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Abstract—Kinship verification has a number of applications
such as organizing large collections of images and recognizing
resemblances among humans. In this research, first, a human
study is conducted to understand the capabilities of human mind
and to identify the discriminatory areas of a face that facilitate
kinship-cues. The visual stimuli presented to the participants
determines their ability to recognize kin relationship using the
whole face as well as specific facial regions. The effect of
participant gender and age and kin-relation pair of the stim-
ulus is analyzed using quantitative measures such as accuracy,
discriminability index d

′, and perceptual information entropy.
Utilizing the information obtained from the human study, a
hierarchical Kinship Verification via Representation Learning
(KVRL) framework is utilized to learn the representation of
different face regions in an unsupervised manner. We propose
a novel approach for feature representation termed as filtered
contractive deep belief networks (fcDBN). The proposed feature
representation encodes relational information present in images
using filters and contractive regularization penalty. A compact
representation of facial images of kin is extracted as an output
from the learned model and a multi-layer neural network is
utilized to verify the kin accurately. A new WVU Kinship
Database is created which consists of multiple images per subject
to facilitate kinship verification. The results show that the
proposed deep learning framework (KVRL-fcDBN) yields state-
of-the-art kinship verification accuracy on the WVU Kinship
database and on four existing benchmark datasets. Further,
kinship information is used as a soft biometric modality to boost
the performance of face verification via product of likelihood
ratio and support vector machine based approaches. Using the
proposed KVRL-fcDBN framework, an improvement of over
20% is observed in the performance of face verification.

Index Terms—Kinship Verification, Face Verification, Deep
Belief Networks, Soft Biometrics

I. INTRODUCTION

K INSHIP refers to sharing of selected characteristics

among organisms through nature. Kinship verification

is the task of judging if two individuals are kin or not and

has been widely studied in the field of psychology and neuro-

science. Hogben [1] called the similarities in facial structure

of humans as familial traits. Face resemblance is thought to

be one of the most common physical cues for kinship [2].

The hypothesis that similarity among faces could be a cue for

kinship was first formulated by Daly and Wilson [3]. Since

then, facial similarity/resemblance has been used to judge
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kinship recognition in a number of research experiments [4]–

[11]. Maloney and Martello [12] have examined the relation

between similarity and kinship detection among siblings and

concluded that observers do look for similarity in judging

kinship among children. Martello and Maloney [13] have

further shown that in kinship recognition, the upper portion

of a face has more discriminating power as compared to

the lower half. In a different study, to determine the effect

of lateralization on allocentric kin recognition, they have

suggested that the right half of the face is equal to the left

half portion of the face for the purpose of kinship recognition

[14].

Some examples of kin-relations are shown in Fig. 1. Kinship

verification has several applications such as:

1) organizing image collections and resolving identities in

photo albums,

2) searching for relatives in public databases,

3) boosting automatic face verification capabilities,

4) automatically tagging large number of images available

online, and

5) finding out kin of a victim or suspect by law enforcement

agencies.

Kinship verification has also gained interest in the computer

vision and machine learning communities. The first dataset

containing kin pairs was collected by Fang et al. [15]. For

performing kinship verification, the authors proposed an al-

gorithm for facial feature extraction and forward selection

methodology. Since then, the algorithms for verifying kin

have increased in complexity and Table I provides a review

of algorithms recently published in this area along with the

databases used. The problem of kinship verification is partic-

ularly challenging because of the large intra-class variations

among different kin pairs. At the same time, look-alikes

decrease the inter-class variation among the facial images

of kin. While existing algorithms have achieved reasonable

accuracies, there is a scope of further improving the perfor-

mance. For instance, deep learning algorithms can be utilized;

Fig. 1. Examples of kin-relations considered in this research.
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TABLE I. Review of kinship verification algorithms. Outside Training column represents if an external face database was required for training the algorithm.
The symbol * represents value taken from ROC curve

