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Abstract

We study the bulk viscosity of neutron star matter including Λ hyperons in the presence of

quantizing magnetic fields. Relaxation time and bulk viscosity due to both the non-leptonic weak

process involving Λ hyperons and direct Urca processes are calculated here. In the presence of

a strong magnetic field of 1017 G, the hyperon bulk viscosity coefficient is reduced whereas bulk

viscosity coefficients due to direct Urca processes are enhanced compared with their field free cases

when many Landau levels are populated by protons, electrons and muons.

PACS numbers: 97.60.Jd, 26.60.-c, 04.40.Dg
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I. INTRODUCTION

R-mode instability plays an important role in regulating spins of newly born neutron

stars as well as old and accreting neutron stars in low mass x-ray binaries [1]. Gravitational

radiation drives the r-mode unstable due to Chandrasekhar-Friedman-Schutz mechanism

[2, 3, 4, 5, 6, 7, 8, 9, 10]. R-mode instability could be a promising source of gravitational

radiation. It would be possible to probe neutron star interior if it is detected by gravity

wave detectors.

Like gravitational radiation, electromagnetic radiation also drives the r-mode unstable

through Chandrasekhar-Friedman-Schutz mechanism. There exists a class of neutron stars

called magnetars [11] with strong surface magnetic fields 1014 − 1015 G as predicted by

observations on soft gamma-ray repeaters and anomalous x-ray pulsars [12, 13]. The effects

of magnetic fields on the spin evolution and r-modes in protomagnetars were investigated by

different groups [14, 15, 16]. On the one hand, it was shown that the growth of the r-mode

due to electromagnetic and Alfvén wave emission for strong magnetic field and slow rotation

could compete with that of gravitational radiation [15]. On the other hand, it was argued

that the distortion of magnetic fields in neutron stars due to r-modes might damp the mode

when the field is ∼ 1016 G or more [14, 16].

The evolution of r-modes proceeds through three steps [17]. In the first phase, the

mode amplitude grows exponentially with time. In the next stage, the mode saturates

due to nonlinear effects. In this case viscosity becomes important. Finally, viscous forces

dominate over gravitational radiation driven instability and damp the r-mode. This shows

that viscosity plays an important role on the evolution of r-mode. Bulk and shear viscosities

were extensively investigated in connection with the damping of the r-mode instability [1,

18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36]. In particular, it

was shown that the hyperon bulk viscosity might effectively damp the r-mode instability

[25]. However all these calculations of viscosity were performed in the absence of magnetic

fields. The only calculation of bulk viscosity due to Urca process in magnetised neutron

star matter was presented in Ref.[37]. This motivates us to investigate bulk viscosity due to

non-leptonic process involving hyperons in the presence of strong magnetic fields. It is to

be noted that the magnetic field in neutron star interior might be higher by several orders

of magnitude than the surface magnetic field [38]. Further it was shown that neutron stars
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could sustain strong interior magnetic field ∼ 1018 G [39, 40].

The paper is organised in the following way. In Section II we describe hyperon matter in

strong magnetic fields. We calculate bulk viscosity due to the non-leptonic process involving

Λ hyperons and due to leptonic processes in Section III. We discuss results in Section IV

and a summary is given in Section V.

II. HYPERON MATTER IN MAGNETIC FIELD

We describe β equilibrated and charge neutral neutron star matter made of neutrons,

protons, Λ hyperons, electrons and muons within a relativistic mean field approach [41, 42].

The baryon-baryon interaction is mediated by σ, ω and ρmesons. In the absence of magnetic

field, the baryon-baryon interaction is given by the Lagrangian density [43, 44]

LB =
∑

B=n,p,Λ

ψ̄B (iγµ∂
µ −mB + gσBσ − gωBγµω

µ − gρBγµtB · ρµ)ψB

+
1

2

(

∂µσ∂
µσ −m2

σσ
2
)

− U(σ)

−1

4
ωµνω

µν +
1

2
m2

ωωµω
µ − 1

4
ρµν · ρµν +

1

2
m2

ρρµ · ρµ . (1)

The scalar self interaction term [43, 44, 45] is,

U(σ) =
1

3
g1 mN (gσNσ)

3 +
1

4
g2 (gσNσ)

4 , (2)

and

ωµν = ∂νωµ − ∂µων , (3)

ρµν = ∂νρµ − ∂µρν . (4)

In mean field approximation, the effective mass of baryons B is

m∗
B = mB − gσBσ , (5)

where σ is given by its ground state expectation value

σ =
1

m2
σ

(

∑

B

gσB nB
S − ∂U

∂σ

)

. (6)
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The scalar density is given by

nB
S =

2

(2π)3

∫ kFB

0

m∗
B

√

k2B +m∗2
B

d3kB. (7)

The chemical potential for baryons B is

µB =
√

k2FB
+m∗2

B + ω0 gωB + ρ03 gρB I3B, (8)

where I3B is the isospin projection and

ω0 =
1

m2
ω

∑

B

gωB nB, (9)

ρ03 =
1

m2
ρ

∑

B

gρB I3B nB. (10)

The total baryon number density is nb =
∑

B nB.

