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Let (X,d) be a compact metric space and (K(X),dH ) be the space of all non-empty

compact subsets of X equipped with the Hausdorff metric dH . The dynamical system (X, f )

induces another dynamical system (K(X), f ). We study the relations between the various

forms of sensitivity of the systems (X, f ) and (K(X), f ). We prove that all forms of

sensitivity of (K(X), f ) partly imply the same for (X, f ), and the converse holds in some

cases.

 2010 Elsevier B.V. All rights reserved.

1. Introduction

Let (X,d) be a metric space and let f : X → X be a continuous map. Then the pair (X, f ) constitutes a dynamical system.

The study here is concentrated on the orbit { f n(x): n ∈ N} of a given point x ∈ X , where f n is the n fold composition of

the map f with itself.

Let K(X) denote the collection of all non-empty compact subsets of X . The Hausdorff metric dH , on K(X) is defined as,

dH (A, B) = max
{

ρ(A, B),ρ(B, A)
}

where, ρ(A, B) = inf{ǫ > 0: d(b, A) < ǫ, for all b ∈ B}.

It is well known that for compact X , the topology on K(X) given by the metric dH is same as the Vietoris or finite

topology, which is generated by a basis consisting of all sets of the form,

〈U1,U2, . . . ,Un〉 =

{

E ∈ K(X): E ⊆

n
⋃

i=1

U i and E ∩ U i 	= φ, 1 � i � n

}

,

where U1,U2, . . . ,Un are open subsets of X .

This topology is admissible in the sense that the map i : X → K(X) given as x → {x} is continuous. Under this topol-

ogy F (X), the set of all finite subsets of X , is dense in K(X). Also, K(X) is compact if and only if X is compact.

See [4,14] for details.

It can be seen that every continuous map f on X induces a continuous map f : K(X) → K(X) defined as f (K ) = f (K ) =

{ f (k): k ∈ K }. Thus, a dynamical system (X, f ) induces another dynamical system (K(X), f ). The original system (X, f ) is

a subsystem of the induced system (K(X), f ), when a point x ∈ X is identified as a subset {x} ∈ K(X). In recent times,
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there have been many attempts to study relations between the dynamical properties of the map f and that of the induced

map f [3,7,9–12]. While this article was being written [16] discussed sensitivity of (K(X), f ). But, no condition on (X, f )

implying this has been discussed there.

One of the most interesting characteristics of a dynamical system is when orbits of nearby points deviate after finite

steps. This is also one of the important features depicting the chaotic behaviour of the system. This notion, also popularly

called the “butterfly effect”, has been widely studied and is termed as sensitive dependence on initial conditions. There are

various forms of sensitivity, depending on how often the orbits of nearby points deviate.

Let N = {1,2,3, . . .} be the set of all natural numbers. A self map f on a metric space (X,d) is,

• sensitive [8] or has sensitive dependence on initial conditions if there exists δ > 0 such that for each x ∈ X and each

ǫ > 0, there exist a point y ∈ X and n ∈ N such that d(x, y) < ǫ and d( f n(x), f n(y)) > δ;

• strongly sensitive [1] if there exists δ > 0 such that for each x ∈ X and each ǫ > 0, there exists n0 ∈ N such that for every

n � n0 , there is a y ∈ X with d(x, y) < ǫ and d( f n(x), f n(y)) > δ;

• asymptotic sensitive [6] if there exists δ > 0 such that for each x ∈ X and each ǫ > 0, there exists y ∈ X such that

d(x, y) < ǫ and limsupn→∞ d( f n(x), f n(y)) > δ.

In this case, the pair (x, y) is called an asymptotic sensitive pair.

• Li–Yorke sensitive [2] if there exists δ > 0 such that for each x ∈ X and ǫ > 0 there exists y ∈ X with d(x, y) < ǫ such

that

lim inf
n→∞

d
(

f n(x), f n(y)
)

= 0 and limsup
n→∞

d
(

f n(x), f n(y)
)

> δ.