Year Authors Algorithm Database
Accuracy

(%)
Outside
Training

2010 Fang et al. [15] Pictorial structure model Cornell KinFace 70.67

No

2011

Siyu et al. [16] Transfer learning UB Kin Database 60.00

Shao et al. [17] Transfer subspace learning UB Kin Database 69.67

Zhou et al [18]
Spatial pyramid learning based
kinship

Private Database 67.75

2012

Xia et al. [19] Attributes LIFT learning UB Kin Database 82.50

Kohli et al. [20]
Self similarity representation
of weber faces

UB Kin Database 69.67

IIITD Kinship Database 75.20

Guo et al [21]
Product of likelihood ratio on
salient features

Private Database 75.00

Zhou et al. [22]
Gabor based gradient oriented
pyramid

Private Database 69.75

2013 Dibeklioglu et al. [23] Spatio temporal features UvA-NEMO Smile 67.11

2014

Lu et al. [24]
Multiview neighborhood
repulsed metric learning

KinFace-I 69.90

KinFace-II 76.50

Yan et al. [25]
Discriminative multimetric
learning

Cornell KinFace 73.50*

UB Kin Database 74.50

KinFace-I 72.00*

KinFace-II 78.00*

Dehghan et al. [26]
Discrimination via gated
autoencoders

KinFace-I 74.50

KinFace-II 82.20

Yan et al. [27]
Prototype discriminative
feature learning

Cornell KinFace 71.90

UB Kin Database 67.30

KinFace-I 70.10

KinFace-II 77.00

2015

Liu et al. [28]
Inheritable Fisher Vector
Feature based kinship

KinFace-I 73.45

KinFace-II 81.60

Alirezazadeh et al. [29]
Genetic Algorithm for feature
selection for kinship

KinFace-I 81.30

KinFace-II 86.15

Zhou et al. [30] Ensemble similarity learning
KinFace-I 78.60

KinFace-II 75.70

2016 Proposed
Kinship verification via
representation learning
(KVRL-fcDBN)

Cornell KinFace 89.50

Yes

UB Kin Database 91.80

KinFace-I 96.10

KinFace-II 96.20

WVU Kinship Database 90.80

however, they typically require a large training database which

existing kinship databases lack. Moreover, kinship cues can be

visualized as the soft information that can be utilized to boost

the performance of face verification algorithms.

A. Research Contributions

Inspired by face recognition literature, where researchers

have tried to understand how humans perform face recognition,

we have performed a similar study to understand the ability of

humans in identifying kin. Using the cues from human study,

this research presents a deep learning based kinship verifica-

tion framework that relies on learning face representations.

A new approach using the proposed filtered contractive deep

belief networks (fcDBN) is presented where the formulation

of RBMs is extended through a filtering approach and a

contractive penalty. The idea of this approach stems from

the fact that facial images have an inherent structure which

can be emphasized using filters. By simultaneously learning

filters and weights, an invariant representation of the faces

is learned which is utilized in kinship verification. Using

contractive penalty, we learn robust features that are invariant

to local variations in the images. The proposed approach shows

state-of-the-art results on multiple datasets used in kinship

verification research.

Humans utilize contextual information in identifying faces

such as establishing the identity of a person through kinship

cues. Inspired by this phenomenon, our research models

kinship as soft information which can help in improving
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the performance of a strong biometric matcher. Therefore,

we also present an approach that incorporates kinship as a

soft biometric information for boosting the results of face

verification. A new database consisting of multiple images of

kin has also been created to help in evaluating the performance

of the proposed kinship verification algorithm.

II. EVALUATING HUMAN PERFORMANCE FOR KINSHIP

VERIFICATION

In face recognition literature, several studies have been

performed to understand the recognition capabilities of human

mind. Inspired by these studies, in this research, a human study

is conducted to understand the ability of humans in identifying

kin. The goal of this study is to (a) understand the underlying

cues that humans use to identify kin, and (b) integrate these

findings in automatic deep learning algorithm to achieve better

kinship verification accuracy. Lu et al. [24] have performed

a similar human study based on kinship verification. They

have focused specifically on the overall kinship verification

accuracy and concluded that using contextual information such

as hair and background improves kinship verification.

A. Experimental Protocol and Databases Used

Amazon MTurk is an online platform specifically designed

for aiding research by organizing surveys and collecting results

in a comprehensive manner. MTurk allows crowdsourcing

and enables researchers to include participants across diverse

demographics. It has been shown to provide reliable data as

compared to data provided by the traditional means of survey

collection and offers a rich pool of participants [31]. It allows

the creation of Human Intelligence Tasks (HITs) for surveys,

studies, and experiments which are in turn completed by

participants. The participants receive a reward for completing a

HIT if their results are approved by the requester. In this study

conducted on Amazon MTurk, a total of 479 volunteers (200

male and 279 female) participated. Among all the participants,

366 were Indians (Mean Age (M) = 33.45 years, Standard

Deviation in Age (SD) = 11.67 years), 81 were Caucasians

(M = 35.39 years, SD = 10.74 years), 29 were Asians (non-

Indians) (M = 28.13 years, SD = 6.93 years), and 3 were

African-Americans (M = 30.33 years, SD = 8.17 years).

The images used in this study are collected from three

databases: Vadana [32], [33], Kinship Verification database

[15], and UB Kin database [16], [17], [19]. The database

consists of 150 kin pairs and 150 non-kin pairs with 39 Sister-

Sister (SS) combinations, 36 Brother-Sister (BS) combina-

tions, 35 Brother-Brother (BB) combinations, 50 Father-Son

(FS) combinations, 40 Father-Daughter (FD) combinations,

41 Mother-Daughter (MD) combinations, and 59 Mother-Son

(MS) combinations. Each participant is shown five pairs of

images that are assigned in a random order. The participant

has to answer if the subjects in the given pair of images appear

to be kin to each other or not. Additionally, the participants are

also asked if they have seen the subjects prior to the study.

