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Impulse Backscattering in Granular Beds:

Introducing a Toy Model
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Impulses efficiently propagate into nominally dry granular beds and backscatter from buried inclu-
sions in such beds may be potentially exploited to image shallow buried objects (SBOs). However,
reliable imaging of SBOs requires “cleaning up” of surface vibrations, and, in addition to 3D particle
dynamics simulations, a phenomenological model to parameterize the bed surface may be useful for
field applications. We introduce a 1D mean-field-like toy model with two parameters that allows one
to model surface vibrations, is consistent with experiments in a granular bed, and can help estimate
the approximate signal transmission properties of the bed.

PACS numbers: 45.70.-n,05.45.-a,07.05.Tp

Introduction: The imaging of shallow buried objects in
a complex medium, e.g., nominally dry soil, is a difficult
problem that has seen limited progress [1]. Such imaging
is of relevance in connection with locating antipersonnel
land mines, in archaeology, land surveying and in other
applications. It has been shown that gentle mechani-
cal impulses [2] can be used to detect buried objects at
depths of a meter or so in nominally dry sand beds. De-
tailed 3D simulations establish that nonlinear pulse prop-
agation in 3D beds is a quasi-1D process [3]; normally
incident pulses travel as weakly dispersive energy bun-
dles and become more and more 1D-like with increase in
area over which the impulse is generated. It would be of
interest to rapidly generate images of buried backscatter-
ers by exploiting the information contained in the time-
dependent surface vibrations in granular beds [3].

To accomplish such imaging, it is necessary to probe
some global parameter that contains coarse-grained in-
formation about grain dynamics at the bed surface. We
study the space averaged, time evolution of the time in-
tegrated kinetic energies of the surface grains in ideal-
ized sand beds. Several groups have measured impulse
backscattered signals at the surface in empty beds and in
beds with some buried object [2]. Newtonian dynamics
based 3D simulations of impulse backscattering in ideal-
ized beds have been carried out by Sen et al. [3]. These
authors used the velocity-Verlet algorithm [4] to integrate
the equations of motion, and their data are consistent
with the available experiments. Thus, a consensus on the
spatio-temporal behavior of impulse backscattered data
is beginning to emerge.

It is apparent from the existing work that the energy
imparted by the impulse penetrates into the system. The
spread of the energy in a given x-y plane at a given depth
depends on the packing in the system. There is impulse
backscattering at every granular contact. If one measures
the amount of backscattered energy at the bed surface,
the energy density at the bed surface rapidly depletes
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TABLE I: Description of the energy transfer process in the
1D model. The arrows indicate the direction in which the
layers (lyr1 etc.) will interact in the next time (t) step. The
exchange case has been depicted for convenience. ebs(t) is the
backscattered energy received back at the surface.

t ebs(t) lyr1 lyr2 lyr3 lyr4 lyr5 · · ·

0 0.0
1
→ 0 0 0 0 · · ·

1 0.0
(1− p)
←

p
→ 0 0 0 · · ·

2 p(1− p)
(1− p)2
→

p(1− p)
←

p2
→ 0 0 · · ·

3 0.0
p(1− p)
←

(1− p)2
→

p2(1− p)
←

p3
→ 0 · · ·

4 p2(1− p)
p(1− p)2
→

p2(1− p)
←

(1− p)2
→

p3(1− p)
←

p4
→ · · ·

after the initiation of the impulse, and then rises as a
function of time. The backscattering from the shallow
layers is significant. The amount of backscattering from
the deeper layers does get weaker, and eventually dies
out. The dissipative properties of the bed play an im-
portant role in the attenuation of the impulse.
We contend that, at least for the purposes of field ap-

plications, it is desirable to explore a tractable 1D toy
model that can capture the critical results of the 3D sim-
ulations. In this Communication, we propose a two pa-
rameter model to describe impulse backscattering at the
surface of a granular assembly. It may be necessary to
use more parameters (e.g., to include information about
the area across which the impulse is imparted), if one
is looking for detailed agreement with experiments. The
physics is similar in spirit to that of mean-field theories.
Phenomenological Model: We define a vertical align-