A pair (x, y) ∈ X × X is proximal (asymptotic) if lim infn→∞ d( f n(x), f n(y)) = 0 (limn→∞ d( f n(x), f n(y)) = 0). A Li–Yorke

(or scrambled) pair is a pair (x, y) ∈ X × X which is proximal but not asymptotic. A Li–Yorke pair (x, y) has modulus δ > 0

if limsupn→∞ d( f n(x), f n(y)) > δ.

In plain words, sensitivity simply means that given any point, there exists another point arbitrarily close such that the

orbits of these two points move apart by a fixed distance after some finite instants. The system is strongly sensitive if after

a particular instant, for each successive instants, there are points arbitrarily close to any point, such that their orbits move

apart by a fixed distance from the orbit of this particular point. If for any point there is a point arbitrarily close by, such

that the orbits of these two points move apart infinitely often, then the system is asymptotically sensitive. If in addition of

moving apart infinitely often, these orbits also come arbitrarily closer infinitely often, then the system is Li–Yorke sensitive.

In general, these properties though distinct, satisfy the relations,

sensitive ⇐ strongly sensitive,

sensitive ⇐ asymptotic sensitive ⇐ Li–Yorke sensitive.

The proofs for these implications are straightforward, and are left to the reader.

There is as such no other known relation between these different forms of sensitivity as can be seen from the examples

below.

Example 1.1. Let Σ2 denote the space of all infinite sequences of 0’s and 1’s with the metric

d(x, y) =

∞
∑

i=0

|xi − yi|

2i
.

Let X be the collection of all sequences which are eventually zero. Then, the shift map σ : X → X defined as (σ (x))n =

xn+1 is strongly sensitive. However, as orbits of any two points eventually coincide, the map fails to be asymptotically

sensitive.

Example 1.2. Let A1 = [1,2] = [s1,a1]. Define recursively, Ak+1 = [ak + 1,ak + k + 2] = [sk+1,ak+1]. Similarly, let

B1 = [−2,−1] = [b1, t1]. Again, define Bk+1 = [bk − 1 − 1
k
,bk − 1] = [bk+1, tk+1]. Also let A = [− 1

2
, 1
2
]. Let X = A ∪

{Ak: k ∈ N} ∪ {Bk: k ∈ N}.

Define f : X → X as

f (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2x+ 2, − 1
2

� x � 0;

2− 2x, 0 � x �
1
2
;

2(tk−bk)
ak−sk

x+
akbk+skbk−2tksk

ak−sk
, sk � x �

sk+ak
2

;

2(bk−tk)
ak−sk

x+
2aktk−skbk−akbk

ak−sk
,

sk+ak
2

� x � ak;

2(ak+1−sk+1)

tk−bk
x+

−2ak+1bk+sk+1bk+tksk+1

tk−bk
, bk � x �

tk+bk
2

;

−2(ak+1−sk+1)

tk−bk
x+

2ak+1tk−sk+1bk−tksk+1

tk−bk
,

bk+tk
2

� x � tk.
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The map defined above maps A to A1 , each Ak to Bk and each Bk to Ak+1 .

This map is Li–Yorke sensitive and hence asymptotic sensitive, but fails to be strongly sensitive.

Example 1.3. Let X = [1,∞). Define a map f : X → X as

f (x) = x2.

Then the map defined is asymptotic sensitive but fails to be Li–Yorke sensitive.

For a continuous map f on a compact metric space X , asymptotic sensitivity is equivalent to sensitivity (cf. [2]). However,

even on compact metric spaces Li–Yorke sensitivity and strong sensitivity are different notions, as can be seen from the

examples below.

Example 1.4. Consider the annulus region S = {(x, y): 1 � x2 + y2 � 4} in R
2 . Then S can also be represented as S =

{(r, θ): 1 � r � 2; 0 � θ � 2π}. Define f : S → S as, f ((r, θ)) = (r, r + θ). Then f is a continuous map defined on S which

is asymptotically sensitive and strongly sensitive, but fails to be Li–Yorke sensitive.

