
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

SIAM J. OPTIM. c© 2010 Society for Industrial and Applied Mathematics
Vol. 20, No. 5, pp. 2653–2678
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INEQUALITY PROBLEMS∗
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Abstract. We present a new family of proximal point methods for solving monotone variational
inequalities. Our algorithm has a relative error tolerance criterion in solving the proximal subprob-
lems. Our convergence analysis covers a wide family of regularization functions, including double
regularizations recently introduced by Silva, Eckstein, and Humes, Jr. [SIAM J. Optim., 12 (2001),
pp. 238–261] and the Bregman distance induced by h(x) =

∑
n

i=1 xi log xi. We do not use in our anal-
ysis the assumption of paramonotonicity, which is standard in proving convergence of Bregman-based
proximal methods.
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1. Introduction. Let T : Rn
⇒ R

n be a set-valued map, and let C be a closed
convex subset of Rn. The variational inequality problem associated with T and C,
denoted as V IP (T,C), consists of finding x∗ ∈ C and w∗ ∈ Tx∗ such that

(1.1) 〈w∗, y − x∗〉 ≥ 0 ∀y ∈ C.

We assume that T is maximal monotone, and we further assume that D(T ) ∩ intC
is nonempty. Under these assumptions, it is well known that the above problem is
equivalent to the following:

Find x∗ such that 0 ∈ (T +NC)(x
∗),

where the set-valued map NC : Rn
⇒ R

n is the normal cone map associated with
C, i.e., it returns us the normal cone to the set C at x if x ∈ C and the empty set
otherwise. Under the assumptionD(T )∩intC �= ∅, the map T̂ := T+NC is a maximal
monotone operator. Thus problem V IP (T,C) boils down to one of finding the zero of
T̂ = T +NC . A classical approach for finding a zero of a maximal monotone operator
T̂ is given by the proximal point method (see, e.g., [24]), which is defined as follows.
Given xk−1 ∈ R

n and a positive scalar λk, find xk such that

0 ∈ λkT̂ (x
k) + (xk − xk−1).

When T̂ = T + NC , then the above iteration has the additional restriction xk ∈ C,
which has to be dealt with separately. In order to remove this drawback, one can
replace the term ρ(·) = (· − xk−1), which is the gradient of the quadratic distance
d0(·, xk−1) := (1/2)‖ · −xk−1‖2, with the gradient of a generalized distance function
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2654 REGINA BURACHIK AND JOYDEEP DUTTA

d(·, xk−1), specifically chosen so that xk is forced to be in the interior of C. Using the
fact that T̂ = T in the interior of C, the proximal iteration becomes

0 ∈ λkT (x
k) +∇1d(x

k, xk−1),

where ∇1d stands for the gradient of d(·, ·) with respect to the first variable. The
so-obtained methods are called generalized proximal methods (GPPMs). Well-known
examples of these regularizing functionals are the Bregman distances (see, e.g., [1, 9,
14, 16, 22, 26]), ϕ-divergences (see [30, 7, 19, 20, 21, 31, 32]), log-quadratic distances
(also known as second order homogeneous kernels) [4, 5], and double regularizations,
which extend the latter ones, and were recently introduced in [17].

An implementable scheme of generalized proximal methods must be able to accept
inexact solutions of the subproblems. Many such inexact proximal point schemes have
been devised for variational inequalities. There are mainly two ways in the literature
for devising inexact schemes of GPPMs. One of them uses summable error analysis
(see, e.g., [3, 4, 5, 8, 18]), which means that the infinite sum of all errors is finite.
The drawback of this approach is that the summability assumption may force high
accuracy for accepting iterates at early stages of the algorithm. The other, more
recent, approach is based on relative error analysis (see, e.g., [28, 29, 26, 13]). This
latter approach may be more convenient from the computational point of view because
it allows iterations which are more tolerant to errors.

Our aim is to provide a convergence analysis for inexact generalized proximal
methods, which includes (i) the Bregman distance induced by h(x) =

∑n

i=1 xi lnxi,
(ii) log-quadratic distances, and (iii) double regularizations. Moreover, our analysis
does not require paramonotonicity of T , which is a standard assumption for conver-
gence of Bregman-based proximal methods (see, e.g., [26, 9]). Our analysis considers
two kinds of relative error criteria. The first one (see Definition 3.1) is for a proximal
methods with double regularizations, and it extends the one used in [13] for second
order kernels. The second criterion (see Definition 3.2) is for the proximal method
with the Bregman distance induced by the function h(x) =

∑n
i=1 xi lnxi. We show in

section 6 that the use of the enlargement of T and the relative error analysis allows
a simple implementation of the step given by Definition 3.2. To our knowledge, this
specific implementation is not available for related algorithms in the literature such as
the one in [27]. We also show that when the Bregman distance is quadratic, then our
algorithm is equivalent to the hybrid inexact proximal method as given in [28]. In this
way, the same inexact step can be used to analyze very different schemes, such as the
ones induced by log-quadratic, double regularizations, and pure quadratic regulariza-
tions. Note also that we do not require paramonotonicity of T . The latter assumption
is restrictive in the sense that important kinds of maximal monotone maps are not
paramonotone. The subdifferential of a convex function is paramonotone, but the sub-
differential of a saddle function is not. We describe now the main differences between
our methods and related ones in the literature. A convergence analysis for proximal
methods without paramonotonicity was presented by Silva, Eckstein, and Humes, Jr.
in [27]. The latter analysis covers the case of the Bregman distance induced by the
function h(x) =

∑n

i=1 xi lnxi. The differences between the method in [27] and the one
in the present paper are as follows. First, the error analysis used in [27] is summable
(see [27, Assumption 4.4]). Second, the step in [27] uses the given operator T , while
ours uses the enlargement of T (see (2.1)), which gives more freedom in the choice of
the iterates. Third, we use in the present paper an extragradient step, while in [27]
the authors use a “pure” proximal step (see [27, BIPPA]).
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PROXIMAL POINT METHODS FOR VARIATIONAL INEQUALITIES 2655

In [17], an inexact proximal method is presented for double regularizations. As in
[27], summable error analysis is used, the iterations do not involve an extragradient
step, and the inexact step does not make use of the enlargement of T .

We also note that both our method and our error criteria reduce to the one in
[13] when the distance is given by a second order kernel.

In our analysis, we will use the concept of proximal distance, recently introduced
in [3, 2]. Our error criteria are given in terms of the proximal distance and are closely
inspired by [13].

The paper is organized as follows. In section 2 we recall basic notions and proper-
ties on set-valued maps, proximal distances, and induced proximal distances. Section
3 introduces our generalized proximal point method and the formal definition of ap-
proximate solution. In section 4 we provide examples of proximal distances and their
associated induced proximal distances. We pay particular attention to the Bregman
distance induced by the function h(x) =

∑n

i=1 xi lnxi. We also explain how our er-
ror criterion is related to the one introduced in [28] in the context of an inexact
proximal point scheme with quadratic regularization. We show that our relative er-
ror scheme is equivalent to the relative error scheme in [28] when, in particular, we
consider the quadratic distance. In section 5 we develop the convergence analysis of
our inexact proximal scheme, and we show that the convergence can be achieved
without paramonotonicity, including the case of the Bregman distance induced by
h(x) =

∑n
i=1 xi lnxi. In section 6 we show how our inexact proximal scheme can be

easily implemented, even when T is point-to-set, for the constraint C = R
n
+ and the

proximal distance is the Bregman distance induced by the function h above.

2. Basic definitions. Given a subset C ⊂ R
n, we denote by intC its interior

and by bdryC its boundary. We use the notation R+∞ := R ∪ +∞. We collect next
a few definitions related to point-to-set operators and generalized distances. A point-
to-set valued map T : Rn

⇒ R
n is an operator which associates to each point x ∈ R

n

a (possibly empty) set T (x) ⊂ R
n. The domain and the graph of a point-to-set valued

map T are defined as

D(T ) := {x ∈ R
n | T (x) �= ∅},

G(T ) := {(x, v) ∈ R
n × R

n | x ∈ D(T ), v ∈ T (x)}.

A point-to-set operator T is said to be monotone if

〈v′ − v, x′ − x〉 ≥ 0 ∀ v ∈ T (x), v′ ∈ T (x′).

A monotone operator is said to be maximal when its graph is not properly contained
in the graph of any other monotone operator.

To deal with inexact proximal iterations, we use the notion of enlargement of a
maximal monotone operator T : Rn

⇒ R
n (see [8, 12, 11]). Given ε ≥ 0 and x ∈ R

n,
the ε-enlargement of T at the point x is the set

(2.1) T ε(x) = {u ∈ R
n | 〈v − u, y − x〉 ≥ −ε ∀y ∈ R

n, v ∈ T (y)} .

The above enlargement of T has some useful theoretical and algorithmic applications,
thanks to the fact that it shares many properties with the ε-subdifferential of a convex
function. In the same way as the ε-subdifferential is used for devising and analyzing
inexact minimization schemes in convex optimization (see, e.g., [4, 2]), the T ε can be
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2656 REGINA BURACHIK AND JOYDEEP DUTTA

used for the analysis of inexact proximal schemes for variational inequalities. (See,
e.g., [8, 13] and [10, Chapter 5] for a comprehensive review of these enlargements.)