Now we consider the effects of strong magnetic fields on hyperon matter. The motion

of charged particles in a magnetic field is Landau quantized in the plane perpendicular to

the direction of the field. We solve Dirac equations for charged particles using the gauge

corresponding to the constant magnetic field Bm along the z axis as A0 = 0, ~A = (0, xBm, 0).

In the presence of a constant magnetic field, the Lagrangian density for protons is taken

from Ref.[46]. The positive energy solutions for protons are

ψα =

( √
b

2νν!
√
π

)1/2

√

LyLz

e−ξ2/2 e−i(ǫt − kyy − kzz) Uα,ν(k, x), (11)

with ξ =
√
b
(

x− ky
qBm

)

and b = qBm.

The positive energy spinors, Uν(k, x), [47, 48, 49, 50] are given by

U↑,ν(k, x) =
√

ǫ′ +m∗
p

















Hν(ξ)

0

pz
ǫ′+m∗

p
Hν(ξ)

−
√
2νb

ǫ′+m∗

p
Hν+1(ξ)

















, (12)

and

U↓,ν(k, x) =
√

ǫ′ +m∗
p

















0

Hν(ξ)

−
√
2νb

ǫ′+m∗

p
Hν−1(ξ)

−pz
ǫ′+m∗

p
Hν(ξ)

















, (13)
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where ǫ
′

=
√

p2z +m∗2
p + 2νqBm.

The proton number density np and scalar density np
S are given by [46]

np =
qBm

2π2

νmax
∑

ν=0

gνkp(ν), (14)

np
S =

qBm

2π2
m∗

p

νmax
∑

ν=0

gν ln
kp(ν) + µ∗

p
√

(m∗2
p + 2νqBm)

, (15)

where µ∗
B =

√

k2FB +m∗2
B and kp(ν) =

√

k2Fp
− 2νqBm. Maximum number of Landau

levels populated is denoted by νmax and the Landau level degeneracy gν is 1 for ν = 0 and

2 for ν > 0. Similarly, we treat noninteracting electrons and muons in constant magnetic

fields.

The total energy density of neutron star matter is

ε =
1

2
m2

σσ
2 + U(σ) +

1

2
m2

ωω
02 +

1

2
m2

ρρ
02

3 +
∑

B=n,Λ

1

8π2

(

2kFB
µ∗3
B − kFB

m∗2
B µ

∗
B −m∗4

B ln
kFB

+ µ∗
B

m∗
B

)

+
qBm

(2π)2

νmax
∑

ν=0

gν



kp(ν)µ
∗
p + (m∗2

p + 2νqBm) ln
kp(ν) + µ∗

p
√

(m∗2
p + 2νqBm)





+
qBm

(2π)2

∑

l=e,µ

νmax
∑

ν=0

(

kl(ν)µl + (m2
l + 2νqBm) ln

kl(ν) + µl
√

(m2
l + 2νqBm)

)

+
B2

m

8π
. (16)

Similarly the total pressure of the system is given by

P = −1

2
m2

σσ
2 − U(σ) +

1

2
m2

ωω
02 +

1

2
m2

ρρ
02

3 +
1

3

∑

B=n,Λ

2JB + 1

2π2

∫ kFB

0

k4 dk

(k2 +m∗
B
2)1/2

+
qBm

(2π)2

νmax
∑

ν=0







kp(ν)µ
∗
p − (m∗2

p + 2νqBm) ln
kp(ν) + µ∗

p
√

(m∗2
p + 2νqBm)







+
qBm

(2π)2

∑

l=e,µ

νmax
∑

ν=0

{

kl(ν)µl − (m2
l + 2νqBm) ln

kl(ν) + µl
√

(m2
l + 2νqBm)

}

+
B2

m

8π
, (17)

where kl(ν) =
√

k2Fl
− 2νqBm . The relation between pressure and energy density defines

the equation of state (EoS).
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III. BULK VISCOSITY

The macroscopic compression (or expansion) of a fluid element leads to departure from

chemical equilibrium. Non-equilibrium processes cause dissipation of energy which is the

origin of bulk viscosity in neutron stars. Weak interaction processes bring the system back

to equilibrium. In this calculation, we consider the non-leptonic reaction

n + p −→ p + Λ , (18)

as well as direct Urca (dUrca) processes which are represented by

n −→ p + l− + ν̄l, (19)

where l stands for e or µ. When the chemical equilibrium is achieved, chemical potentials

involved in above reactions satisfy µn−µΛ = 0 and µn−µp−µl = 0 respectively. In this case

the forward and reverse reaction rates, Γf and Γr are same. The departure from chemical

equilibrium due to macroscopic perturbation gives rise to the difference between forward and

reverse reaction rates, Γ = Γf − Γr 6= 0. For a rotating neutron star, the r-mode oscillation

provides the macroscopic perturbation which drives the system out of chemical equilibrium.