ment of layers, where each layer can be thought of as a
mass [5]. At time t = 0, we set initial energy E = 1 for
layer one and zero for the rest. At t = 1, the first layer in
the vertical chain transfers p (< 1) of the impulse energy
to the second layer, and retains (1 − p). At subsequent
times, the impulse will propagate in the same fashion, at
every step, all the way down the chain (see Table I). Each
layer, after pushing the next layer in any time step, will
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push the preceding layer in the opposite direction in the
following time step. Since the phase reverses every time
step, they will interact, alternately, with layers above and
below, in alternate time steps, thereby introducing sig-
nificant backscattering into the problem. Note also that
successive layers will be in opposite phases at any time,
assuring interaction between them only in alternate time
steps (Table I).
We model the interaction between two adjacent layers

in our simulations in the following two ways: (i) equipar-
tition case, and (ii) exchange case. In the equipartition
case, the two interacting layers will come away from the
interaction with equal amounts of energy; we add up the
individual energies of the two layers and divide the sum
equally between them. In the exchange case, we let the
layers exchange their energies; the two interacting lay-
ers, after the interaction, come away with the energy of
the other. The equipartition case can be viewed as one
that leads to ergodic-like behavior, where we assume that
the two adjacent layers get compressed to the same ex-
tent during the interaction, and the potential energy of
compression gets converted back to the respective kinetic
energies, which will now be half of the total energy of the
two layers. The equipartition ansatz negates the symme-
try breaking introduced by p 6= 0.5. The exchange model
captures the essence of nonlinear impulse propagation in
which an impulse travels as a perfect solitary wave in a
1D chain of elastic grains [6], and as a weakly dispersive
energy bundle in 3D beds [3]; we model the situation
where two energy bundles, traveling in opposite direc-
tions, go through each other without distortion. In real
systems, one would expect that both the equipartition
and exchange behaviors would be present, and such an
extension of our study will be reported elsewhere [7].
We monitor the energy transfer at the surface in our

model analysis. The first layer, in its negative phase (we
assume positive phases to point down the chain), will
transmit p fraction of its energy to the surface and retain
(1 − p) fraction to itself; the surface does not transfer
any energy back to the first layer. At the bottom of the
chain, we let the last layer lose p fraction of its energy
in its positive phase and retain (1 − p); the lost energy
is presumed to travel further down in a similar fashion.
These boundary conditions do not, in any way, affect our
final results. We have verified our results with longer
chains and there are no qualitative changes (see further
discussion below); we have, therefore, employed a 40 layer
long system for our studies.
Some Analytical results: For the exchange model, the

sequence of backscattered energy packets that arrive at
the surface, ebs(t), can be worked out (cf Table I; see
Fig. 1(a)):

p(1− p), p2(1− p), p3(1− p), · · · , p(1− p)3, p2(1 − p)3,

p3(1− p)3, · · · , p(1− p)5, p2(1− p)5, p3(1 − p)5, · · ·

and so on. Since p < 1, the sum of the first subsequence
(each subsequence is separated by · · ·) yields p, and, sim-
ilarly, the sum of the second subsequence yields p(1−p)2

and so on. Thus, the entire sequence of energy packets
received back at the surface can be summed to obtain,

with Ebs(t) respresenting
∑

t
′
=t

t′=0
ebs(t′),

Ebs(t = ∞) = p[1+ (1− p)2 + (1− p)4 + · · ·] = 1/(2− p)

We see that Ebs(t = ∞) will always be > 1/2; also,
Ebs(t = ∞) is higher if p is higher. If p < 0.5, the suc-
cessive packets of ebs(t) in each subsequence is going to
decrease fast, and, when the next subsequence involving
a higher power of (1− p) arrives, a jump in Ebs(t) takes
place. In the other case, when p > 0.5, there is going
to be a faster increase of Ebs(t) within each subsequence
itself, than brought in by the arrival of the next subse-
quence. The above analysis shows that a plot of Ebs(t)
against time is going to be characterized by a sequence of
steps and plateaus, as is seen from Fig. 1(a), first inset.
The subsequences can be understood as due to the soli-
tary wave like propagation [3, 6], where each packet trav-
els down the chain undiminished till it loses energy (by
p fraction) at the two ends. Note that the sequences are
geometrically decreasing, and, as may be gathered from
the plot (top smaller inset), characterized by an exponen-
tial decrease in packet sizes. As a consequence, Ebs(t)
is characterized approximately by logarithmic growth in
the subsequences (bottom smaller inset), with the added
feature of a saturation plateau seen in the earlier inset.
An analysis like the above is not possible for the