We shall now list the desirable properties of the generalized distance d. Our as-
sumptions for d, listed below, are taken from the ones in [2, Definition 2.1].

Definition 2.1. A function d : Rn ×R
n → R+ ∪ {+∞} is said to be a proximal

distance with respect to a closed nonempty and convex set C ⊂ R
n if, for every fixed

y ∈ intC, the following properties hold:
(d1) d(·, y) is a proper, lsc convex function and C1 on intC.
(d2) dom d(·, y) ⊆ C, and dom∇1d(·, y) = intC.

We write d ∈ D(C) when a function d satisfies conditions (d1)−(d2).
Following the analysis given in [2], we associate with every d ∈ D(C) an induced

proximal distance Hd which we define below.
Definition 2.2. The induced proximal distance associated with d ∈ D(C) is a

function Hd : Rn × R
n → R+ ∪ {+∞} such that intC × intC ⊆ dom Hd := {(x, y) ∈

R
n × R

n : Hd(x, y) < +∞} and satisfies the following properties:
(H1a) For every a ∈ intC, Hd(a, ·) is continuous on intC.
(H1b) Hd(a, a) = 0 for all a ∈ intC.
(H2) For all a ∈ C and α ∈ R, the set {y ∈ intC : Hd(a, y) ≤ α} is bounded.
(H3) For every a, b ∈ intC, it holds that

〈c− b,∇1d(b, a)〉 ≤ Hd(c, a)−Hd(c, b)− γHd(b, a)

for all c ∈ C and some fixed γ > 0.
(H4) If {yk} ⊂ intC and yk → y ∈ C, then Hd(y, y

k) → 0.
(H5) Let z ∈ C and y ∈ intC, and take w := αz + (1− α)y, with α ∈ (0, 1). Then

Hd(z, w) +Hd(w, y) ≤ Hd(z, y).

(H6) If {xk}, {yk} ⊂ intC are sequences such that {xk} converges to x and {yk}
converges to y, with x �= y, then

lim inf
k

Hd(x
k, yk) > 0.

We write (d,Hd) ∈ F(C) when a triple [C, d,Hd] verifies conditions (H1)−(H6). In
this case, we say that (d,Hd) is a proximal pair associated with C.

Assumption (H1b) is used in [3, 2] in the definition of induced proximal distance.
Requirements (H2) and (H4) are classical assumptions in the context of Bregman
distances. Assumption (H3) is used in [3, Definition 2.2 (Equation 2.14)]. Conditions
(H5)−(H6) are inspired from [26]. In [26, Lemmas 2.2 and 2.3] they are proved to
hold for Bregman distances.

The fact that conditions (H5)−(H6) also hold for second order kernels and double
regularizations is pointed out below in Remarks 4.2 and 4.4.

Before stating the method, we recall two important facts regarding proximal dis-
tances verifying (H5) and (H6). The proofs of the following two lemmas are similar
to those in [26, Lemmas 2.2 and 2.3], but we include the proofs here for completeness.

Lemma 2.3. Assume that Hd verifies (H5) and (H6). If {xk} ⊂ C and {yk} ⊂
intC are sequences such that

lim
k

Hd(x
k, yk) = 0

and one of the sequences ({xk} or {yk}) converges, then the other one also converges
to the same limit.
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PROXIMAL POINT METHODS FOR VARIATIONAL INEQUALITIES 2657

Proof. Suppose, by contradiction, that one of the sequences, say, {yk}, converges
to y and that {xk} does not converge or converges to a different limit. In that case,
there exists a set of indexes {kj} and ε > 0 such that ‖xkj − ykj‖ > ε. Define
zj := ykj + ε

‖xkj−y
kj ‖

(xkj − ykj ). From (H6) we know that

Hd(z
j , ykj ) ≤ Hd(x

kj , ykj ).

Using now our assumption, we have that Hd(z
j , ykj ) converges to 0. Noting that

‖zj − ykj‖ = ε and {ykj} converges, we conclude that {zj} is bounded, and hence it
has a convergent subsequence. Call z the limit of that subsequence. Without loss of
generality, we also denote the subsequence as {zj}. Altogether, we have

‖z − y‖ = ε,
lim infj Hd(z

j, ykj ) = 0,
limj z

j = z,
limj y

kj = y.

The above list of facts contradicts (H6). If we assume that {xk} converges (and {yk}
does not converge or converges to a different limit), then a similar argument as above
leads to a contradiction. Therefore, the conclusion is true.

The following result is a direct consequence of the lemma above.
Lemma 2.4. Assume that Hd verifies (H6) and (H7). Suppose that

lim
k

Hd(x
k, yk) = 0

and that one of the sequences ({xk} or {yk}) is bounded. Then the following hold:
(a) The other sequence is also bounded.
(b) (xk − yk) → 0.
Proof. Assume (a) is not true. For instance, assume that {yk} is bounded and

that the sequence {xk} is unbounded. So there exists an infinite set of indices J such
that ||xk|| → ∞ as k → ∞ with k ∈ J . Further, since {yk} is bounded, there exists
an infinite set of indices J ′ with J ′ ⊂ J such that yk converges to a limit ȳ as k → ∞
with k ∈ J ′. We also have Hd(x

k, yk) → 0 as k → ∞ and k ∈ J ′. Now by Lemma 2.3
we have that xk → ȳ as k → ∞ and k ∈ J ′. This contradicts the fact that ||xk|| → ∞
as k → ∞ and k ∈ J ′.

For (b), assume that (xk − yk) does not converge to zero. Then there exists an
infinite set of indices J and ε > 0 such that

(2.2) ||xk − yk|| ≥ ε, k ∈ J.

Now using (a), we have that both sequences {xk} and {yk} are bounded, and thus
we can find an infinite set of indices J ′ ⊂ J such that xk → x and yk → y as k → ∞
and k ∈ J ′. Now from Lemma 2.3 we have that x = y. This clearly contradicts (2.2).
Hence we have the result.

The following simple lemma will be used in our convergence analysis.
Lemma 2.5. Assume that the real sequences {αj} and {βj} are such that
(a) lim infj αj ≥ 0,
(b) βj ≥ β̄ > 0.

Then we must have lim infj
αj

βj
≥ 0.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 
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Proof. If the conclusion of the lemma is not true, then there exists δ > 0 such
that lim infj

αj

βj
< −δ. Therefore, there exists a subsequence nj such that

αnj

βnj

< −δ ∀j.

Combine the above fact with (b) to obtain

inf
n≥j

αn ≤ αnj
< −βnj

δ ≤ −β̄δ < 0

for every j ∈ N. Taking supremum over n in the above expression yields

lim inf
j

αj ≤ −β̄δ < 0,

contradicting (a).

3. Inexact proximal point method. We work under the assumption that
D(T ) ∩ intC �= ∅. The iterative steps associated with the inexact proximal point
methods are as follows. Assume d is a fixed proximal distance with respect to C.
Given xk−1 ∈ intC and λk > 0, find a triplet (x̃k, ṽk, εk) such that the following
holds:

ṽk ∈ T εk(x̃k),(B11)

ek = λkṽ
k +∇1d(x̃

k, xk−1).(B12)

As is standard in the analysis of proximal-like methods, the regularization pa-
rameter λk is bounded away from zero, i.e., λk ≥ λ̂ > 0 for all k.

The inexact proximal point method also requires what is known as an extragra-
dient step which is given as

xk ∈ (∇1d(·, xk−1))−1(−λkṽ
k), i.e., ∇1d(x

k, xk−1) = −λkṽ
k.(B13)

In the case in which d = Dh is the Bregman distance induced by h(x) =
∑n

i=1 xi lnxi

and d(x, y) = Dh(x, y) = h(x) − h(y) − 〈∇h(y), x − y〉 =
∑n

1 xi ln (xi/yi) + yi − xi

(see section 4.1), we consider a rescaled extragradient step as

rk−1∇1d(x
k, xk−1) = −λkṽ

k,(B13)′

where rk−1 := mini=1,...,n{xk−1
i }.

We give next a motivation for our inexact step. The exact proximal iteration can
be described as follows:

vk ∈ T (xk),(3.1)

λkv
k +∇1d(x

k, xk−1) = 0.(3.2)

With this in mind, we see that (B11) relaxes the inclusion in (3.1) and that (B12)
relaxes the equality in (3.2).

Definition 3.1. Let d be the proximal distance used in (B11)−(B13), and take
Hd a proximal distance induced by d. A vector (x̃k, xk, ṽk, εk) verifying (B11)−(B13)
is called an approximate solution of (3.1)–(3.2) if the following estimates are satisfied:

Hd(x̃
k, xk) ≤ c1Hd(x

k, xk−1),(E1)

λk(εk + 〈ṽk, x̃k − xk〉) ≤ c2Hd(x
k, xk−1),(E2)
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PROXIMAL POINT METHODS FOR VARIATIONAL INEQUALITIES 2659

where c1 and c2 are positive constants with c2 = σγ, where γ > 0 as in (H3) and
σ ∈ [0, 1).