The real part of bulk viscosity coefficient can be written as [51]

ζ = − n2
bτ

1 + (ωτ)2

(

∂P

∂nn

)

dx̄n
dnb

, (20)

where x̄i = ni/nb is the equilibrium fraction of i-th species, ω is the angular velocity of (l, m)

r-mode and τ is the microscopic relaxation time. For a neutron star rotating with angular

velocity Ω, the angular velocity (ω) of (l, m) r-mode is given by

ω =
2m

l(l + 1)
Ω. (21)

We are interested in l = m = 2 r-mode in this calculation. The relaxation time is given by

1

τ
=

Γ

δµ

δµ

nbδxn
(22)

where δµ refers to the chemical imbalance. Here Γ is the total reaction rate.

The partial derivative of pressure with respect to neutron number density can be evaluated

from the EoS under consideration as

∂P

∂nn
=

k2Fn

3µ∗
n

−
gσN

mσ

m∗

n

µ∗

n

D

∑

B

nB
gσB
mσ

m∗
B

µ∗
B

+ gωNω
0 + gρNI3nρ

0
3, (23)
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D = 1 +
∑

B

(

gσB
mσ

)2
∂nB

S

∂m∗
B

+
1

m2
σ

∂2U

∂σ2
. (24)

The total derivative dxn/dnb can be evaluated numerically.

Now, we calculate relaxation times for above mentioned processes in presence of magnetic

field Bm using the EoS as described in section II.

A. Non-leptonic process

Here we consider the non-leptonic process given by Eq. (18). In this case, only protons

are affected by magnetic fields. The reaction rate is given by

Γ =

∫

V d3kn
(2π)3

∫

Lzdkpiz
2π

∫ bLx
2

− bLx
2

Lydkpiy
2π

∫

Lzdkpfz
2π

∫ bLx
2

− bLx
2

Lydkpfy
2π

∫

V d3kΛ
(2π)3

Wfi

× F (ǫn, ǫpi, ǫpf , ǫΛ), (25)

kpiz and kpfz being the z component of momenta of initial and final protons respectively and

kn and kΛ denote momenta of neutrons and Λ hyperons. The Pauli blocking factor is given

by

F (ǫn, ǫpi, ǫpf , ǫΛ) = f(ǫn)f(ǫpi){1−f(ǫpf )}{1−f(ǫΛ)} −f(ǫΛ)f(ǫpf ){1−f(ǫpi)}{1−f(ǫn)} ,
(26)

with the Fermi distribution function at temperature T

f(ǫi) =
1

1 + e
ǫi − µ

kT

. (27)

The matrix element Wfi is given by

Wfi =
1

V 3(LyLz)

(2π)3

16ǫnǫpiǫpf ǫΛ
|M|2 e−Q2

δ(ǫ)δ(ky)δ(kz) , (28)

where

Q2 =
(knx − kΛx)

2 + (kpiy − kpfy)
2

2b
and δ(k) ≡ δ(kn + kpi − kpf − kΛ). (29)
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The invariant amplitude squared for the process is

|M|2 = 4G2
F sin2 2θc

[

2m∗
nm

∗
p
2m∗

Λ(1− g2np)(1− g2pΛ)

− m∗
nm

∗
p(kpi · kΛ)(1− g2np)(1 + g2pΛ) −m∗

pm
∗
Λ(kn · kpf )(1 + g2np)(1− g2pΛ)

+ (kn · kpi)(kpf · kΛ){(1 + g2np)(1 + g2pΛ) + 4gnpgpΛ}

+(kn · kΛ)(kpi · kpf ){(1 + g2np)(1 + g2pΛ) − 4gnpgpΛ}
]

. (30)

In calculating the matrix element given by Eq. (28) we use the solutions of Dirac equation

for protons in magnetic field given by Eqs. (12) and (13). We also assume that the magnetic

field is so strong that only zeroth Landau level is populated. Now we integrate over kpiy and

kpfy using δ(ky) and obtain

Γ =
LyLz

(2π)7V 16
bLx

∫

d3kn

∫

dkpiz

∫

dkpfz

∫

d3kΛ

( |M|2
ǫnǫpiǫpf ǫΛ

)

δ(ky)

×e−[(knx−kΛx)
2+(kny−kΛy)

2]/2b F (ǫn, ǫpi, ǫpf , ǫΛ) δ(ǫn + ǫpi − ǫpf − ǫΛ)δ(kz). (31)