For any neighborhood U of a point x = (r, θ), there exists nU ∈ N such that xn = (r + π
n
, θ) ∈ U for all n � nU . As

| f n(x) − f n(xn)| > π , for all n � nU , the map f is strongly sensitive. Also for no two points x = (r1, θ1) and y = (r2, θ2) in

the annulus, lim infn→∞ d( f n(x), f n(y)) can be 0. Hence the map fails to be Li–Yorke sensitive.

Example 1.5. Let Σ = {0r102
n1 102

n2 102
n3
1 . . . : r � 0, and (nk) ր ∞ (a strictly increasing sequence)} ⊂ {0,1}N . Let X be the

closure of Σ and let σ be the shift operator on X .

For any point x = 0r102
n1 102

n2 102
n3
1 . . . ∈ X and a basic open set U = [0r102

n1 102
n2 102

n3
1 . . .102

nk 1] containing x, con-

sider y = 0r102
n1 102

n2 102
n3 1 . . .102

nk 10∞ ∈ U . Then (x, y) forms a Li–Yorke pair. Since any general point in the space X is

either of the form x or y, the system (X,σ ) is Li–Yorke sensitive.

Further, for any point in any neighborhood of points of the form y, as the number of zeros between two consecutive 1’s

increases to infinity (or the tail of sequence becomes eventually zero), the map σ cannot be strongly sensitive here.

There are some other notions of sensitivity, which primarily depend on the points of the space. A system (X, f ) is

Lyapunov unstable at a point x if for each x ∈ X there exists δx > 0, such that for each ǫ > 0, there exist a point y ∈ X and

n ∈ N such that d(x, y) < ǫ and d( f n(x), f n(y)) > δx . A system is called pointwise sensitive if it is Lyapunov unstable at each

point. It is possible that a system is pointwise sensitive but fails to be sensitive on X , as shown by the example below.

Example 1.6. Let X = [−1,1]. Define f : X → X as

f (x) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

2− 2x, −1 � x � − 1
2
;

2x, − 1
2

� x � 0;

3x− 1
2m

, 1
2m+1 � x �

4
3(2m+1)

;

3
2m

− 3x, 4
3(2m+1)

� x �
5

3(2m+1)
;

3x− 4
2m+1 , 5

3(2m+1)
� x �

1
2m

.

Each of the intervals [ 1
2m+1 , 1

2m
] remain invariant under f and all the points of the form 1

2k
are fixed under the action

of f . Also, it can be verified that the map defined is pointwise sensitive (sensitive on each interval [ 1
2m+1 , 1

2m
] and [−1,0])

but fails to be sensitive on X .

Some other definitions based on Li–Yorke pairs but having some common features with sensitivity have been de-

scribed in [5]. We again recall that if for some x ∈ X , there exists y ∈ X with lim infn→∞ d( f n(x), f n(y)) = 0 and

limsupn→∞ d( f n(x), f n(y)) > 0, then the pair (x, y) is called a Li–Yorke pair. A dynamical system (X, f ) has chaotic de-

pendence on initial conditions if for any x ∈ X and ǫ > 0 there exists y ∈ X such that d(x, y) < ǫ and the pair (x, y) is

Li–Yorke. Such sensitivity is in general weaker than Li–Yorke sensitivity. Again, such systems may fail to be even sensitive.

The map f (in the example above) has chaotic dependence on initial conditions but fails to be Li–Yorke sensitive.

In this article, we study the relationship between various forms of sensitivity of the dynamical system (X, f ), for compact

(X,d), and the induced system (K(X), f ). We show that sensitivity, asymptotic sensitivity, strong sensitivity and Li–Yorke

sensitivity of the system (K(X), f ) partly imply the same for (X, f ). As regards the converse, we contradict the counterex-

ample in [7] which says that f sensitive need not imply f sensitive on K(X) by showing the error therein, and provide a

counterexample for the same. We prove that some forms of sensitivity for (X, f ) imply the same for (K(X), f ), whereas for

some forms this cannot be guaranteed.
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We restrict ourselves to comparison of only the various properties related to sensitivity in this article, and will not

discuss its implications in presence of any other dynamical property. For example, (X, f ) is weakly mixing (topological

mixing) if and only if (K(X), f ) is so. Since weakly mixing maps are Li–Yorke sensitive, in this case Li–Yorke sensitivity of

the maps f and f are equivalent. Also we prove in Propositions 2.3 and 2.8 that strong sensitivity of f and f are equivalent

in general. Hence, in such a case, all kinds of sensitivity are equivalent for (X, f ) and the induced system (K(X), f ).