As mentioned above, the error criteria (E1)−(E2) reduces to the one in [13] for
the case in which the distance d is induced by a second order kernel. Indeed, in this

case, Hd(x, y) is a multiple of ‖x−y‖2

2 (see Lemma 4.3). So our inexact scheme is an
extension of the one presented in [13, Equations (17)–(18)].

In order to establish convergence for the Bregman-based proximal method induced
by h(x) =

∑n
i=1 xi lnxi, we need to rescale (E2) as follows.

Definition 3.2. Let d = Dh in (B11)−(B12) and (B13)′ be the Bregman distance
induced by h(x) =

∑n
i=1 xi lnxi. A vector (x̃k, xk, ṽk, εk) verifying (B11)−(B12) and

(B13)′ is called an approximate solution of (3.1)–(3.2) if the following estimates are
satisfied:

Hd(x̃
k, xk) ≤ c1Hd(x

k, xk−1),(E1)

λk(εk + 〈ṽk, x̃k − xk〉) ≤ σHd(x
k, xk−1)rk−1,(E2)′

where c1 is a positive constant, σ ∈ [0, 1), and rk−1 is as in (B13)′.

4. Examples of proximal pairs (d,Hd). We construct here specific exam-
ples of proximal pairs (d,Hd) for the choices of d as a Bregman distance, a double
regularization, or a second order kernel.

4.1. Bregman distances. We start by recalling the definition and well-known
properties of Bregman distances. Let h : Rn → R+∞ be a proper, lsc function with
domh ⊂ C and dom∇h = intC, strictly convex and continuous on domh, and
continuously differentiable on int domh = intC. Define

Dh(x, y) :=

{

h(x)− h(y)− 〈∇h(y), x− y〉 if x ∈ R
n, y ∈ dom∇h,

+∞ otherwise.

Let d = Dh, a Bregman distance induced by h. It is proved in [2] that the proximal
distance induced by d is Hd := Dh, and hence the proximal methods generated by
these distances are called in [2] self-proximal.

Remark 4.1. The assumptions on h imply that Hd = Dh verifies (H1.a)−(H1.b)
as well as (H3) because of the three point identity [15, Lemma 3.1], which is stated
as

(4.1) Dg(c, a) = Dg(c, b) +Dg(b, a) + 〈c− b,∇1Dg(b, a)〉

for every a, b ∈ intC and every c ∈ C. As mentioned before (see [26, Lemmas 2.2
and 2.3]), every Bregman distance verifies both (H5) and (H6). Therefore, conditions
(H1), (H3), and (H5)−(H6) hold automatically for the pair (d,Hd) = (Dg, Dg). On
the other hand, conditions (H2) and (H4) are standard assumptions in the context
of Bregman distances, so it is natural to assume them to hold in our analysis.

We consider in our analysis two kinds of Bregman distances. One of them is
the case in which C = R

n
+ and the Bregman distance is induced by the function

h(x) =
∑n

1 xi lnxi. For this kind of regularization, we will use Definition 3.2, which
allows for a natural and simple implementation (see section 6).

The other Bregman distance we consider is the one induced by h(x) = 1
2

∑n

i=1 xi
2

with C = R
n. Note that in this case, we have Hd(x, y) = 1

2‖x − y‖2, which is not
included in section 4.2 nor section 4.3. For this kind of regularization, we will show
that the algorithm produced through Definition 3.1 is equivalent to the hybrid inexact
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proximal method of [28]. To describe the latter method, we start by recalling the exact
proximal step as follows. Given a current iterate xk−1, find x∗k such that

(4.2)

{

vk ∈ T (x∗k),
0 = λkv

k + x∗k − xk−1.

Definition 4.1. Given a fixed constant θ ∈ [0, 1) and a current iterate xk−1, a
vector (x̃k, xk, ṽk, εk) verifying

(4.3)

⎧

⎨

⎩

ṽk ∈ T εk(x̃k),
ek := λkṽ

k + x̃k − xk−1,
xk := xk−1 − λk ṽ

k (extragradient step)

is called a hybrid approximate solution of (4.2) if the following estimate is satisfied:

2λkεk + ‖ek‖2 ≤ θ2
(

‖λkṽ
k‖2 + ‖x̃k − xk−1‖2

)

.(H)

Note that (4.3) coincides with (B11)−(B13). Moreover, when Hd(x, y) = (1/2)‖x−
y‖2, then the parameter c2 in (E2) reduces to c2 = σ ∈ [0, 1) because γ = 1.

We say that two given methods are equivalent when every instance of one method
can be obtained by a specific instance of the other and vice versa. This statement is
made precise in the next proposition.

Proposition 4.2. With the notation of Definitions 3.1 and 4.1, assume that
(x̃k, xk, ṽk, εk) verifies (4.3). The following two statements hold:

(i) For every c1 > 0 and σ ∈ [0, 1), there exists θ ∈ [0, 1) such that if (H) holds
with parameter θ, then (E1)−(E2) hold with parameters c1, σ for every k.

(ii) For every θ ∈ [0, 1), there exists c1 > 0 and σ ∈ [0, 1) such that if (E1)−(E2)
hold with parameters c1, σ, then (H) holds with parameter θ.

Proof. To prove (i), take c1 > 0 and σ ∈ [0, 1) arbitrary. Take θ in condition (H)
such that

(4.4) θ < min

{

1

2
,
c1
4
,
σ2

6

}

.

Given c1 > 0, we can always find θ small enough such that the above requirement
holds. Note also that

1

2
Hd(x̃

k, xk−1) =
1

4

∥

∥x̃k − xk−1
∥

∥

2
=

∥

∥

∥

∥

(x̃k − xk)

2
+

(xk − xk−1)

2

∥

∥

∥

∥

2

≤ 1

2

[

∥

∥x̃k − xk
∥

∥

2
+
∥

∥xk − xk−1
∥

∥

2
]

(4.5)

= Hd(x̃
k, xk) +Hd(x

k, xk−1).

On the other hand, condition (H) and (4.5) imply

Hd(x̃
k, xk) =

∥

∥x̃k − xk
∥

∥

2

2
=

∥

∥ek
∥

∥

2

2
≤ θ2

2

[

‖λkṽ
k‖2 + ‖x̃k − xk−1‖2

]

= θ2
[

Hd(x
k, xk−1) +Hd(x̃

k, xk−1)
]

≤ θ2
[

Hd(x
k, xk−1) + 2(Hd(x̃

k, xk) +Hd(x
k, xk−1))

]

= θ2
[

3Hd(x
k, xk−1) + 2Hd(x̃

k, xk))
]
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which can be rearranged to

(4.6) Hd(x̃
k, xk) ≤

(

3θ2

1− 2θ2

)

Hd(x
k, xk−1).

It is direct to check that for θ as in (4.4), we have

(

3θ2

1− 2θ2

)

≤ 3θ < 4θ < c1.

The above expression and (4.6) yield (E1) with parameter c1. In particular, we can
combine the expression above with (4.6) to obtain

(4.7)
∥

∥x̃k − xk
∥

∥ ≤ 2
√
θ
∥

∥xk − xk−1
∥

∥ .

To complete the proof of (i), we must check that our choice of θ implies that (E2)
holds with parameter σ. We have that

λkεk +
〈

λkṽ
k, x̃k − xk

〉

= λkεk +
〈

xk−1 − xk, ek
〉

(4.8)

= λkεk + 〈xk−1 − x̃k, ek〉+ 〈x̃k − xk, ek〉
= λkεk + 〈xk−1 − x̃k, ek〉+ ‖ek‖2

=
1

2

[

2λkεk + ‖ek‖2
]

+ 〈xk−1 − x̃k, ek〉+ 1

2
‖ek‖2

=
1

2

[

2λkεk + ‖ek‖2
]

+
‖xk − xk−1‖2

2
− ‖x̃k − xk−1‖2

2

≤ θ2
[

Hd(x
k, xk−1) +Hd(x̃

k, xk−1)
]

+Hd(x
k, xk−1)−Hd(x̃

k, xk−1)

= (θ2 + 1)Hd(x
k, xk−1)− (1− θ2)Hd(x̃

k, xk−1).

To obtain the fourth equality above, we used the fact that x̃k − xk = ek in the
expression

1

2

∥

∥xk − xk−1
∥

∥

2
=

1

2

∥

∥xk − x̃k
∥

∥

2
+

1

2

∥

∥x̃k − xk−1
∥

∥

2
+
〈

xk − x̃k, x̃k − xk−1
〉

to conclude that

1

2

∥

∥xk − xk−1
∥

∥

2
=

1

2

∥

∥ek
∥

∥

2
+

1

2

∥

∥x̃k − xk−1
∥

∥

2
+ 〈ek, xk−1 − x̃k〉.