Here the subscript δ(ky) denotes that this condition has been imposed on the quan-

tity within the parenthesis. Next we perform the integration over kn and kΛ and write

d3k = k2 dk d(cos θ) dφ. The delta function of z-components of momenta implies

knz + kpiz = kpfz + kΛz. Here we note that when protons occupy only the zeroth Landau

level, they have momenta along the direction of magnetic field i.e. in z direction. Hence we

have kpz = kFp. Then depending upon whether the initial and final protons are moving in

the same or opposite direction we have kΛz − knz = 0 or kΛz − knz = 2kFp. Next we perform

the angle integrations using δ(kz) and change variable k to ǫ to get

Γ =
b

(2π)58

∫

dǫndǫpidǫpfdǫΛ
kFΛ

kFpkFp

(

(|M|2)θint

)

δ(ky),δ(kz)

×
[

Θ{(kFn − kFΛ
)2}e−[(kFn−kFΛ

)2]/2b +Θ{(kFn − kFΛ
)2 − 4k2Fp

}e−[(kFn−kFΛ
)2−4k2Fp

]/2b
]

×F (ǫn, ǫpi, ǫpf , ǫΛ)δ(ǫn + ǫpi − ǫpf − ǫΛ). (32)

Here the subscript θint denotes the angle integrated value. As particles reside near their

Fermi surfaces in a degenerate matter we replace momenta and energies under integration

by their respective values at their Fermi surfaces.
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The matrix element squared is rewritten as,

(

(|M|2)θint

)

δ(ky),δ(kz)
= 4G2

F sin2 2θc
[

2m∗
nm

∗
p
2m∗

Λ(1− g2np)(1− g2pΛ)

− m∗
nm

∗
pµpµΛ(1− g2np)(1 + g2pΛ)− m∗

pm
∗
Λµnµp(1 + g2np)(1− g2pΛ)

+ µnµ
2
pµΛ{(1 + g2np)(1 + g2pΛ) + 4gnpgpΛ}

+ µnµ
2
pµΛ

(

1−
k2Fp

µ2
p

)

{(1 + g2np)(1 + g2pΛ) − 4gnpgpΛ

]

. (33)

As δµ << kT , the energy integration of Eq. (32) can be written as [51]
∫

dǫndǫpidǫpfdǫΛ F (ǫn, ǫpi, ǫpf , ǫΛ) δ(ǫn + ǫpi − ǫpf − ǫΛ) = (kT )2
2π2

3
δµ. (34)

Finally we get

Γ =
1

384π3

qBmkFΛ

k2Fp

(

(|M|2)θint

)

δ(ky),δ(kz)

[

Θ{(kFn − kFΛ
)2}e−[(kFn−kFΛ

)2]/2b

+Θ{(kFn − kFΛ
)2 − 4k2Fp

}e−[(kFn−kFΛ
)2−4k2Fp

]/2b
]

(kT )2 δµ. (35)

The expression of the reaction rate for a zero magnetic field is given by[51]

Γ =
1

192π3
〈|M|2〉 kFΛ

(kT )2 δµ, (36)

where the angle averaged matrix element squared is same as given by [51].

Now the quantity δµ/δxn in Eq. (22) is to be evaluated under the condition of total

baryon number conservation [51]

δnn + δnΛ = 0, (37)

which leads to

δµ

δxn
= αnn − αnΛ − αΛn + αΛΛ, with αij =

∂µi

∂nj

. (38)

Further we have

αij =
π2

kFi
µ∗
i

δij − m∗
i

µ∗
i

(

gσi

mσ

)(

gσj

mσ

)

m∗

j

µ∗

j

D
+

1

m2
ω

gωigωj +
1

m2
ρ

gρiI3i gρjI3j . (39)

Here D is the same as given by Eq. (24). Next we evaluate the relaxation time of the

non-leptonic reaction at a given baryon density using Eq. (22) along with Eqs. (35), (38)

and (39).

As soon as we know the relaxation time, we can calculate the bulk viscosity coefficient ζ

due to the non-leptonic interaction at a given baryon density from Eq. (20).
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B. Leptonic processes

Here we consider dUrca processes involving nucleons, electrons and muons in a magnetic

field. The forward reaction rate for this process is then given by [47, 48, 49]

Γf =

∫

V d3kn
(2π)3

∫

V d3kν
(2π)3

∫

Lzdkzp
2π

∫ bLx
2

− bLx
2

Lydkyp
2π

∫

Lzdkzl
2π

∫ bLx
2

− bLx
2

Lydkyl
2π

Wfi

×F (ǫn, ǫp, ǫl). (40)

Here F (ǫn, ǫp, ǫl) is given by

F (ǫn, ǫp, ǫl) = f(ǫn){1− f(ǫp)}{1− f(ǫl)}. (41)

Using the solutions of Dirac equations for protons and electrons in magnetic field, we obtain

the matrix element

Wfi =
(2π)3

V 3(LyLz)
|M|2δ(ǫ)δ(ky)δ(kz) . (42)

Firstly we treat the case following the prescription of Baiko and Yakovlev [48] when

protons and electrons populate large numbers of Landau levels. In this case, we have