Throughout, C denotes the closure of C in the metric space (X,d), and Sd(x,ǫ) = {y ∈ X: d(x, y) < ǫ}.

2. Main results

Henceforth, (X,d) is a compact metric space and f a continuous self map on X .

Proposition 2.1. If (K(X), f ) is sensitive, then (X, f ) is sensitive.

Proof. Let (K(X), f ) be sensitive with sensitivity constant δ. Let ǫ > 0 be arbitrary. Let x ∈ X and U be the ǫ-neighborhood
of x in X . Then, as U = SdH

({x},ǫ) is an ǫ-neighborhood of {x} ∈ K(X) and f is sensitive, there exist A ∈ U and n ∈ N such

that dH ( f n({x}), f n(A)) > δ. Thus, there exists y ∈ A ⊂ U such that d( f n(x), f n(y)) > δ and hence the proposition holds. ✷

Remark 2.2. The above result is proved in both [7,10], but we have included the proof here for the sake of completion.

Proposition 2.3. If (K(X), f ) is strongly sensitive, then (X, f ) is strongly sensitive.

Proof. The proof is similar. ✷

Proposition 2.4. If (K(X), f ) is asymptotic sensitive, then (X, f ) is asymptotic sensitive.

Proof. Let (K(X), f ) be asymptotic sensitive with sensitivity constant δ. Let x ∈ X and let ǫ > 0 be given. We show that

there exists a ∈ Sd(x,ǫ) such that,

limsup
n→∞

d
(

f n(x), f n(a)
)

>
δ

2
.

As {x} ∈ K(X) and SdH
({x},ǫ) is a neighborhood of {x} in K(X), there exists A1 ∈ SdH

({x},ǫ) such that

limsup
n→∞

dH

(

f n
(

{x}
)

, f n(A1)
)

> δ.

Therefore there exist an integer n1 ∈ N and a1 ∈ A1 such that d( f n1 (x), f n1 (a1)) > δ.

If (x,a1) forms an asymptotic sensitive pair with limsupn→∞ d( f n(x), f n(a1)) > δ
2
, then we are done. If not, then there

exists an integer m1 , m1 > n1 , such that d( f n(x), f n(a1)) < δ
2
for all n �m1 . Now, there exists a neighborhood U1 ⊂ Sd(x,ǫ)

of a1 such that d( f n1 (x), f n1 (y)) > δ for all y ∈ U1 . As U1 is a neighborhood of a1 , there exists ǫ1 > 0 with

Sd(a1,ǫ1) ⊂ U1.

Again, as f is asymptotic sensitive, there exists a compact set A2 ∈ SdH
({a1},ǫ1) such that ({a1}, A2) is an asymp-

totic sensitive pair for f . Thus, there exist integer n2 , n2 > m1 , and a2 ∈ A2 such that d( f n2 (a1), f n2 (a2)) > δ. Then,

d( f n2 (x), f n2 (a2)) > δ
2
.

If (x,a2) forms an asymptotic sensitive pair with limsupn→∞ d( f n(x), f n(a2)) > δ
2
, then we are done. If not, then there

exists an integer m2 , m2 > n2 , such that d( f n(x), f n(a2)) < δ
2

for all n � m2 . Again, there exists a neighborhood U2 ⊂

Sd(a1,ǫ1) of a2 such that d( f n2 (x), f n2 (y)) > δ
2

for all y ∈ U2 . As U2 is a neighborhood of a2 , there exists ǫ2 > 0 with

Sd(a2,ǫ2) ⊂ U2 .