Therefore, we obtain

〈ek, xk−1 − x̃k〉+ 1

2

∥

∥ek
∥

∥

2
=

1

2

∥

∥xk − xk−1
∥

∥

2 − 1

2

∥

∥x̃k − xk−1
∥

∥

2
,

which is used in the fourth equality in (4.8). By (4.1) and (4.7), we can write

Hd(x̃
k, xk−1) = Hd(x̃

k, xk) +Hd(x
k, xk−1) + 〈x̃k − xk, xk − xk−1〉

≥ Hd(x
k, xk−1) + 〈x̃k − xk, xk − xk−1〉

≥ Hd(x
k, xk−1)−

∥

∥x̃k − xk
∥

∥

∥

∥xk − xk−1
∥

∥

≥ Hd(x
k, xk−1)− 4

√
θHd(x

k, xk−1)

= (1− 4
√
θ)Hd(x

k, xk−1).
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Combining the inequality above with (4.8), we conclude that

λkεk + 〈λkṽ
k, x̃k − xk〉

≤ (θ2 + 1)Hd(x
k, xk−1)− (1− θ2)(1 − 4

√
θ)Hd(x

k, xk−1)

= ((θ2 + 1)− (1− θ2)(1− 4
√
θ))Hd(x

k, xk−1)

= 2(θ2 + 2
√
θ − 2

√
θ3)Hd(x

k, xk−1) ≤ 6
√
θHd(x

k, xk−1)

≤ σHd(x
k, xk−1),

where we used (4.4) in the last two inequalities. Hence (E2) also holds for our choice
of θ. This proves (i). To prove (ii), let θ ∈ [0, 1) be arbitrary. We must find σ, c1 such
that (H) holds with parameter θ. Using (E1), (E2), the Cauchy–Schwartz inequality,
and some algebra, we can write

2λkεk +
∥

∥ek
∥

∥

2
= 2

[

λkεk +

∥

∥λk ṽ
k + x̃k − xk−1

∥

∥

2

2

]

= 2

[

λkεk + 〈λkṽ
k, x̃k − xk〉 − 〈λkṽ

k, x̃k − xk〉+
∥

∥λk ṽ
k + x̃k − xk−1

∥

∥

2

2

]

= 2

[

λkεk + 〈λkṽ
k, x̃k − xk〉+

∥

∥x̃k − xk−1
∥

∥

2

2
−

∥

∥λkṽ
k
∥

∥

2

2

]

≤ 2

[

(σ − 1)

∥

∥xk − xk−1
∥

∥

2

2
+

∥

∥x̃k − xk−1
∥

∥

2

2

]

=
[

(σ − 1)
∥

∥xk − xk−1
∥

∥

2
+ (1 − σ)

∥

∥x̃k − xk−1
∥

∥

2
+ σ

∥

∥x̃k − xk−1
∥

∥

2
]

= (1 − σ)
[

∥

∥x̃k − xk−1
∥

∥

2 −
∥

∥xk − xk−1
∥

∥

2
]

+ σ
∥

∥x̃k − xk−1
∥

∥

2

= (1 − σ)
[

∥

∥x̃k − xk
∥

∥

2
+ 2〈x̃k − xk, xk − xk−1〉

]

+ σ
∥

∥x̃k − xk−1
∥

∥

2

≤ (1 − σ)
[

c1
∥

∥xk − xk−1
∥

∥

2
+ 2

∥

∥x̃k − xk
∥

∥

∥

∥xk − xk−1
∥

∥

]

+ σ
∥

∥x̃k − xk−1
∥

∥

2

≤ (1 − σ)(c1 + 2
√
c1)

∥

∥xk − xk−1
∥

∥

2
+ σ

∥

∥x̃k − xk−1
∥

∥

2
.

If θ = 0, then c1 = σ = 0 gives (H) for this value of θ. Assume now that θ > 0.

In this case, take σ < θ2 and c1 < min{1, θ4

9 }. With these choices of σ, c1, we have
(1− σ)(c1 + 2

√
c1) < (c1 + 2

√
c1) < 3

√
c1 < θ2, and hence

2λkεk +
∥

∥ek
∥

∥

2 ≤ θ2
[

∥

∥xk − xk−1
∥

∥

2
+
∥

∥x̃k − xk−1
∥

∥

2
]

as required.

4.2. Double regularizations. Double regularizations, introduced in [17], ex-
tend the notion of second order homogeneous proximal distances introduced in [4, 5].
Consider the constraint set

B := [a1, b1]× · · · × [an, bn],
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where the intervals [ai, bi] may be finite or infinite. For i = 1, . . . , n, consider a function
di : R× (ai, bi) → R+∞. Let now d̃i : R× (ai, bi) → R+∞ be a function of the form

(4.9) d̃i(xi, yi) = di(xi, yi) +
µ

2
(xi − yi)

2,

where µ ≥ 1. Assume that d̃(x, y) :=
∑n

i=1 d̃i(xi, yi) verifies the following conditions:

(DR1) For all y ∈ Πn
i=1(ai, bi), d̃(·, y) is closed and strictly convex, with its minimum

attained at y. Moreover, intDom (d̃i(·, yi)) = (ai, bi).
(DR2) d̃i is differentiable with respect to its first argument on (ai, bi) × (ai, bi),

and this partial derivative is continuous at all points of the form (xi, xi) ∈
(ai, bi)× (ai, bi).

(DR3) For all y ∈ Πn
i=1(ai, bi), d̃(·, y) is essentially smooth [25, Chapter 26].

(DR4) There exist L, ǫ > 0 such that if either −∞ < ai < yi ≤ xi < ai + ǫ or
bi − ǫ < xi ≤ yi < bi < +∞, then

|d̃′i(xi, yi)| ≤ L|xi − yi|.

If d̃i as in (4.9) verifies (DR1)–(DR4), then the distance

d̃(x, y) =
n
∑

i=1

di(x, y) +
µ

2
‖x− y‖2

is called a double regularization for the constraint set B.
Remark 4.2. Assumptions (DR1)–(DR4) imply that d̃ verifies (d1)–(d2). More-

over, if µ > 1, then it is proved in [17, Lemmas 3.3 and 3.4] that condition (H3) holds
with H̃(x, y) := µ+1

2 ‖x−y‖2 and γ := µ−1
2 . This pair (d̃, H̃) is a proximal pair because

all other conditions (H1)–(H2) and (H4)–(H6) hold for H̃(x, y) := µ+1
2 ‖x− y‖2 when

µ > 1.
Remark 4.3. We point out that the exact solution of (B11)−(B12), i.e., where

ek = 0 and εk = 0, exists for every double regularization. Indeed, it can be shown
by using [9, Proposition 3] that T + β∇1d(·, y) is onto for every y ∈ intC and every
β > 0.

4.3. Second order homogeneous proximal distances. It has been observed
in [17] that second order homogeneous kernels are particular cases of double regular-
izations. Because of its importance, we present this example in detail. In this section
we recall the definition and properties of the proximal method with second order
homogeneous proximal distances. Let ϕ : R → (−∞,∞] be given by

ϕ(t) := µh(t) + (ν/2)(t− 1)2,

where h is a closed and proper convex function satisfying the following additional
properties:

1. h is twice continuously differentiable on int(dom h) = (0,+∞).
2. h is strictly convex on its domain.
3. limt→0+ h′(t) = −∞.
4. h(1) = h′(1) = 0 and h′′(1) > 0.
5. For any t > 0,

h′′(1)

(

1− 1

t

)

≤ h′(t) ≤ h′′(1)(1 − t).
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Items (1–4) and items (1–5) were used in [6] to define the families Φ and Φ2, respec-
tively. The positive parameters ν, µ shall satisfy the following inequality:

(4.10) ν > µh′′(1) > 0.

Recall that the generalized distance dϕ(x, y), defined for x, y ∈ R
n
++, is given by

(4.11) dϕ(x, y) :=

n
∑

i=1

y2i ϕ(xi/yi).

The following lemma, which has a crucial role in the convergence analysis, has been
established in [4, Lemma 3.4].

Lemma 4.3. For any x, y ∈ R
n
++ and z ∈ R

n
+,

(4.12) 〈∇1dϕ(x, y), x− z〉 ≥
(

ν + αµ

2

)

(‖x− z‖2−‖y − z‖2)+
(

ν − αµ

2

)

‖x− y‖2 ,

where α := h′′(1).
Distances d defined as in (4.11) were studied, for instance, in [4, 5, 7, 2].
Remark 4.4. From Lemma 4.3, we see that Hd(a, b) = ν+αµ

2 ‖a − b‖2 verifies
condition (H3). All other conditions (H1), (H2), and (H4)−(H6) trivially hold for
this Hd.

The following result was proved in [6, Proposition 2.1], and guarantees the exis-
tence of an exact solution of (B11)–(B13).

Proposition 4.4. Assume that D(T ) ∩ R
n
++ �= ∅. For any fixed λk > 0, ek ∈ R

n,
and xk−1 ∈ R

n
++, there exists a unique xk ∈ R

n
++ satisfying (3.1)–(3.2) for d = dϕ

defined as in (4.11).

5. Convergence analysis. In this section we establish convergence of the se-
quence generated by the inexact proximal point algorithm presented in section 3.