∑

sn,sp

|M|2 = 2G2
F cos2 θc(1 + 3G2

A)F
2 , (43)

where F is Laguerre functions for both protons and electrons [48]. The forward reaction

rate is given by,

Γf =
32πG2

F cos2 θcm
∗
nm

∗
pµl

(2π)5
Rqc

B

∫

dǫνǫ
2
νJ(ǫν) , (44)

where

Rqc
B = 2

∫ ∫ 1

−1

d cos θpd cos θl
KFpKFl

4b
F 2
Np,Nl

(u)Θ(kFn − |kFp cos θp + kFl
cos θl|) , (45)

and

J(ǫν) =

∫

dǫndǫpdǫlF (ǫn, ǫp, ǫl)δ(ǫn − ǫp − ǫl − ǫν) ,

=
(kT )2

2

π2 + (ǫν/kT )
2

1 + eǫν/kT
. (46)

As there is chemical imbalance due to the perturbation, the reverse reaction rate (Γr) differs

from the forward reaction rate and the net reaction rate is given by [26, 48]

Γl =
32πG2

F cos2 θcm
∗
nm

∗
pµl

(2π)5
Rqc

B

∫

dǫνǫ
2
ν{J(ǫν − δµ)− J(ǫν + δµ)}. (47)
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One important aspect of dUrca process is the opening of this channel in the forbidden

regime KFn > KFp + KFl
which was otherwise closed in field free case [48]. The dUrca

process also operates in the allowed domain KFp +KFl
> KFn in the presence of a magnetic

field. We adopt fitting formulas for Rqc
B in both domains as given by Ref.[48].

Next we focus on the case when both protons and electrons populate zeroth Landau levels

[47, 48, 49]. In this case we write the matrix element as

Wfi =
(2π)3

V 3(LyLz)

1

16ǫnǫνǫpǫe
|M|2 e−Q2

δ(ǫ)δ(ky)δ(kz) , (48)

Q2 =
(knx − kνx)

2 + (kpy + kly)
2

2b
. (49)

In a magnetic field neutrons will be polarized because of their anomalous magnetic mo-

ments. Hence for two different spin states of neutrons, matrix elements should be evaluated

separately. The invariant amplitude squared is then |M|2 = |M+|2 + |M−|2, where

|M±|2 =
G2

F

2

∑

s

{V̄νs(kν)(1 + γ5)γνUl−(kl)}{Ūn±(kn)(1− gnpγ
5)γνUp+(kp)} (50)

×{Ūp+(kp)γ
µ(1 + gnpγ

5)Un±(kn)}{Ūl−(ke)γµ(1− γ5)Vνs(kν)} , (51)

and ± signs denote the up and down spins respectively. The spinors for non-relativistic

neutrons are given by

Un± =
√

ǫn +m∗
n





χ±

0



 , (52)

where

χ+ =





1

0



 and χ− =





0

1



 . (53)

For non-relativistic protons in the zeroth Landau level, the spinor has the same form as

given by Eq. (52). For spin down relativistic leptons in the zeroth Landau level, the spinor

is given by

Ul− =
√
ǫl +ml















0

1

0

−plz
ǫl+ml















(54)
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For spin up and down neutrons, invariant amplitudes squared are

|M+|2 = 8G2
F cos2 θcm

∗
nm

∗
p(1 + gnp)

2(ǫl + pl)(ǫν + pνz) , (55)

and

|M−|2 = 32G2
F cos2 θcm

∗
nm

∗
pg

2
np(ǫl + pl)(ǫν − pνz) . (56)

Following the same procedure as described in subsection IIIA and neglecting the neutrino

momenta in momentum conserving delta functions, the final expression of forward reaction

rate Γf is given by

Γf =
b

(2π)58

m∗
nm

∗
pµl

kFpkFl

[

(

|M+|2d
)

δ(ky),δ(kz)
+
(

|M−|2d
)

δ(ky),δ(kz)

]

×
[

Θ{k2Fn
− (kFp − kFl

)2}e−[k2Fn
−(kFp−kFl

)2]/2b +Θ{k2Fn
− (kFp + kFl

)2}e−[k2Fn
−(kFp+kFl

)2]/2b
]

×
∫

dǫνǫ
2
ν

∫

dǫndǫpdǫlF (ǫn, ǫp, ǫl)δ(ǫn − ǫp − ǫl − ǫν) , (57)

where

(

|M+|2d
)

δ(ky),δ(kz)
= 8G2

F cos2 θc(1 + gnp)
2

(

1 +
pl
ǫl

)(

1 +
pνz
ǫν

)

. (58)

Similarly we have,

(

|M−|2d
)

δ(ky),δ(kz)
= 32G2

F cos2 θcg
2
np

(

1 +
pl
ǫl

)(

1− pνz
ǫν

)

. (59)

It is to be noted that z-component of neutrino momentum is smaller than its energy. We

obtain

Γf =
b

(2π)58

m∗
nm

∗
pµl

kFpkFl

[

(

|M+|2d
)