Proceeding inductively, we either get the asymptotic sensitive pair (x,ak) with limsupn→∞ d( f n(x), f n(ak)) > δ
2

or we

get a sequence {an} in Sd(x,ǫ). Let a be a limit point of this sequence. As a ∈ U i , d( f
ni (x), f ni (a)) > δ

2
for each i. Thus,

limsupn→∞ d( f n(x), f n(a)) > δ
2
and f is asymptotic sensitive at x. ✷

Remark 2.5. The above proposition directly follows from Proposition 2.1 and the fact that for compact spaces sensitivity and

asymptotic sensitivity are equivalent. But we give a direct proof here.

Proposition 2.6. If (K(X), f ) is Li–Yorke sensitive, then (X, f ) has chaotic dependence on initial conditions. Further, if (F (X), f ) is

Li–Yorke sensitive then (X, f ) is Li–Yorke sensitive.
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Proof. Let (K(X), f ) be Li–Yorke sensitive with sensitivity constant δ. Let x ∈ X and let ǫ > 0 be given. We now show that

there exists a ∈ Sd(x,ǫ) such that the pair (x,a) forms a Li–Yorke pair.

As {x} ∈ K(X) and f is Li–Yorke sensitive, there exists A1 ∈ SdH
({x},ǫ) such that, lim infn→∞ dH ( f n({x}), f n(A1)) = 0 and

limsup
n→∞

dH

(

f n
(

{x}
)

, f n(A1)
)

> δ.

Also, for any a1 ∈ A1 , d( f
n(x), f n(a1)) � dH ( f n({x}), f n(A1)). Hence for any a1 ∈ A1 , lim infn→∞ d( f n(x), f n(a1)) = 0 and

the pair (x,a1) is proximal.

We observe that, limsupn→∞ dH ( f n({x}), f n(A1)) > δ and so there exist an integer n1 and a1 ∈ A1 such that

d( f n1 (x), f n1 (a1)) > δ. If (x,a1) forms a Li–Yorke pair, we are done. If not, (x,a1) is an asymptotic pair. In particular, there

exists an integer m1 such that d( f n(x), f n(a1)) < 1
2

for all n � m1 . Thus, there exists a neighborhood U1 ⊂ Sd(x,ǫ) of a1

such that d( f n1 (x), f n1 (y)) > δ and d( f m1 (x), fm1 (y)) < 1
2
for all y ∈ U1 . As U1 is a neighborhood of a1 , there exists ǫ1 > 0

such that Sd(a1,ǫ1) ⊂ U1 .

Again, as f is Li–Yorke sensitive, there exists a compact set A2 ∈ SdH
({a1},ǫ1) such that ({a1}, A2) is a Li–

Yorke pair for f . Thus for any a2 ∈ A2 , lim infn→∞ d( f n(a1), f n(a2)) = 0. As limn→∞ d( f n(x), f n(a1)) = 0, we have,

lim infn→∞ d( f n(x), f n(a2)) = 0, and there exists an integer n2 , n2 > n1 , such that d( f n2 (x), f n2 (a2)) > δ for some

a2 ∈ A2 .

If (x,a2) forms a Li–Yorke pair, we are done. If not, then there exists m2 ∈ N such that d( f n(x), f n(a2)) < 1
4

for all

n �m2 . Thus, there exists a neighborhood U2 ⊂ Sd(a1,ǫ1) of a2 , such that d( f n2 (x), f n2 (y)) > δ and d( fm2 (x), fm2 (y)) < 1
4

for all y ∈ U2 . As U2 is a neighborhood of a2 , there exists ǫ2 > 0 such that Sd(a2,ǫ2) ⊂ U2 .

Proceeding inductively, we either get a Li–Yorke pair or we get a sequence {an} in Sd(x,ǫ). Let a be a limit point of this

sequence. As a ∈ Sd(ai,ǫi) ⊂ Sd(ai,ǫi) ⊂ U i ⊂ Sd(x,ǫ), d( f ni (x), f ni (a)) > δ and d( f mi (x), fmi (a)) < 1
2i
.