Proposition 5.1. Let d be a proximal distance with respect to the set C, and let
Hd be the proximal distance induced by d. Assume that Hd verifies condition (H3).
Assume either of the following:

(a) {xk} is generated by (B11), (B12)−(B13), with error criteria (E2).
(b) d = Dh Bregman distance, with h(x) =

∑n

i=1 xi lnxi, and {xk} is generated
by (B11), (B12), and (B13)′, with error criteria (E2)′.

Suppose also that z is a solution of the variational inequality problem V IP (T,C).
Then, for all k, we have

(5.1) Hd(z, x
k) ≤ Hd(z, x

k−1)− (1− σ)γHd(x
k, xk−1),

where γ is as in (H3). Under assumption (b), γ = 1.
Proof. From (B11) we have that ṽk ∈ T εk(x̃k), and from (B12) we have that

x̃k ∈ intC. Since z solves V IP (T,C), there exists w ∈ Tz such that

(5.2) 〈w, x̃k − z〉 ≥ 0.

Since ṽk ∈ T εk(x̃k), we have

(5.3) 〈ṽk − w, x̃k − z〉 ≥ −εk.

Now by adding (5.2) and (5.3), we have

〈ṽk, x̃k − z〉 ≥ −εk.
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By adding and subtracting xk in the above expression, we get

〈ṽk, x̃k − xk〉+ εk ≥ −〈ṽk, xk − z〉.

Hence we have

(5.4) λk

[

εk + 〈ṽk, x̃k − xk〉
]

≥ 〈−λkṽ
k, xk − z〉.

Assume now that (a) holds. From (E2), we have

λk

[

εk + 〈ṽk, x̃k − xk〉
]

≤ σγHd(x
k, xk−1),

where we used c2 = σγ. Further, from (B13), we have

−λkṽ
k = ∇1d(x

k, xk−1).

Thus, by using (5.4), we have

σγHd(x
k, xk−1) ≥ 〈∇1d(x

k, xk−1), xk − z〉.

Now, by (H3), we have

〈∇1d(x
k, xk−1), xk − z〉 ≥ Hd(z, x

k)−Hd(z, x
k−1) + γHd(x

k, xk−1).

Thus, combining the above two expressions, we get

Hd(z, x
k) ≤ Hd(z, x

k−1)− (1− σ)γHd(x
k, xk−1).

Hence we get the result under assumption (a). If (b) holds, using (E2)′ we have

λk

[

εk + 〈ṽk, x̃k − xk〉
]

≤ σrk−1Hd(x
k, xk−1) = σrk−1Dh(x

k, xk−1).

From (B13)′, we have

−λkṽ
k = rk−1∇1d(x

k, xk−1).

Using (5.4) again, we have

σrk−1Dh(x
k, xk−1) ≥ rk−1〈∇1d(x

k, xk−1), xk − z〉.

Simplifying the expression and using the three point property (4.1), we have

σDh(x
k, xk−1) ≥ Dh(z, x

k)−Dh(z, x
k−1) +Dh(x

k, xk−1).

Hence we get the result under assumption (b).
Lemma 5.2. Let d be a proximal distance with respect to the set C, and let Hd be

the proximal distance induced by d. Assume that Hd verifies conditions (H3)−(H6).
Assume either of the following:

(a) {xk} is generated by (B11), (B12)−(B13), with error criteria (E2).
(b) d = Dh with h(x) =

∑n
i=1 xi lnxi, and {xk} is generated by (B11), (B12),

and (B13)′ with error criteria (E2)′.
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If there exists x̄, an accumulation point of {xk} which solves V IP (T,C), then the
whole sequence {xk} converges to x̄.

Proof. Call {xkj} a subsequence converging to x̄. From (H4) we know that

(5.5) lim
j

Hd(x̄, x
kj ) = 0.

Proposition 5.1 with z := x̄ becomes

Hd(x̄, x
k) ≤ Hd(x̄, x

k−1)− (1 − σ)γHd(x
k, xk−1),

where γ = 1 under assumption (b). Hence the sequence {Hd(x̄, x
k)} is decreasing,

with a subsequence converging to zero by (5.5). This yields

(5.6) lim
k

Hd(x̄, x
k) = 0.

Using now Lemma 2.3, we conclude that the whole sequence {xk} converges to x̄.
Let us now present a corollary which will be helpful in proving the main conver-

gence result.
Corollary 5.3. Let d be a proximal distance with respect to the set C, and let Hd

be the proximal distance induced by d. Assume that Hd verifies conditions (H2)−(H6)
and that the solution set of V IP (T,C) is nonempty. Assume either of the following:

(a) {xk} is generated by (B11), (B12)−(B13), with error criteria (E1) and (E2).
(b) d = Dh with h(x) =

∑n

i=1 xi lnxi, and {xk} is generated by (B11), (B12),
and (B13)′ with error criteria (E1) and (E2)′.

Then the following hold:
(i) The sequence {xk} is bounded.
(ii)

∑∞
k=1 Hd(x

k, xk−1) < ∞.
(iii) limk→∞ ‖xk − x̃k‖ = limk→∞ Hd(x̃

k, xk) = 0.
(iv) The sequence {x̃k} is bounded.
Proof. Let us fix z̄ ∈ (T +NC)

−1(0). Then from (5.1) it is easy to deduce that

0 ≤ Hd(z̄, x
k) ≤ Hd(z̄, x

k−1) ≤ Hd(z̄, x
0),

where x0 is the first iterate. Further, we also know from (H2) that the set

{y ∈ intC : Hd(z̄, y) ≤ Hd(z̄, x
0)}

is bounded. Hence (i) holds. Again from (5.1), we deduce that

Hd(x
k, xk−1) ≤ 1

(1− σ)γ

[

Hd(z̄, x
k−1)−Hd(z̄, x

k)
]

.

Now for any natural number m, we have

m
∑

k=1

Hd(x
k, xk−1) ≤ 1

(1− σ)γ

[

Hd(z̄, x
0)−Hd(z̄, x

m)
]

.

Since Hd(z̄, x
m) ≥ 0, we deduce that

m
∑

k=1

Hd(x
k, xk−1) ≤ Hd(z̄, x

0)

(1 − σ)γ
< ∞.
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Hence (ii) holds. Using (E1) we conclude that limk→∞ Hd(x̃
k, xk) = 0. From Lemma

2.4(a), we have that {x̃k} is bounded. So (iv) holds. Moreover, using now (iv), the fact
that limk→∞ Hd(x̃

k, xk) = 0, and Lemma 2.4(b), we get limk→∞ ‖x̃k−xk‖ = 0.
Our main convergence results are a consequence of the following two results.
Theorem 5.4. Let d be a proximal distance with respect to the set C, and let Hd be

the proximal distance induced by d such that Hd verifies (H1)−(H3) and (H5)−(H6).
Assume either of the following:

(a) d is a double regularization with µ > 1, and {xk} is a sequence generated by
(B11)−(B13) with error criteria (E1) and (E2).

(b) d = Dh is the Bregman distance induced by h(x) =
∑n

1 xi lnxi, and {xk} is a
sequence generated by (B11), (B12), and (B13)′ with error criteria (E1) and
(E2)′.

If the solution set of V IP (T,C) is nonempty, then there exists an infinite set J ⊂ N

such that the subsequence {xj}j∈J converges and

(5.7) lim inf
j∈J

〈y − xj , ṽj〉 ≥ 0

for every y ∈ C.
Proof. From Corollary 5.3, we have that {xk} is bounded, so there exists an infinite

set K and a subsequence {xk}k∈K converging to some x̄. Note that

〈ṽk, y − xk〉 = 1

λk

〈−λkṽ
k, xk − y〉.

Assume that (a) holds. Then by (B13), we can write

(5.8) 〈ṽk, y − xk〉 = 1

λk

〈∇1d(x
k, xk−1), xk − y〉.

Condition (H3) yields

1

λk

〈∇1d(x
k, xk−1), xk − y〉 ≥ 1

λk

[

Hd(y, x
k)−Hd(y, x

k−1)
]

+
γ

λk

Hd(x
k, xk−1).(5.9)

Because d is a double regularization, we know by Remark 4.2 that Hd(x, y) =
µ+1
2 ‖x−

y‖2 and γ = µ−1
2 . Considering (5.9) for k ∈ K yields

2

λk

〈∇1d(x
k, xk−1), xk − y〉 ≥ µ+ 1

λk

[

∥

∥y − xk
∥

∥

2 −
∥

∥y − xk−1
∥

∥

2
]

+
µ2 − 1

λk

∥

∥xk − xk−1
∥

∥

2
.(5.10)

The right-hand side tends to zero because {xk}k∈K converges to x̄. This proves (5.7)
for J := K in case (a). Assume now that (b) holds, so h(x) =

∑n

i=1 xi lnxi. Let us

write, for simplicity, hi(xi) := xi lnxi. Therefore h
′
i(xi) := lnxi +1 and h

′′

i (xi) :=
1
xi
.

