid model are also seen in the viscous case (Fig.

12 in Usha et al. [13]). Another inviscid mode, with

phase speed cr > 1, that is shown to exist in this study,

may be associated with the inviscidly stable free surface

mode of the viscous case [13], since the phase speed cr
for both the modes is greater than one. However, the

viscous forces destabilized this mode as shown by Usha

et al. [13].

Fig. 9 presents comparison of eigenmodes for θ =

90� (Fig. 9(a)) and θ = 45� (Fig. 9(b)) between the vis-

cous case (filled circles) and the inviscid case (square

symbols). We observe from Fig. 9(a) that the over-

lap modes (O1 and O2 modes) in viscous case and the
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Modes-1, 2 of the inviscid case have phase speed cr < 1.

The surface mode (S-mode) in the viscous case and
the Mode-3 in the inviscid case have cr > 1. A simi-

lar scenario is observed in Fig. 9(b) for θ = 45�. While

both the inviscid (Mode-2) and viscous modes (overlap

modes) are unstable for θ = 90�; we see that when θ =
45�, only viscous overlap modes are unstable. Fig. 9(c)

and (d) present growth rate curves for different angle
of inclinations when S = 0 and S = 0.02 respectively.

The other parameters are K1 = 1.0,K2 = 1.5, G = 5/6

and d = 0.4. Curves with symbols are for inviscid case

and other curves are for viscous case. Without surface

tension (Fig. 9(c)), in the viscous case, the O2 over-
lap mode is the most unstable mode, and this mode is

relatively unaffected by inclination angle. In the invis-
cid case, the most unstable mode (Mode-2) is heavily

affected by inclination angle both in terms of growth

rate and wavelength. In the presence of surface tension

(Fig. 9(d)), the inviscid modes are heavily stabilized

for most inclinations lower than 90 degrees, while vis-

cous modes remain unstable for all inclinations shown.

Hence, while the inviscid Mode-2 shows qualitative sim-

ilarity with viscous O2 for θ = 90� inclination (Fig. 8),

we conclude that viscosity modifies the stability prop-

erties of the flow quantitatively and qualitatively for

most other inclinations.

3.4 Kinetic energy of disturbances

The disturbance kinetic energy is examined through an

energy budget analysis. The analysis explains how the

unstable disturbances extract their energy growth from

the base flow or the opposite for the stable disturbances.

The energy budget equation is derived using a standard

procedure [2].

The x and the y momentum equations for the per-
turbed quantities are multiplied by the respective com-

ponents of velocity perturbations; the resulting equa-

tions are added and integrated over one wavelength

λ = 2π
α

of the disturbance in a domain bounded by

the free surface at y = 0 and the wall at y = 1. Using

all the boundary conditions, the following energy dis-
turbance equation for the two-fluid inviscid free surface
flow down an incline is obtained (after substituting the
normal modes for the perturbations and suppressing

hat (ˆ) symbols):

KEN = RES + STE +HYD, (24)

where,

KEN =
ωi

2

Z

0

d

(|u2|
2+|v2|

2)dy+
ωi

2

Z

d

1

(|u1|
2+|v1|

2)dy,

RES = �1

4

Z

0

d

U
0

2B(ū2v2 � u2v̄2)dy

�1

4

Z

d

1

U
0

1B(ū1v1 � u1v̄1)dy,

STE = �α2S

4



�

v2h̄2 + v̄2h2

�

�

�

�

at y=0

�

,

HY D = �G cot(θ)

4



�

v2h̄2 + v̄2h2

�

�

�

�

at y=0

�

.

In the above, an over-bar ( ¯ ) represents the com-

plex conjugate; KEN is the time rate of change of

the total disturbance energy and RES is the rate of

energy transfer between the base flow and the distur-
bance (commonly known as “Reynolds stress” term);

STE and HYD respectively correspond to the surface
energy due to surface tension at the free surface and

the gravity potential energy. The terms in Eq. (24) are

plotted as a function of wave number α for different

surface tension parameter (S) values, after scaling by

the factor ‘SKL’ given by

SKL =

Z

0

d

(|u2|
2 + |v2|

2)dy +

Z

d

1

(|u1|
2 + |v1|

2)dy,

for θ = 30� (Fig. 10). The other parameters are taken

as K1 = 1, K2 = 1.5, d = 0.4 and G = 0.02 (Fig. 10).

When θ = 90� the term HYD has no contribution to
the energy budget for any value of G (since cot θ = 0).

Also, the term STE has no contribution to the energy
budget if surface tension parameter S = 0.

Fig. 10(a) shows the KEN term which corresponds

to the scaled growth rate (ωi/2) for the indicated pa-
rameters. So, the flow system is stable or unstable if

KEN < 0 or KEN > 0. Fig. 10(a) reveals that, the
long-waves are stabilized by the presence of surface ten-

sion and the maximum growth rate decreases with an

increase in surface tension parameter (S) value. How-

ever, the presence of surface tension (0 < S  0.025) at

the free surface (y = 0) creates a disturbance and new
set of damped and unstable short wave modes exist at

large wave numbers (for α > 4 when S = 0.02; Fig.
10(a)). Beyond this S value, the short waves are also

stabilized.