Thus, lim infn→∞ d( f n(x), f n(a)) = 0 and limsupn→∞ d( f n(x), f n(a)) > 0.

Now, if (F (X), f ) is Li–Yorke sensitive then ({x}, A) is a Li–Yorke pair in F (X) with modulus (some) δ > 0. Since A is

finite, there exists y ∈ A such that (x, y) is a Li–Yorke pair with modulus δ. Hence, (X, f ) is Li–Yorke sensitive. ✷

In [7] Rongbao Gu has claimed that f sensitive need not imply f be sensitive in K(X), by giving a counterexample

(Example 3.7 mentioned therein). We contradict his observation by showing the error in his example and then prove that

f in this example is sensitive with the aid of the next proposition.

Example 2.7. Let I be the unit interval and let f be the tent map, f (x) = 1− 2|x− 1
2
|, defined on I . Let S1 be the unit circle

in the complex plane and let T , defined as T (eiθ ) = ei(θ+1) , be the rotation defined on S1 . Then the product C = I × S1 is a

cylinder and the metric

ρ
((

x, eiα
)

,
(

y, eiβ
))

= max
{

|x− y|,
∣

∣eiα − eiβ
∣

∣

}

gives the product topology on it.

The product map h : C → C defined as,

h
((

x, eiθ
))

=
(

f (x), T
(

eiθ
))

is sensitive since the tent map f is sensitive.

As mentioned in [7], the induced map h is not sensitive at the point I × S1 ∈ K(C), since ∀F ∈ B(I × S1, ǫ
4
),

dH (hn(I × S1),hn(F )) < ǫ . We show that this is not true.

Choose k ∈ N such that 1

2k
< ǫ

4
. Consider the set E = {{

μ

2k
}× S1: 0 � μ � 2k}. Then E ∈ B(I × S1, ǫ

4
) ⊂ K(C) and h2

k
(E) =

{0} × S1 . Since I × S1 is fixed by h, and so dH (h2
k
(E),h2

k
(I × S1)) = dH ({0} × S1, (I × S1)) = 1. Thus h is sensitive at I × S1 .

We note that here, the map h above is strongly sensitive, and for strongly sensitive maps we have

Proposition 2.8. If (X, f ) is strongly sensitive, then (K(X), f ) is also strongly sensitive.

Proof. Let f be strongly sensitive with sensitivity constant δ. To prove the strong sensitivity of f on K(X), it is enough to

prove the same on F (X), as F (X) is dense in K(X).

Let A = {x1, x2, . . . , xk} ∈ F (X) and let SdH
(A,ǫ) be the ǫ-neighborhood of A. As f is strongly sensitive, for each i =

1,2, . . . ,k, there exists ni ∈ N such that supy∈S(xi ,ǫ) d( f
n(xi), f n(y)) > δ for all n � ni . Let N = max{ni: 1 � i � k}.

We shall show that supB∈SdH (A,ǫ) dH ( f n(A), f n(B)) > δ
2
for all n � N .

Let r � N . For each xi , there exists yi ∈ Sd(xi,ǫ) such that d( f r(xi), f r(yi)) > δ. Let C = {z1, z2, . . . , zk} where,

zi =

{

yi, d( f r(x1), f r(xi)) �
δ
2
;

xi, otherwise.



P. Sharma, A. Nagar / Topology and its Applications 157 (2010) 2052–2058 2057

Then, d( f r(x1), f r(zi)) > δ
2
for each i and hence dH ( f r(A), f r(C)) > δ

2
. Consequently, supB∈SdH (A,ǫ) dH ( f r(A), f r(B)) > δ

2

holds for all r � N , thus establishing strong sensitivity on F (X). ✷

Remark 2.9. Recently in [15] it has been shown that most of the important sensitive dynamical systems are all strongly

sensitive (the author here calls them cofinitely sensitive). Hence, we can say that for most cases, sensitivity is equivalent for

both (X, f ) and (K(X), f ). Also, by [15], all sensitive interval maps are strongly sensitive, and hence the main result in [13]

follows as a corollary to Proposition 2.8.