Then by (B13)′, we can write for k ∈ K

〈ṽk, y − xk〉 = rk−1

λk

〈∇h(xk)−∇h(xk−1), xk − y〉

=
rk−1

λk

n
∑

i=1

(h′
i(x

k
i )− h′

i(x
k−1
i ))(xk

i − yi)(5.11)

=
1

λk

n
∑

i=1

rk−1 ln

(

xk
i

xk−1
i

)

(xk
i − yi).
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Call qki (yi) := rk−1 ln(
xk
i

x
k−1

i

)(xk
i − yi) and I0 := {i ∈ {1, . . . , n} : x̄i = 0}. We have

that

lim inf
k∈K

〈ṽk, y − xk〉 = lim inf
k∈K

1

λk

n
∑

i=1

qki (yi)

≥
n
∑

i=1

lim inf
k∈K

1

λk

qki (yi)

=
∑

i∈I0

lim inf
k∈K

1

λk

qki (yi) +
∑

i
∈I0

lim inf
k∈K

1

λk

qki (yi)

= S0 + S1.(5.12)

Note that S1 = 0 by continuity of h′
i in R++ and the facts that λk ≥ λ̂ > 0 and

{rk−1} is a bounded sequence. We must show that S0 ≥ 0. To prove that S0 ≥ 0, we
will prove the following claim.

Claim. There exists an infinite index set K0 ⊂ K, K0 not depending on y, such
that

(5.13) lim inf
j∈K0

qji (yi) ≥ 0

for every i ∈ I0. Because λj ≥ λ̄ > 0, the above expression, Lemma 2.5, and (5.12)
yield (5.7) for the choice J := K0. Let p := |I0| be the number of elements in the set
I0, and assume without loss of generality that I0 := {1, . . . , p}. Define the set

K1 := {k ∈ K : xk
1 < xk−1

1 }.
We have two possible cases to consider.
Case 1. The set K1 is infinite.
Case 2. The set K1 is finite, so there exists an index k0 ∈ K such that xk

1 ≥ xk−1
1 for

all k ∈ K such that k ≥ k0. In this situation, call K̄1 := {k ∈ K : k ≥ k0}.
Suppose we are in Case 1. Assume first that y1 = 0. For every k ∈ K1, we

have xk
1 < xk−1

1 , so ln(
xk
1

x
k−1

1

) < 0, and by the mean value theorem there exists θk ∈

(xk
1 , x

k−1
1 ) such that ln(

xk
1

x
k−1

1

) = (1/θk)(x
k
1 − xk−1

1 ) < 0. Hence we can write

|qk1 (y1)| = |qk1 (0)| = rk−1 ln

(

xk−1
1

xk
1

)

xk
1

= rk−1
(xk−1

1 − xk
1)

θk
xk
1 ≤ xk−1

1 (xk−1
1 − xk

1)

θk
xk
1

≤ (xk−1
1 − xk

1)x
k−1
1 ,

where we used the definition of rk−1 in the first inequality and the fact that xk
1 < θk

in the second one. Note that the right-hand side of the expression above tends to zero
because the sequences {xk−1

1 − xk
1} and {xk−1

1 } tend to zero. Hence, in Case 1 when
y1 = 0, we have lim infk∈K1

qk1 (0) = 0. Assume now that we are in Case 1 with y1 > 0.
Because xk

1 tends to zero, there exists k1 = k1(y1) ∈ K1 such that (xk
1 − y1) < 0 for

every k ∈ K1 such that k ≥ k1. Note also that ln (xk
1/x

k−1
1 ) < 0 for every k ∈ K1.

Hence, we can write

lim infk∈K1
qk1 (y1) = supj∈N infk≥j, k∈K1

rk−1 ln (x
k
1/x

k−1
1 )(xk

1 − y1)

≥ infk≥k1, k∈K1
rk−1 ln (x

k
1/x

k−1
1 )(xk

1 − y1) ≥ 0,
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where we used the definition of k1. Note that even though k1 depends on y1, the
overall lim infk∈K1

qk1 (y1) ≥ 0 for every choice of y1.
Suppose we are in Case 2. By definition of K̄1, we have that xk

1 ≥ xk−1
1 for all

k ∈ K̄1. We will show that lim infk∈K̄1
qk1 (y1) = 0 in this case. For every k ∈ K̄1, we

have ln (xk
1/x

k−1
1 ) ≥ 0. Using the mean value theorem again, we can write

|qk1 (y1)| = rk−1 ln (x
k
1/x

k−1
1 )|xk

1 − y1| ≤ xk−1
1 ln (xk

1/x
k−1
1 )|xk

1 − y1|
= (xk−1

1 /θk)(x
k
1 − xk−1

1 )|xk
1 − y1| ≤ (xk

1 − xk−1
1 )|xk

1 − y1|

for every k ∈ K̄1. Because (x
k
1 −xk−1

1 ) tends to zero when k ∈ K̄1 goes to infinity and
the term |xk

1 − y1| is bounded, we conclude that lim infk∈K̄1
qk1 (y1) = 0 as wanted. We

thus proved that there exists J1 ⊂ K such that J1 is infinite, J1 does not depend on
y1, and

(5.14) lim inf
j∈J1

qj1(y1) ≥ 0.

Define now

K2 := {k ∈ J1 : xk
2 < xk−1

2 }.

Again we have the two cases above to consider, and in the same way as above, we can
obtain an infinite set J2 ⊂ J1 such that

(5.15) lim inf
j∈J2

qj2(y2) ≥ 0,

where J2 does not depend on y2. Iterating this process p times, we obtain p infinite
sets {J1, . . . , Jp} such that Jp ⊂ Jp−1 ⊂ · · · ⊂ J1 ⊂ K satisfying

(5.16) lim inf
j∈Jl

qjl (yl) ≥ 0 ∀ l = 1, . . . , p

with Jl independent of yl for all l = 1, . . . , p. Take now J0 := Jp. Because Jp ⊂ Ji for
all i ∈ I0, we have that

(5.17) lim inf
j∈J0

qji (yi) ≥ 0

for all i ∈ I0. This proves the claim for K0 = J0. Hence (5.7) holds under assumption
(b) for the infinite set J = J0.

Lemma 5.5. Consider the problem V IP (T,C), and let the sequence {(zk, uk)}
be an arbitrary sequence such that {zk} is bounded and there exists a subsequence
{(zkj , ukj)} of {(zk, uk)} which verifies

(5.18) lim inf
j→∞

〈y − zkj , ukj 〉 ≥ 0

for all y ∈ C. Assume that the subsequence {(zkj , ukj )} also verifies

(5.19) lim inf
j

〈w − ukj , y − zkj〉 ≥ 0

for all y ∈ C and that all w ∈ (T +NC)y. Then every accumulation point of {zkj} is
a solution of V IP (T,C).
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Proof. Because {zkj} is bounded, there exists a subsequence (which we still denote
{zkj} for simplicity) converging to some z̄. We can write

〈y − zkj , w〉 = 〈y − zkj , w − ukj 〉+ 〈y − zkj , ukj 〉.

Using the properties of lim inf and the definition of z̄ in the above expression, we
obtain

〈y − z̄, w〉 = lim inf
j

〈y − zkj , w〉 ≥ lim inf
j

〈y − zkj , w − ukj 〉+ lim inf
j

〈y − zkj , ukj〉 ≥ 0,

where we used (5.19) and the fact that the subsequence {(zkj , ukj )} verifies (5.18).
Because y ∈ C and w ∈ (T + NC)y are arbitrary, this implies that z̄ solves
V IP (T,C).

Theorem 5.6. Let d be a proximal distance with respect to the set C, and let
Hd be the proximal distance induced by d, such that Hd verifies (H1)−(H3) and
(H5)−(H6). Assume either of the following:

(a) d is a double regularization with µ > 1, and {xk} is a sequence generated by
(B11)−(B13) with error criteria (E1) and (E2).

(b) d = Dh is the Bregman distance induced by h(x) =
∑n

i=1 xi lnxi, and {xk}
is a sequence generated by (B11), (B12), and (B13)′ with error criteria (E1)
and (E2)′.

If the solution set of V IP (T,C) is nonempty, then every accumulation point of the
sequence {xk} is a solution of variational inequality V IP (T,C).

Proof. Using Theorem 5.4, under either assumption (a) or (b), there exists an
infinite set K ⊂ N such that {xk}k∈K converges to, say, x̄, and for every y ∈ C,

(5.20) lim inf
k∈K

〈y − xk, ṽk〉 ≥ 0.

Our next step is to prove that for every y ∈ C and every w ∈ (T +NC)y, we have

(5.21) lim inf
k∈K

〈y − xk, w − ṽk〉 ≥ 0,

where {xk}k∈K and {ṽk}k∈K are as in assumption (a) or (b). Take y ∈ C and w ∈
(T +NC)y. Because D(T ) ∩ intC �= ∅, we can write

w ∈ (T +NC)(y) = T (y) +NC(y).

Thus we have w = u+ r, where u ∈ T (y) and r ∈ NC(y). For every k ∈ K, we have

〈y − xk, w − ṽk〉 = 〈y − xk, u− ṽk〉+ 〈y − xk, r〉.