δ(ky),δ(kz)
+
(

|M−|2d
)

δ(ky),δ(kz)

]

×
[

Θ{k2Fn
− (kFp − kFl

)2}e−[k2Fn
−(kFp−kFl

)2]/2b +Θ{k2Fn
− (kFp + kFl

)2}e−[k2Fn
−(kFp+kFl

)2]/2b
]

×
∫

dǫνǫ
2
νJ(ǫν). (60)

Now if the reverse reaction rate is Γr and there is slight departure from chemical equilibrium

δµ, then the net reaction rate is [26],

Γl = Γr − Γf =
b

(2π)58

m∗
nm

∗
pµl

kFpkFl

[

(

|M+|2d
)

δ(ky),δ(kz)
+
(

|M−|2d
)

δ(ky),δ(kz)

]

×
[

Θ{k2Fn
− (kFp − kFl

)2}e−[k2Fn
−(kFp−kFl

)2]/2b +Θ{k2Fn
− (kFp + kFl

)2}e−[k2Fn
−(kFp+kFl

)2]/2b
]

×
∫

dǫνǫ
2
ν{J(ǫν − δµ)− J(ǫν + δµ)}. (61)
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Using the following result from Ref. [26]

∫

dǫνǫ
2
ν{J(ǫν − δµ)− J(ǫν + δµ)} =

17(πkT )4

60
δµ, (62)

we get

Γl =
17qBm

480π

m∗
nm

∗
pµl

kFpkFl

G2
F cos2 θc

(

1 +
pl
ǫl

)[

1

4
(1 + gnp)

2 + g2np

]

×
[

Θ{k2Fn
− (kFp − kFl

)2}e−[k2Fn
−(kFp−kFl

)2]/2b +Θ{k2Fn
− (kFp + kFl

)2}e−[k2Fn
−(kFp+kFl

)2]/2b
]

×(kT )4 δµ. (63)

The zero magnetic field result is given by

Γl(Bm = 0) =
17

240π
m∗

nm
∗
pµl(|M|2d)θint

(kT )4δµ, (64)

where

(|M|2d)θint
= G2

F cos2 θc

{

(1 + gnp)
2

(

1− kFn

m∗
n

)

+ (1− gnp)
2

(

1− kFp

m∗
p

)

− (1− g2np)

}

. (65)

IV. RESULTS AND DISCUSSION

Nucleon-meson coupling constants of the model are obtained by reproducing the prop-

erties of nuclear matter such as binding energy E/B = −16.3 MeV , saturation density

n0 = 0.153 fm−3, asymmetry energy coefficient aasy = 32.5 MeV and incompressibility

K = 240 MeV and taken from Ref [52]. The coupling strength of Λ hyperons with ω

mesons is determined from SU(6) symmetry of the quark model [53, 54, 55]. The coupling

strength of Λ hyperons to σ mesons is determined from the potential depth of Λ hyperons

in normal nuclear matter

UΛ = −gσΛσ + gωΛω0. (66)

We take the potential depth UΛ = −30MeV as obtained from the analysis of Λ hypernuclei

[54, 56].

We adopt a profile of magnetic field given by [57],

B (nb/n0) = Bs +Bc

(

1− e
−β

“

nb
n0

”γ
)

. (67)

We consider different values for central field Bc = 1016 and 1017 G whereas surface field

strength is taken as Bs = 1014 G in this calculation. We chose β = 0.01 and γ = 3. The
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magnetic field strength depends on baryon density in the above parameterization. Further

the magnetic field at each density point is constant and uniform. The effects of anomalous

magnetic moments of nucleons and contributions of the magnetic field to energy density

and pressure are negligible because magnetic fields considered in this calculation are not too

strong.

Numbers of Landau levels populated by electrons and protons, are sensitive to the mag-

netic field strength and baryon density. As the field strength increases, the population of

Landau levels decreases. In a weak magnetic field, when many Landau levels are populated,

we treat charged particles unaffected by the magnetic field. Further the effects of magnetic

fields are most pronounced when only zeroth Landau levels are populated. Protons, elec-

trons and muons populate zeroth Landau levels if central field strength Bc ∼ 1019 G. Figure

1 shows fractions of various particle species with normalised baryon density. We find large

numbers of Landau levels of charged particles even when the magnetic field reaches its cen-

tral value 1017 G. Populations of charged particles are enhanced in the magnetic field due

to Landau quantization than those of field free case (not shown in the figure). It is noted

in Fig. 1 that the threshold density of Λ hyperons is shifted to 1.7n0 from its zero magnetic

field value of 2.6n0 because of phase space modifications of charged particles in a magnetic

field.

The variation of pressure with energy density in the presence of a magnetic field with

central field strength Bc = 1017 G (solid curve) is shown in Fig. 2. The dashed curve denotes

the EoS without a magnetic field. The EoS in the presence of the magnetic field becomes

stiffer when charged particles are Landau quantised. Here magnetic field contributions to

the energy density and pressure are insignificant.