This allows us to evaluate the differences in the responses

based on the familiarity with the stimuli.

Generally, the studies evaluating the human performance

have used full faces. However, it is not necessary that the

whole face contributes in determining kinship. Therefore, we

also perform the experiments with specific facial regions. The

performance of the participants is determined for the following

visual stimulus:

1) full face,

2) T region (containing nose and eyes),

3) not-T region (containing the face with the eye and nose

regions obfuscated),

4) lower part of facial image, and

5) binocular region (eye strip).

Fig. 2 illustrates different facial regions extracted from faces

of subjects. The binocular region is chosen to observe the

effect of eyes on kinship verification. The T region represents

features in the region of the face around the eyes and nose.

Furthermore, to observe the effect of outer facial regions, not-T

region is chosen (which does not have regions that are included

in the T region). The lower facial region is included to evaluate

a hypothesis stated in an earlier research study [13] which

claims that kinship cues are not present in this region.

B. Results and Analysis

In the human study, we analyze (a) the effect of gender

and age demographics of participants on kinship verification,

(b) the types of kinship relation between stimuli, and (c) the

discriminative local and global face features that humans rely

on to correctly verify kinship.

Based on the responses from participants, a quantitative

analysis of the data is performed using three independent mea-

sures: accuracy of correct kinship verification, discriminability

or sensitivity index (d′), and information theory to compute the

kin entropy and non-kin entropy. Discriminability or sensitivity

index (d′) is used in signal detection theory to quantify the

difference between the mean signal and noise distributions in

a given stimulus as perceived by participants.

There is an inherent uncertainty in determining the rela-

tionship between stimuli. This uncertainty can be attributed to

noise and higher response categories. The stimulus information

entropy H(S) and noise in the signal H(S|r) are computed

from the confusion matrix using Eq. 1 and 2 respectively.

H(S) = −

n
∑

i=1

p(Si)log(p(Si)) (1)

H(S|r) = −

n
∑

i=1

n
∑

j=1

p(Si, rj)log(p(Si|rj)) (2)

Fig. 2. Sample images demonstrating seven kin-relations considered in this
research.
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TABLE II. Quantitative analysis of human performance on kinship verification.

S. No. Experiments d
′ Kin Entropy Non-Kin Entropy Total Entropy Overall Accuracy (in %)

Participant’s Demographic - Gender

1. Female 0.3703 0.0063 0.0069 0.0132 56.00

2. Male 0.2982 0.0045 0.0048 0.0093 55.00

Participant’s Demographic - Age

1. <30 0.3498 0.0056 0.0061 0.0117 55.60

2. 30 - 50 0.3119 0.0050 0.0053 0.0102 55.51

3. >50 0.3986 0.0077 0.0082 0.0159 56.95

Stimulus Kin Relationship

1. Mother-Son 0.8211 0.0162 0.0383 0.0545 55.39

2. Sister-Sister 0.5505 0.0181 0.0059 0.0240 66.23

3. Father-Daughter 0.3762 0.0065 0.0072 0.0137 56.01

4. Mother-Daughter 0.3088 0.0046 0.0051 0.0097 54.74

5. Brother-Sister 0.2482 0.0024 0.0035 0.0059 50.11

6. Father-Son 0.2092 0.0021 0.0023 0.0044 53.48

7. Brother-Brother 0.0560 0.0002 0.0001 0.0003 54.10

Local and Global Regions of Face

1. Face 0.4531 0.0107 0.0115 0.0221 58.36

2. Not-T 0.4212 0.0084 0.0093 0.0177 57.02

3. T 0.3466 0.0059 0.0064 0.0123 55.92

4. Chin 0.2772 0.0037 0.0040 0.0077 54.57

5. Binocular 0.1656 0.0013 0.0013 0.0026 52.58

I(S|r) = H(S)−H(S|r) (3)

Here, r refers to the response of participants and S refers to

the stimulus. The information entropy I(S|r) is calculated by

subtracting the noise in the signal from the stimulus entropy as

shown in Eq. 3. The information entropy is divided by log 2
to represent in bits and larger values of the bits determine

higher perceptual judgment of the participants. Higher values

in accuracy or d′ or total entropy indicate that the signals can

be more readily detected compared to other visual artifacts

that do not contribute to the kinship verification.

The results are analyzed to understand the effect of four

different attributes on kinship verification: gender and age

of participants, relation between stimuli kin pairs, and facial

regions presented in the stimuli. The results are summarized

in Table II.