However, for sensitivity of f , we can at best have

Proposition 2.10. If X is locally connected, and (X, f ) is sensitive, then (F (X), f ) is pointwise sensitive.

Proof. Let (X, f ) be sensitive and let A = {x1, x2, . . . , xk} ∈ F (X). Without loss of generality, let U = 〈U1,U2, . . . ,Uk〉 be an

arbitrary neighborhood of the point A in the hyperspace where xi ∈ U i , i = 1,2, . . . ,k. As X is locally connected, let U∗
1 be

the connected neighborhood of x1 contained in U1 .

As (X, f ) is sensitive, corresponding to x1 , there exist y1 ∈ U∗
1 and n ∈ N such that d( f n(x1), f n(y1)) > δ. It can be seen

that f n(x1) and f n(y1) are more than δ apart and as U∗
1 is connected, every possible distance less than d( f n(x1), f n(y1))

is attained. Since there are k distinct points x1, x2, . . . , xk and d( f n(x1), f n(y1)) > δ, there exists z1 ∈ U∗
1 such that

d( f n(z1), f n(xr)) > δ
2k

for all r = 2, . . . ,k (by triangle inequality).

Thus, B = {z1, x2, x3, . . . , xk} ∈ 〈U1,U2, . . . ,Uk〉 such that

dH

(

f n(A), f n(B)
)

>
δ

2k
.

Thus, (F (X), f ) is pointwise sensitive. ✷

Even when X is not locally connected, it seems that (X, f ) is sensitive implies (F (X), f ) is pointwise sensitive. Although,

(K(X), f ) may fail to be sensitive as in shown in the example below.

Example 2.11. Let Σ = {0,1}N be the shift space with the shift operator σ defined as (σ (x))n = xn+1 where x = (xn). The

product topology on Σ can be generated by the metric D(a,b) =
∑∞

n=1
|an−bn|

2i−1 , where a = (an), b = (bn) ∈ Σ .

Let T be the irrational rotation on the circle S1 given by T (θ) = θ +α where α is a very small irrational multiple of 2π .

By dividing S1 into two hemispheres, define a sequence x = (xn) ∈ Σ as

xn =

{

0, 0 � T n(0) < π ;

1, π � T n(0) < 2π .

The sequence generated above, codes the trajectory of the point θ = 0.

This sequence x generates a subshift (X,σ ) of the shift space (Σ,σ ), where X = {σ n(x): n � 0}.

Since {T n(0)} is dense in S1 , and σ n(x) is a coding of the trajectory of this point, it can be seen that each point in X

corresponds to a point in S1 . However, it can be noted that the points in X do not code the orbit of any θ ∈ S1 under T

other than those of the form T n(0).

As no point of X is isolated, (X,σ ) is sensitive [15]. However, we claim that (K(X),σ ) is not sensitive.

Let k ∈ N be an odd integer and {ωi: 1 � i � k} be the distinct k-th roots of unity. Let xi ∈ X be the sequence corre-

sponding to ωi and A = {x1, x2, . . . , xk}. Let U = 〈U1,U2, . . . ,Uk〉 be a neighborhood of A ∈ K(X) where U i are disjoint

neighborhoods of xi .

For each U i there exists ni ∈ N such that the cylinder [x1i x
2
i . . . x

ni
i ] ⊆ U i , and there exists yi ∈ [x1i x

2
i . . . x

ni
i ] such that it

corresponds to the point βi = T ki (0) on S1 .

We now show that there exists an arc J i , around βi , such that the sequences corresponding to any point on this arc are

in [x1i x
2
i . . . x

ni
i ].

If an arc J i , containing βi , stays completely in a single hemisphere for ni iterates under T , then every sequence generated

by points of the form T ki (0) ∈ J i is contained in the cylinder [x1
i
x2
i
. . . x

ni
i

]. If the arc J i intersects both the hemispheres

at some k-th iterate, k < ni , then we reduce the arc from J i to J ′
i
such that its k-th image is also fully contained in

the hemisphere containing T k(βi). We can always find such an arc, since T l(0) can never be equal to π , for any l ∈ N.