Since r ∈ NC(y), we have

〈y − xk, r〉 ≥ 0.

This shows that

(5.22) 〈y − xk, w − ṽk〉 ≥ 〈y − xk, u− ṽk〉.

Further, we can write

(5.23) 〈y − xk, u− ṽk〉 = 〈y − x̃k, u− ṽk〉+ 〈x̃k − xk, u− ṽk〉.
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Since u ∈ T (y) and ṽk ∈ T εk(x̃k), we have

〈y − x̃k, u− ṽk〉 ≥ −εk.

Thus from (5.23), we have

〈y − xk, u− ṽk〉 ≥ −εk + 〈x̃k − xk, u− ṽk〉.

Using now (5.22) yields

〈y − xk, w − ṽk〉 ≥ −εk + 〈x̃k − xk, u− ṽk〉.

The above expression can be further rearranged as

〈y − xk, w − ṽk〉 ≥ −
[

εk + 〈x̃k − xk, ṽk〉
]

+ 〈x̃k − xk, u〉.

Under assumption (a), we use (E2) and the Cauchy–Schwartz inequality to obtain

(5.24) 〈y − xk, w − ṽk〉 ≥ −σγ

λk

Hd(x
k, xk−1)− ||u|| ||x̃k − xk||.

The right-hand side of the expression above tends to zero by Corollary 5.3, items (ii)
and (iii). Therefore, we have

(5.25) lim inf
k∈K

〈y − xk, w − ṽk〉 ≥ 0,

where we used again the fact that λk is bounded away from zero for all k. From (5.20),
(5.21), and Lemma 5.5, we have that there exists an accumulation point of {xk} which
solves V IP (T,C). Using now Lemma 5.2, we conclude that the whole sequence {xk}
converges to that solution.

Under assumption (b), we use (E2)′ and the Cauchy–Schwartz inequality to ob-
tain

(5.26) 〈y − xk, w − ṽk〉 ≥ −σrk−1

λk

Dh(x
k, xk−1)− ||u|| ||x̃k − xk||.

Recall that rk−1 = mini=1,...,n{xk−1
i }, so there exists L > 0 such that rk−1 ≤ L for

every k. Using this fact and taking limits in the above expression, we conclude that

lim inf
k∈K

〈y − xk, w − ṽk〉 ≥ 0,

where we used also the fact that λk is bounded away from zero for all k. From (5.20),
(5.21), and Lemma 5.5, we have that there exists an accumulation point of {xk} which
solves V IP (T,C). Using now Lemma 5.2, we conclude that the whole sequence {xk}
converges to that solution.

6. A specific implementation. We discuss in this section the computational
feasibility of the algorithm (B11)–(B12)(B13)′, with error criteria (E1)(E2)′. Our
analysis shows the usefulness of the ε-enlargement of T in the implementation of the
relative error criteria. To our knowledge, these features cannot be exploited by using
a summable error criterion as the one on [27].

In [13, Section 5] it is shown how the inexact scheme induced by the log-quadratic
distance can take full advantage of the enlargement of T and avoid the extragradi-
ent step, thus resulting in a simple implementation of the method. Key parts of the
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analysis in the latter reference rely on the strong convexity of the log-quadratic regu-
larization. Furthermore, the operator T is assumed to be point-to-point in [13, section
5]. In the case we study below, we no longer have the strong convexity assumption,
and we analyze the general point-to-set case. Hence, our analysis is significantly more
involved than that in [13, section 5].

In what follows, we consider the case in which the constraint set is C = R
n
+, and

our generalized distance is the Bregman distanceDh induced by h(x) =
∑n

i=1 xi log xi.
In this situation, problem V IP (T,Rn

+) is equivalent to V IP (T +NRn
+
,Rn

+):

(6.1)
Find x̄ such that

∃ v̄ ∈ (T +NRn
+
)x̄, 〈v̄, y − x̄〉 ≥ 0 ∀ y ∈ R

n
+

because they have the same solution set. So we may apply our algorithm to the original
V IP (T,Rn

+) or to (6.1) in order to get a solution.
If the algorithm is applied to (6.1), the k-th proximal system consists of finding

x such that

(6.2)

{

v ∈ (T +NRn
+
)(x),

λkv +∇1Dh(x, x
k−1) = 0.

Because the domain of ∇1Dh(·, xk−1) is Rn
++, the exact solutions of (3.1)–(3.2) and

(6.2) coincide. For each x ∈ R
n
++,

T ε(x) ⊂ (T +NRn
+
)ε(x).

Then the set of approximated solutions (in the sense of Definition 3.2) of (6.2) is
“potentially” bigger than the corresponding set for (3.1)–(3.2). Moreover, the following
result, which is [13, Lemma 2.2], provides a practical method for generating elements
in (T +NRn

+
)ε(x).

Lemma 6.1. Let T be a maximal monotone operator on R
n, with domT ⊂ R

n
+.

If v ∈ T (x), then for each w ∈ R
n
+,

(v − w) ∈ T ε(x)

for ε ≥ 〈w, x〉.
The following analysis focuses on the computation of an approximated solution

of (6.2), in the sense of Definition 3.2. For brevity, an approximated solution in the
sense of Definition 3.2 will be called in this section an approximated solution.

At each iteration, two computations must be performed. The first one is to find
x̃ ∈ R

n
++, ṽ, ε an approximated solution of the system (3.1)–(3.2) or (6.2). Given ṽ

obtained in the first computation, the second computation is the extragradient-like
step (B13)′, which for our choice of Dh can be restated as requiring xk to satisfy

(6.3) rk−1∇1Dh(x
k, xk−1) = rk−1

n
∑

i=1

log

(

xk
i

xk−1
i

)

ei = −λkṽ,

where rk−1 := mini=1,...,n{xk−1
i } and {e1, . . . , en} is the canonical basis of Rn. These

two computations are interconnected because xk is needed to verify whether x̃, ṽ, ε
satisfy (E1)(E2)′. So from the practical point of view, it is advantageous to devise a
procedure that avoids this second computation. This is achieved in the implementation
below, in which the extragradient step is automatically satisfied.
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First let us observe that if 0 ∈ T (xk−1), then (x̃k, xk, ṽk, εk) = (xk−1, xk−1, 0, 0)
solves (B11)(B12)(B13)′ and trivially verifies (E1)(E2)′. In this case, xk−1 is a solution
of (6.1), and the algorithm may stop here. So from now on, we assume that xk−1 is
not a solution of problem (6.1), i.e.,

0 �∈ T (xk−1).

In what follows, we denote γk := λk/rk−1, where λk, rk−1 are as in (6.3). Fix β > 0,
and for the current iterate xk−1 ∈ R

n
++, define the point-to-set mapping

(6.4) Fβ,k(x) :=
λk

rk−1
T (x) +∇1Dh(x, x

k−1)− β
n
∑

i=1

xk−1
i

xi

ei.

Our assumptions on T and γk imply that Fβ,k is strictly monotone. Using [9, Theorem
1] we have that Fβ,k is onto. The following result shows that the approximate solution
x̃ can be chosen in such a way that the extragradient step is unnecessary.

Theorem 6.2. Fix θ ∈ (0, 1), and consider Fβ,k as in (6.4). Suppose that 0 �∈
T (xk−1). Let x̃ ∈ R

n
++ and w̃ ∈ Fβ,k(x̃) be such that

(6.5) | [w̃]i | ≤ θβ
xk−1
i

x̃i

∀i = 1, . . . , n,

where [z]i stands for the i-th coordinate of z ∈ R
n. For all i = 1, . . . , n, define

ρ := w̃ + β
n
∑

i=1

xk−1
i

x̃i

ei,

[v̂]i := − 1

γk
ln

(

x̃i

xk−1
i

)

,

ε :=
1

γk
〈x̃, ρ〉.

Then we have the following:
(i) ρ ≥ 0.
(ii) v̂ ∈ (T +NRn

+
)ε(x̃).

(iii) The extragradient equation (6.3) holds for the choice xk = x̃ and ṽ = v̂.
(iv) For small enough β, the choice xk := x̃ verifies (E1) and (E2)′.
Proof. We start by noting that for every θ, β > 0 and every xk−1 ∈ R

n
++, there

exists x̃ verifying (6.5). Indeed, this is a consequence of the fact that F(1+θ)β,k is onto.
Let x̃, w̃ be as in (6.5). From the definitions of ρ and w̃, we can write

(6.6) ρi − β
xk−1
i

x̃i

= [w̃]i .

Combine the above expression with (6.5) to obtain

−θβ
xk−1
i

x̃i

≤ ρi − β
xk−1
i

x̃i

≤ θβ
xk−1
i

x̃i

.

This shows that

0 < (1− θ)β
xk−1
i

x̃i

≤ ρi ≤ β(1 + θ)
xk−1
i

x̃i

,
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2674 REGINA BURACHIK AND JOYDEEP DUTTA

which proves (i). To prove (ii), we use Lemma 6.1 and the fact that

T (x̃) = (T +NRn
+
)(x̃)

because x̃ ∈ R
n
++. Recall that w̃ ∈ Fβ,k(x̃), so there exists ṽ ∈ T (x̃) such that

w̃ = γkṽ +∇1Dh(x̃, x
k−1)− β

n
∑

i=1

xk−1
i

x̃i

ei.