equipartition case because of the complicated algebra re-
sulting from distributing half of the total energy of the
two particles to each, after the interaction. Neverthe-
less, numerical results indicate that a similar result, of
Ebs(t = ∞) being always > 1/2, holds in this case as
well. Also, there are no steps and plateaus in this case,
except for the ones introduced by the fact that ebs(t)
arrives in alternate time steps (Fig. 1(b); see further dis-
cussion below).
Numerical Analysis: Soil is a highly heterogeneous

medium, and impulse propagation and scattering prop-
erties vary much spatially, decreasing and/or increas-
ing with successive layers. Therefore, we investigate the
above models for different scenarios characterized by dif-
ferent distributions of p. A reasonable model that can be
chosen, for qualitative comparison of results for different
p’s, is that of a logarithmic growth pattern in Ebs(t).
This is best illustrated for p = 0.25 (for all layers) in
the equipartition case (Fig. 1(b)); depending on the dis-
tribution and values of p, the growth can be higher or
lower than an average logarithmic growth in the initial
stages. In Fig. 1(b), it is seen that ebs(t) = 0 in alternate
steps; also, the packets arrive in exponentially decreas-
ing quanta in alternate steps. Such decay in ebs(t) is
expected in view of the fact that most of the backscat-
tered energy, at early times, is from the first few layers,
where, by construction, the energy will be more. The
deeper layers, the backscattered energy of which reaches
the surface at later times, contribute to progressively
higher order backscattering. The first inset to the fig-
ure shows Ebs(t), growing rapidly in time at early times,
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FIG. 1: The two cases of exchange and equipartition are shown in (a) and (b) respectively, where p is constant across the layers.
The two smaller insets in (a) show the exponential decay of ebs(t) within a subsequence (top; y-axis logarithmic), and the
associated logarithmic growth in Ebs(t) (bottom; x-axis logarithmic); the solid lines are the corresponding curve fitting lines.
Smaller insets in (b) show the logarithmic growth of Ebs(t), in the initial stages, in the equipartition case (bottom inset uses the
same data as the top inset, plotted with logarithmic x-axis). Available 3D simulation results [8] show favorable comparisons
with these results.

followed by progressive slowing down. The two smaller
insets in this figure shows, as a zoom-in, the region close
to the origin, of the earlier inset, to show the form of the
(logarithmic) growth in Ebs(t); the bottom inset plots
the data with logarithmic abscissa for explicit confirma-
tion. This pattern has been seen in 3D simulations of
impulse propagation in sand beds [8], and is consistent
with experimental results [2].

The maximum attained value of Ebs(t), referred to as
Ebs

max
, is high compared to the 3D simulation results.

Thus, the 1D toy model, with its restrictions in the avail-
able energy channels tends to backscatter much more en-
ergy to the surface than is typical of 3D beds. There are
two ways to improve the model to better mimic the prop-
erties of 3D beds, (i) by incorporating restitution between
layers, and (ii) by varying p appropriately as a function
of position to approximately account for changes in layer
compression as a function of depth, inhomogeneities in
the medium etc. We discuss the effects of these decora-
tions in our model below.

Introducing a tunable parameter, q (< 1), to account
for restitutional losses at each interaction (as also the
spreading away of energy in 3D), which works to dissipate
energy, allows us to tune Ebs

max
; at each step, a fraction

(= q) of the total energy of the two interacting masses
is removed. It was observed (see Fig. 2(a) and (b)) that
Ebs

max decreases exponentially with q; it drops by an order
of magnitude as q is varied from 0.1 to 0.5.

Now, we consider the richness of the model by explor-

ing various distributions of p and their effect on the pat-
terns of ebs(t). We will only discuss the results using the
plots of Ebs(t) which are, firstly, easier analysed, because
of the logarithmic growth pattern in the initial stages.
Secondly, Ebs(t), being an integrated quantity, is, per-
haps, more suited for comparison with experimental re-
sults. Hence, we will plot these graphs on a semi-log basis
for the study, with time axis being taken logarithmically.