Continuing in this way iteratively, we obtain an arc containing βi which lies completely in one of the hemispheres for first

ni iterates.

Thus, corresponding to any cylinder C = [x1
i
x2
i
. . . x

ni
i

] we obtain yi ∈ C such that yi corresponds to some T si (0) and there

exists an arc J i containing T si (0) such that the coding of all the points in J i is contained in C .

We now show that orbits of any pair of points {y1, y2, . . . , yk}, {z1, z2, . . . , zk} ∈ U , yi, zi ∈ U i under σ get 1
2mk

apart,

where mk depends on k and increases with k. Without loss of generality, we can assume the points yi, zi to be of the form

σ pi (x) and σ qi (x) and hence generated by the points T pi (0) and T qi (0) on the circle respectively.
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The points yi and zi will differ at r-th place if the r-th iterate of the corresponding arc J i intersects both the hemi-

spheres. As each xi corresponds to the distinct k-th roots of unity and k is odd, for j 	= i, y j and z j will not differ at the

r-th place since the r-th iterate of the corresponding arc will always lie in a single hemisphere.

Hence, if yi and zi differ at the r-th place, there exists an mk ∈ N, depending on k and the angle α, for which the

predecessor and successor arcs of J i remain in the same hemisphere as J i for the next mk iterates, i.e.

zi−1[r, r +mk] = yi[r, r +mk]; zi[r, r +mk] = yi+1[r, r +mk].

Thus, the Hausdorff distance in K(X) between σ r{y1, y2, . . . , yk} and σ r{z1, z2, . . . , zk} will be at most 1
2mk

.

As k increases, the points ωi get closer to each other, and hence the predecessor and successor arcs of the arc J i , will

lie in the same hemisphere as J i for a longer period, thus increasing mk subsequently.

Hence, for any k-point set, a point in its neighbourhood for any subsequent iterate will get closer and closer to it, as k

increases, and so in particular σ will not be sensitive on X .

Remark 2.12. We recall that for (X, f ), a pair (x, y) is a Li–Yorke pair (with modulus δ) if it is proximal but not asymptotic

(δ-asymptotic). Hence, Li–Yorke sensitivity (resp. chaotic dependence on initial conditions) implies that for every x ∈ X ,

and every neighbourhood U of x, the pair (x, y) cannot be asymptotic for every y(	= x) ∈ U . We note that if (X, f ) has

the property that for every x ∈ X , there exists a neighbourhood U of x such that the pair (x, y) is asymptotic for every

y ∈ U , then the property is also satisfied by (K(X), f ), and vice versa. Thus, the property of not being asymptotic in the

neighbourhood of the diagonal is equivalent in both (X, f ) and (K(X), f ). Also, if (X, f ) has the property that for every

x ∈ X , and every neighbourhood U of x, there exists y ∈ U such that the pair (x, y) is proximal, then the property is also

satisfied by (K(X), f ). For any A ∈ K(X), we take b /∈ A such that the pair (a,b) is proximal for some a ∈ A. Then the pair

(A, A ∪{b}) is proximal in K(X). The converse holds vacuously. Thus, the property of proximity in the neighbourhood of the

diagonal is equivalent in both (X, f ) and (K(X), f ).

This observation strengthens the belief that Li–Yorke sensitivity (resp. chaotic dependence on initial conditions) of f

should imply that for f . But, those points that form an asymptotic pair, need not necessarily form a Li–Yorke pair. The

instances when proximity is achieved, for even a finite set of points in X , need not overlap. Again, all that we can say is

that f when Li–Yorke sensitive guarantees that f is chaotically dependent on initial conditions. We leave strengthening this

implication, as well as discussing the converse implication, in any form, open here. Our belief here is that, we may not be

able to say anything in this regard, without taking into account the other dynamical properties of the system.
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