Now we compute the relaxation time for both non-leptonic and leptonic reactions as given

by Eq. (22). To calculate the matrix element we take gnp = −1.27 and gpΛ = −0.72 [51],

and the Cabibbo angle (θc) is given by sin θc = 0.222. As we have already noted, charged

particles populate many Landau levels in a magnetic field having central value Bc = 1017 G

over entire density range considered in our calculation. For the non-leptonic process, when

protons populate large number of Landau levels, we use the field free expression of Γ as

given by Eq. (36). For leptonic reactions we use the expression as given by Eq. (47) when

leptons and protons populate finite numbers of Landau levels. Chemical potentials and

Fermi momenta of constituent particles are obtained from the EoS. The partial derivative
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of chemical potentials with respect to baryon density can be calculated from the EoS. Using

these inputs, we can compute relaxation times for both reactions as a function of baryon

density at a particular temperature. Figure 3 displays relaxation time (τ) of the non-leptonic

process involving Λ hyperons in a magnetic field having its central value Bc = 1017 G and at

different temperatures as a function of normalised baryon number density. Here τ decreases

with increasing baryon density. Further the relaxation time in a magnetic field increases

with decreasing temperature as was earlier noted in the field free case [23].

Relaxation times for dUrca reactions involving electrons and muons in a magnetic field

with Bc = 1017 G and at different temperatures are plotted in Figs. 4 and 5 respectively.

For leptonic processes, relaxation times are affected by the magnetic field. For the field

free case, the dUrca process sets in at 1.4n0. In the magnetic field, relaxation times due to

dUrca reactions drop sharply from large values in the forbidden domain KFn > KFp +KFe.

This is attributed to the behaviour of Rqc
B which we discuss in details in connection with

bulk viscosity due to dUrca processes below. The forbidden domain joins with the allowed

domain KFp + KFe > KFn at a point from which relaxation times increase with baryon

density. Like the non-leptonic case, relaxation times for dUrca processes also increase with

decreasing temperature.

Now we focus on the calculation of bulk viscosity due to the non-leptonic and leptonic

processes. As soon as we know relaxation times of non-leptonic and leptonic reactions,

we compute bulk viscosity coefficients for the respective processes from Eq. (20). In this

calculation we consider l = m = 2 r-mode and hence ω = 2/3Ω. Further we take Ω =

3000s−1. In the temperature regime considered here, we have always ωτ << 1 for the non-

leptonic process involving Λ hyperons. Therefore, we neglect that term in the denominator

of Eq. (20) to calculate the hyperon bulk viscosity. The partial derivative of pressure with

respect to neutron number density is calculated from the EoS using Eq. (23) and the total

derivative of neutron fraction with respect to baryon density is computed numerically from

the EoS. As the relaxation time is a function of temperature, the bulk viscosity coefficient

ζ also depends on temperature. The bulk viscosity coefficient for the non-leptonic process

in a magnetic field with Bc = 1017 G (dashed curve) and in the absence of a magnetic field

(solid curve) are exhibited as a function of normalised baryon number density in Fig. 6

at different temperatures. The non-leptonic reaction involves protons that populate many

Landau levels in the magnetic field with Bc = 1017 G. In this case, we adopt the field free
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expression of the reaction rate as given by Eq. (36) for the calculation of relaxation time

and hyperon bulk viscosity coefficient in Eq. (20). Therefore, the effects of magnetic field

enter into hyperon bulk viscosity coefficient through the EoS which is modified by Landau

quantization of charged particles. In Fig. 6, we find hyperon bulk viscosity in the magnetic

field is suppressed compared with the field free case.

We display bulk viscosity coefficient for the dUrca process in a magnetic field with Bc =

1016 G and at a temperature T = 1011 K as a function of normalised baryon density in Fig. 7.

In this case electrons and protons populate many Landau levels. The dotted line represents

the dUrca contribution in the forbidden domain KFn > KFp +KFe. In this regime, reaction

kinetics are characterised by two parameters x =
K2

Fn
−(KFp+KFe)

2

K2

Fp
N

−2/3
Fp

and y = N
2/3
Fp

, where NFp

is the number of proton Landau levels. The dUrca reaction in the forbidden domain is an

efficient process as long as x ≤ 10. This corresponds to baryon density ≤ 2.3n0. The large

enhancement of bulk viscosity coefficient in this domain is attributed to the behaviour of

Rqc
B [48]. It was noted Rqc

B = 1/3 at x = 0 and it becomes very small when x > 10 [48].

At x = 0, the forbidden domain merges with the allowed domain KFp +KFe > KFn of the

dUrca process. The dUrca bulk viscosity in the allowed domain is shown by the dash-dotted

line. The result of zero field is shown by the solid line. The bulk coefficient increases with

magnetic field in the allowed domain at higher baryon densities.