Distributions of p and corresponding patterns in growth
of Ebs(t): With a uniform distribution of p’s (p constant
across the layers), analysis of the equipartition model
shows that the growth is, qualitatively, symmetric with
respect to p = 0.5; Ebs

max
is the highest for p = 0.5,

and falls off when p 6= 0.5. Clearly, the equipartition
model is working best when the initial impulse itself is
transmitted down the chain with equal sharing of the en-
ergy between the leading layer and the next one in the
chain. On the other hand, the curves are also symmet-
ric, on either side of p = 0.5, around the mid-value of
the respective ranges, i.e. around 0.25 and 0.75. The lat-
ter symmetry is with respect to the initial growth rates.
The curves are concave (lesser than average logarithmic
growth rate), in the initial stages, on the semi-log plots
for p < 0.25 (p > 0.75), and convex (larger than average
logarithmic growth rate) for p > 0.25 (p < 0.75). This
symmetry is natural because of the symmetry introduced
by the exchange of roles between p and (1−p) as p is var-
ied. We get the best (approximate) logarithmic growth,
in the initial stages, for p = 0.25 (p = 0.75).
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FIG. 2: Growth patterns of Ebs(t) with an inverse square law
type variation in p. In (a) and (b), equipartition and exchange

models, respectively, are shown for p decreasing towards the
bottom; in (c) and (d), similarly, for p increasing towards the
bottom. Note that the y-ranges in (c) and (d) are extremely
small compared to those in (a) and (b). The effect of intro-
ducing a dissipation parameter, q, is shown in (a) and (b).

In the exchange case, there is no such symmetry. It is
a monotonous behavior with Ebs(t) requiring many more
cycles to saturate, the lower the p value is, and saturating
faster, the higher the p value is. In the latter case, if
the p value is sufficiently high, Ebs

max
can be attained

almost in the first cycle. This is understandable since
the undispersed energy bundles that travel up and down
the chain, but for the losses at the two ends, are smaller
(larger) in size when p is smaller (larger).
We may let p decrease towards the bottom and vice

versa. In the equipartition case, if we impose a linear de-
crease (increase), in the initial stages, the graphs are con-
vex (concave) and the variation in the amount of decrease
(increase) shows variation in convexity (concavity). This
is due to the longer presence of energy in the upper lay-
ers, with higher (lower) p values . Similarly, for the ex-
change model as well, steeper initial growth is achieved

for higher p’s in the top layers and vice versa. We may
impose other rates of decrease (increase) like exponen-
tial, inverse square law etc. but the basic charateristic
of the convexity (concavity)/steepness of the equiparti-
tion/exchange graphs being dictated by the presence of
larger (smaller) p’s in the upper layers will remain the
same; only it will be more pronounced with larger rates of
decrease (increase) like exponential or inverse square law
etc. In Figs. 2(a) and (b), we have shown results for a case
where p’s decrease in inverse square law fashion towards
the bottom for the equipartition and exchange models,
respectively; note the high values of Ebs

max
. Figs. 2(c)

and (d) show the results, similarly, for a case where the
p’s increase towards the bottom; note that, if the p’s in
the upper layers are extremely small (of the order of, say,
10−3), Ebs

max
is going to be extremely small (< 10−3) in

both the models.
If we let the p’s vary randomly, we get a combination

of the effects discussed earlier and the model is sensitive
to different realizations of the random distribution of p’s,
a desirable feature for a simple phenomenological model
for a highly heterogeneous medium like soil. We have
also checked our results with longer chains. It is clear
that the cyclicity in the exchange model will change with
the length of the chain; the cyclicity is twice the length of
the chain because we are only monitoring the energy at
one end. This introduces, for example, a longer plateau
length at each step of the staircase, in certain situations.
However, Ebs

max
remains the same in the case of a con-

stant p across the layers. In the equipartition case, Ebs
max

does change slightly; however, the convexity (concavity)
patterns in the plots, which depend on the p values, are
not changed, only they get more accentuated.
In summary, it can be stated that our 1D model is ro-

bust, and, at the same time, sensitive to changes in the
distribution of p across the layers. The model qualita-
tively reproduces the time evolution of average energy of
the surface grains of a complex, heterogeneous medium
like granular beds, following the generation of a normal
impulse at the bed surface. The model promises to be a
useful tool for further research on this important topic.
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