The contribution to the energy transfer from the

Reynolds stress (RES) is presented in Fig. 10(b). When

S = 0, Eq. (24) has KEN , RES and HYD terms, and
so KEN = RES + HYD. In this case, the instabil-

ity arises due to the production of energy by Reynolds

stress (RES) and there is contribution to the energy

transfer from HYD term in Eq. (24), but it is small as

compared to other energy terms. It produces negative

energy for all S values considered indicating its stabiliz-

ing role (Fig. 10(d)). When S is increased, contribution
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Fig. 10 Energy terms for different S when θ = 30� . The other parameters are taken as K1 = 1,K2 = 1.5, d = 0.4 and
G = 0.02.

to the energy transfer comes also from the STE term

and it is negative for all unstable wave numbers (10(c)).

For moderate wave numbers, the surface tension dis-

plays a stabilizing effect by overcoming the destabiliz-

ing effect of Reynolds stress. The rate of kinetic energy

disturbance decreases due to the contribution of neg-

ative energy from surface tension at the free surface.

As S increases, this stabilizing effect is enhanced for

this range of moderate wave numbers. Short waves are
destabilized for small surface tension value (S = 0.02)

as the destabilizing effect of Reynolds stress overcomes

the stabilizing effect of surface tension (for α � 4). How-

ever, as S increases in addition, the destabilizing effect

of RES is suppressed by the damping effect of surface

tension and the flow becomes neutrally stable beyond
S � 0.03.

4 Conclusions

The inviscid temporal stability of two-fluid parallel shear

flow in the presence of a free surface down an inclined

substrate is analyzed. The base velocity profiles in the

two layers are approximated by piecewise linear profiles.
The choice of base velocity profile for the inviscid case
ensures that its characteristic features such as asymp-

totic velocity values in each layer match with that of

the viscous case. The viscosity stratification of the back-

ground flow is thus incorporated through a slope change

in the base profiles, at the interface between the two flu-

ids. The analytical results of the limiting cases of the

dispersion relation reveal that:

– In the absence of surface tension, for any inclination

of the wall, the short waves are stabilized as K2 !
1. But, surface tension destabilizes short waves.

– For a vertical wall, in the presence or absence of

surface tension, there is no long-wave instability as

K2 ! 1. In fact, long-wave instability is indepen-

dent of surface tension effects, when K2 ! 1.
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– In the absence of surface tension and for a vertical

wall, K2 ! 0 limiting case is inviscidly stable for
any position of the interface.

– Also, when K2 ! 0 there is no long-wave (short-

wave) instability for a vertical wall in the presence

(absence) of surface tension. But, the presence of

small surface tension (with Sα << 1) destabilizes

the short waves as K2 ! 0. However, the inclination
of the wall has no influence, in this case.

– In the absence of surface tension (S = 0), for a

vertical wall (θ = 90�), there is no long or short-

wave instabilities for any value of upper layer slope

(K2).

In the above K2 ! 0 corresponds to the case where

the velocity of the upper layer is very high as compared

to the lower layer. On the other hand K2 ! 1 implies

that the upper layer has a uniform constant velocity.
The numerical solution of the dispersion relation

produces results consistent with the limiting cases above.

In addition, it shows that in the absence of surface ten-

sion (S = 0), for a vertically falling film (θ = 90�), two

inviscid modes occur with phase speed less than the free

surface velocity (cr < 1), when the upper layer slope is

greater than one (K2 > 1) and one of the modes is
unstable for moderate wave numbers. In this case, the

long and short waves are inviscidly stable. As the in-
clination of the substrate is decreased, a new neutrally
stable mode is found with phase speed cr > 1. This sce-

nario is also observed when S 6= 0. The unstable mode

is destabilized by increasing the upper layer slope and
stabilized by placing the liquid-liquid interface closer to

the wall (Fig. 4). Although surface tension (S) dampens

the maximum growth rate of the dominant disturbance,
the system is unstable for short waves when S is small

(Fig. 3; S = 0.02). This may be due to the interac-

tion of the inviscid waves at the free surface and the
liquid-liquid interface. A detailed wave interaction ap-
proach [49,50] is required for a complete and thorough

understanding and will be pursued in future. In order
to understand the disturbance evolution and the role
of surface tension, we have performed an energy bud-

get analysis. The energy transfer from the base flow to

the disturbances (through the Reynolds stress term) is

responsible for the inviscid instability and surface ten-

sion has a non-monotonic effect on the energy transfer

depending on the wave number.
When m > 1 (K2 < 1), we observe the existence of

unstable modes due to viscosity stratification in viscous

flow [13]. The inviscid analysis shows that for K2 < 1,

the flow system is inviscidly stable. This suggests that

the unstable modes that occur for m > 1 in the viscous
case arise due to viscosity stratification and diffusivity

mechanism. On the other hand, for K2 > 1, the in-

viscid analysis has identified two modes: one unstable

mode with phase speed cr < 1 and another neutrally
stable mode with cr > 1. In the viscous flow system,

for m < 1, Usha et. al. [13] have shown the existence of

two types of unstable modes namely, the overlap modes

with cr < 1 and a surface mode with cr > 1. This indi-
cates that, for a flow configuration with the less viscous

fluid adjacent to the free surface (m < 1; K2 > 1),

the inviscid mechanism is also responsible for the oc-

currence of unstable modes. This is evident from the

qualitative agreement between the inviscid model re-

sults and the viscous case (m < 1; K2 > 1 as shown in

Fig. 8). Viscous effects modify the stability properties
of the flow system quantitatively.
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