Figure 8 and Figure 9 show bulk viscosity coefficients for dUrca processes involving elec-

trons and muons in the presence of the magnetic field with central value Bc = 1017 G and at

different temperatures as a function of normalised baryon density. In both cases contribu-

tions to bulk viscosity coefficients due to dUrca processes come from the forbidden as well as

allowed domains. As discussed above, the forbidden domain merges with the allowed domain

at x = 0. For temperatures T = 109 and 1010 K, bulk viscosity coefficients due to dUrca

processes increase with baryon density. However the bulk viscosity for T = 1011 K initially

decreases and later increases with baryon density. This behaviour can be understood in the

following way. For dUrca processes at 1011 K, we have ωτ < 1. On the other hand, we find

ωτ > 1 for dUrca processes at 109 K and 1010 K. Consequently bulk viscosity coefficients

have a T 4 dependence when ωτ > 1 whereas it has a T−4 dependence when ωτ < 1. This

inversion of temperature dependence of dUrca bulk viscosity coefficients is not found in the

case of hyperon bulk viscosity.

Finally, we point out what happens in case of superstrong fields. We find that charged
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particles populate zeroth Landau levels when Bc ∼ 1019. Populations of charged particles are

enhanced because of strong modification of their phase spaces. Further the EoS is modified

due to magnetic field contributions to the energy density and pressure. The strong magnetic

field enhances the hyperon bulk viscosity compared with the field free case. Similarly we note

significant modification in bulk viscosity coefficients due to dUrca processes when leptons

and protons are in zeroth Landau levels. However, there is no observational evidence for

superstrong field ∼ 1019 G in neutron star’s interior so far.

V. SUMMARY

We have investigated bulk viscosity of non-leptonic process involving Λ hyperons and

dUrca processes in the presence of strong magnetic fields. In this calculation we consider

magnetic fields with different central values Bc = 1016 and 1017 G. The equation of state

has been constructed using the relativistic field theoretical model. Many Landau levels of

charged particles are populated for above values of central field. For a particular tempera-

ture, the hyperon bulk viscosity coefficient is reduced compared with that of the zero field

case. Further it is noted that the hyperon bulk viscosity decreases with increasing tem-

perature as was earlier reported for the field free case. Bulk viscosity coefficients due to

dUrca processes in a magnetic field have contributions from the forbidden as well as allowed

domains. The bulk viscosity coefficients in magnetic fields having central values Bc = 1016

and 1017 G are enhanced in the allowed domain at higher baryon densities than those of

field free cases. We find an inversion of the temperature dependence of dUrca bulk viscosity

coefficients at 1011 K. We briefly discuss the effects of a superstrong magnetic field ∼ 1019

G on hyperon and dUrca bulk viscosities when zeroth Landau levels of charged particles are

populated. However, such a superstrong magnetic field may not be a possibility in neutron

stars.

In this calculation, we adopt the field free hyperon bulk viscosity relation when protons

populate large number of Landau levels. This may be an approximate treatment of the actual

case. However the exact treatment of the effects of a magnetic field on the non-leptonic bulk

viscosity would be worth studying when protons populate many Landau levels. Further the

investigation of bulk viscosity in magnetic fields has important implications for the r-modes
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in magnetars. This will be reported in a future publication.
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Fig. 1. Fractions of different particle species in Λ-hyperon matter in the presence of a magnetic

field having central value Bc = 1017 G as a function of normalised baryon density.
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Fig. 2. Equation of state, pressure versus energy density, with a magnetic field having central

value Bc = 1017 G (solid line) and without magnetic field (dashed curve).
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Fig. 3. Relaxation time for the non-leptonic reaction involving Λ hyperons in a magnetic field

having central value Bc = 1017 G and at different temperatures as a function of normalised baryon

density.
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Fig. 4. Relaxation time of dUrca reaction involving electrons in a magnetic field having central

value Bc = 1017 G and at different temperatures as a function of normalised baryon density.
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Fig. 5. same as Fig. 4 but for dUrca reaction including muons.
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Fig. 6. Bulk viscosity coefficient (dashed line) for the non-leptonic processes involving Λ hyperons

in a magnetic field having central value Bc = 1017 G and at different temperatures as a function

of normalised baryon density. Field free cases are shown by solid lines.

26



1031

1030

1029

1028

1027

1026

1025

9753

ξ (
gm

/c
m

/s
)

nb/n0

B = 0

Bc = 1016 G

T = 1011 K

Fig. 7. Bulk viscosity coefficient for the dUrca process involving electrons in a magnetic field

having central value Bc = 1016 G and at a temperature 1011 K as a function of normalised baryon

density. The field free case is shown by the solid line.
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Fig. 8. Bulk viscosity coefficient for the dUrca process involving electrons in a magnetic field

having central value Bc = 1017 G and at different temperatures as a function of normalised baryon

density.
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Fig. 9. Same as Fig. 8 but for the dUrca process involving muons.
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