Therefore, ṽ ∈ (T + NRn
+
)(x̃). Combining this fact with the definitions of ρ, v̂, ε and

Lemma 6.1 yields

v̂ = ṽ − ρ

γk
∈ (T +NRn

+
)ε(x̃).

Let us now establish (iii). Take εk := ε, ṽk := v̂ ∈ (T + NRn
+
)ε(x̃), and x̃k := x̃ in

(B11). Also take xk := x̃ in (B13)′. With these choices, we have

∇1Dh(x
k, xk−1) = ∇1Dh(x̃, x

k−1) = γk
∇1D(x̃, xk−1)

γk
= −γkv̂ = −γkṽ

k,

which is precisely (B13)′. We proceed to prove (iv). Note that our choice of xk = x̃
implies that condition (E1) is automatically satisfied. So it is enough to prove that
(E2)′ will be satisfied for small enough β. Assume this is not true. This means that
there exists a sequence βm → 0 and sequences {zm}, {wm} satisfying

| [wm]i | ≤ θβm

xk−1
i

zmi
∀i = 1, . . . , n

such that there exists a subsequence {zmj}j∈N of {zm} for which (E2)′ (with the
choice x̃k = xk := zm) is violated. For simplicity of exposition and without loss of
generality, we still denote the subsequence {zmj}j∈N as {zm}. Because we propose
the next iterate as xk := zm, the violation of condition (E2)′ for this choice can be
written as

γkεm > σDh(z
m, xk−1)∀m ∈ N,

where we are using zm instead of x̃ in all the above definitions, i.e., εm = 1
γk
〈zm, ρm〉.

The fact that wm ∈ Fβ,k(z
m) implies that

ρm = wm + β

n
∑

i=1

xk−1
i

zmi
ei = γkv

m +∇1Dh(z
m, xk−1)

for some vm ∈ T (zm). Using the definition of εm, we have

(6.7) 〈zm, ρm〉 > σDh(z
m, xk−1).

By the same arguments as those used for case (i), we have that

(6.8) 0 < βm(1 − θ)
xk−1
i

zmi
≤ ρmi ≤ βm(1 + θ)

xk−1
i

zmi
.
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Multiplying the above inequality zmi > 0, we obtain zmi ρmi ≤ βm(1 + θ)xk−1
i . Also

using (6.7), we can conclude that

σDh(z
m, xk−1) < 〈zm, ρm〉 ≤ βm(1 + θ)||xk−1||1,

where ‖u‖1 =
∑n

i=1 |ui| is the l1-norm in R
n. Now letting m → ∞, i.e., when βm → 0

in the above inequality, we conclude using Lemma 2.4 that zm → xk−1. Now using
this fact, we can conclude from (6.8) that ρm → 0. Now from the definition of ρm and
the last two facts, we conclude that vm → 0. Altogether, we have that zm → xk−1,
vm ∈ T (zm), and vm → 0. By maximal monotonicity, the graph of T is closed, so we
conclude that 0 ∈ T (xk−1), a contradiction. This proves that for β > 0 small enough,
we must satisfy condition (E2)′. This completes the proof.

We have thus established that (6.5) provides suitable approximated solutions for
our method. The following result proves that these approximate solutions x can be
updated in a natural way. More precisely, if the norm of some v ∈ Fβ,k(x) is small
enough, then x verifies (6.5).

For r ≥ 0, we denote by B[0, r] the closed ball of Rn, with radius r and center
0 ∈ R

n.
Theorem 6.3. Assume that 0 �∈ T (xk−1). Fix θ > 0 and β > 0. There exists

δ > 0 small enough for which the following is true.

If Fβ,k(x) ∩B[0, δ] �= ∅, then (6.5) holds for xwith parameters θ, β.

Proof. For simplicity of exposition, denote Fβ,k by F . To prove the claim, we will
show that if the sequence {(xj , vj)} ⊂ G(F ) satisfies vj → 0, then for j large enough
we must have

(6.9) |
[

vj
]

i
xj
i | < θβxk−1

i .

Fix therefore a sequence {(xj , vj)} ⊂ G(F ) such that vj → 0, and let x∗ be such that
0 ∈ F (x∗). Such x∗ exists by surjectivity of F = Fβ,k. It is enough to prove that the
sequence {xj} is bounded because in this case, (6.9) will be true for j large enough.
Indeed, if {xj} is bounded, then the left-hand side of the inequality (6.9) tends to
zero and the right-hand side is a fixed positive number, so for j large enough, the
inequality in (6.9) will hold. Therefore, let us prove that {xj} is bounded. We can
write

Lj := 〈xj − x∗, vj − 0〉

≥
n
∑

i=1

(

xj
i − x∗

i

)

[

ln

(

xj
i

x∗
i

)

+ βxk−1
i

(

1

x∗
i

− 1

xj
i

)]

=: Rj ,(6.10)

where we used the definition of F , the fact that 0 ∈ F (x∗), and the monotonicity

of T . For all i ∈ {1, . . . , n}, define ϕi : R++ → R as ϕi(t) := ln (t) − βx
k−1

i

t
. Then

ϕi is strictly increasing for all i ∈ {1, . . . , n}. Hence, each term of the sum Rj is
nonnegative, and therefore it is bounded below by any of its individual terms:

Rj ≥ (xj
i − x∗

i )

[

ln

(

xj
i

x∗
i

)

+ βxk−1
i

(

1

x∗
i

− 1

xj
i

)]

= (xj
i − x∗

i )
[

ϕi(x
j
i )− ϕi(x

∗
i )
]

(6.11)

= |xj
i − x∗

i | |ϕi(x
j
i )− ϕi(x

∗
i )| ≥ 0.
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Using also the Cauchy–Schwartz inequality and the fact that the l2-norm is smaller
than n times the l∞-norm, we can write

(6.12) Lj ≤ ‖vj‖ ‖xj − x∗‖ ≤ n‖vj‖ ‖xj − x∗‖∞.

If the sequence {xj} is unbounded, then there exists an infinite set J ⊂ N and an
index i0 ∈ {1, . . . , n} such that limj∈J, j→∞ ‖xj−x∗‖∞ = limj∈J, j→∞ |xj

i0
−x∗

i0
| = ∞.

Such an index i0 must exist because we have a finite number of coordinates, and hence
one of these coordinates must verify the equality ‖xj − x∗‖∞ = |xj

i0
− x∗

i0
| an infinite

number of times. Combining these facts with (6.10), (6.12), and (6.12) for i = i0, we
can write for j ∈ J

n‖vj‖ ‖xj − x∗‖∞ ≥ Rj ≥ |xj
i0
− x∗

i0
| |ϕi0(x

j
i0
)− ϕi0(x

∗
i0
)|

= ‖xj − x∗‖∞|ϕi0(x
j
i0
)− ϕi0(x

∗
i0
)|,

which simplifies to

‖vj‖ ≥ |ϕi0(x
j
i0
)− ϕi0(x

∗
i0
)|

n
.

The definition of the coordinate i0 implies, in particular, that limj∈J, j→∞ xj
i0

= +∞.
The latter fact yields limt→∞ ϕi0 (t) = +∞. Altogether, we have that the right-hand
side of the expression above tends to infinity for j ∈ J, j → ∞, while the left-hand
side tends to zero. This entails a contradiction, and therefore the sequence {xj} is
bounded. As mentioned before, this proves the statement of the theorem.

7. Concluding remarks. Using the concept of proximal distances introduced
in [2], we have presented here two families of inexact proximal point methods. One of
them (Definition 3.1) uses generalized distances which have a quadratic-like behavior,
such as double regularizations and log-quadratic distances. In particular, we show
that Definition 3.1 includes the hybrid proximal method of [28] as a particular case.

More precisely, when Hd(x, y) = ‖x−y‖2

2 , then the method we propose is equivalent
to the hybrid proximal method of [28]. Therefore, Definition 3.1 provides a unifying
setting for the analysis of different kinds of regularizations with relative errors, such
as quadratic, log-quadratic, and double regularizations.

The second inexact criterion, which is given in Definition 3.2, is used for the
Bregman distance induced by the function h(x) =

∑n
i=1 xi ln (xi). As far as we know,

there is no convergence analysis for this kind of regularization when the operator
is not paramonotone. With the setting of Definition 3.2, we proved convergence of
the proximal method in section 5. We believe that our general setting is precisely
what allows for the proof of convergence in this case, and we could say that this is
a theoretical advantage of our scheme. Finally, we show in section 6 that the latter
theoretical advantage can also become practical because the relative error and the
enlargement of T can be of help in specific implementations. More precisely, Definition
3.2 allows for a specific useful algorithm based on the Bregman distance Dh. In our
specific implementation, we avoid the extragradient step in the computations by using
the enlargement of T . These advantageous features, which are new for this generalized
distance, cannot be obtained by using a summable error framework nor by using exact
values of T in the iterations.
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