1) Effect of Participant’s Gender on Kinship Verification:

In face recognition, several studies have demonstrated that

women outperform men in the ability to recognize faces [34],

[35]. In a meta-analysis study of over 140 face recognition

studies, Herlitz and Loven [36] have found that females

consistently outperform males in recognizing faces. This fact

is also supported in [37], where females performed better than

males in the face recognition task. The effect of participant’s

gender is analyzed to determine if there exists any difference

in the skills of males and females for kinship verification.

As shown in Table II, it is observed that there is only 1%

increase in the overall accuracy of females as compared to

males. Overall accuracy is defined as the proportion of correct

kin and correct non-kin responses as compared to the total

responses.

However, from Table II, higher d′ values for females as

compared to males indicates higher sensitivity of females in

detecting kin signal across images. This observation is also

supported by the information entropy based on responses from

females and males. z-test of proportion [38] conducted at 95%

confidence level also validates this claim. These quantitative

measures give us an intuition that females may have the ability

to verify kin better than males. One reason for this could be

that the measure being employed for testing kinship is facial

similarity analogous to facial recognition; however, this needs

to be tested in future studies.

The accuracy for kinship verification increases drastically

when the faces are known to the subjects. For familiar faces,

female participants achieve an accuracy of 64.54% while the

male participants achieve an accuracy of 61.95%. Also, the

accuracy of non-kin verification of familiar faces is 72.47%

for females whereas it is only 52.34% for males. This is

in accordance with the belief that women perform better in

episodic memory tasks [39]. For unfamiliar faces, the trend

follows the overall accuracy with females outperforming males

in kinship verification.

2) Effect of Participant’s Age on Kinship Verification: The

effect of the age of participants is studied to determine whether

people of a particular age group are significantly better than

others in verifying kin and non-kin. Due to limited number

of participants in the younger and older age groups, the age

categories have been combined into three different groups:

<30 years, 30-50 years, and >50 years. As shown in Table II,

an overall accuracy of 56.95% is observed by the participants

of age-group >50 years while the second highest accuracy

is observed to be 55.6% in the age-group of <30 years. For

the age group >50, a higher d′ value of 0.3986 and a higher

total entropy of 0.0159, as shown in Table II, indicates that

older age group may better distinguish between kin and non-

kin. However, z-test of proportion at 95% confidence level

does not indicate statistical difference among these groups

which suggests that participant’s age may not have an effect
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on kinship verification.

3) Effect of Stimuli Kin Pair Relation on Kinship Verifica-

tion: In a number of experiments, females have outperformed

males in identifying female stimuli faces [40], [41]. Therefore,

it is interesting to examine if the relationship of kin pair affects

the decision-making process of the participants. As shown

in Table II, the sister-sister kin pair has the highest overall

accuracy of 66.23%. However, using the d′ test of significance,

it is observed that the mother-son pair has the highest d′ value

of 0.8211 and the highest total entropy bits of 0.0545 as shown

in Table II.

We also analyze the verification results separately for famil-

iar and unfamiliar faces for different kin relations. For familiar

faces, we observe that the accuracy of father-son pair increases

from 53.49% to 65.98% and the sister-sister kin pair goes up

to 82.2% when people are familiar with the faces. This trend is

seen in all the pairs and is reflective of the memory-cognitive

ability of humans. As expected, the trend for unfamiliar faces

is lower than familiar faces and exactly similar to the overall

trend i.e. the sister-sister kin pair is the easiest to detect as kin

with an accuracy of 46.0%.

Using the d′ values, it is observed that pairs having female

stimuli are more accurately detected as kin. The order of the

pairs based on descending d′ value is Mother-Son > Sister-

Sister > Father-Daughter > Mother-Daughter > Brother-Sister

> Father-Son > Brother-Brother. The results are in accordance

with the study conducted by Kaminsky et al. [9] wherein they

mentioned that the presence of a female stimulus boosts the

kinship accuracy. This can be attributed to partial occlusion

of facial features such as beard and mustache in men as

compared to women. Another reason could be the higher facial

recognition capability of female participants in focusing more

on female faces than male faces [36].

The results obtained for effect of participants’ gender and

age, as well as kin relationship between the stimuli, are

used to validate our multi-approach quantitative analysis with

conclusions arrived by other researchers who may not have

used the same measures as we have. With this validation, we

analyze the results obtained for the effect of discriminative

local and global face features on kinship verification. Our

motivation is to identify the top three regions from the human

study to be integrated into the automatic kinship verification.

4) Effect of Facial Regions on Kinship Verification: Many

studies in psychology have analyzed the effect of global facial

features vs. local features for face recognition abilities of

humans [42]. Keil [43] has emphasized the role of internal fea-

tures in face recognition by concluding that eyes determine the

optimal resolution for face recognition. These local features

have been used as parts of descriptor in computational methods

to verify kinship [21]. However, to the best of our knowledge,

no study has been conducted to analyze the effect of individual

facial regions in kinship verification in a human study with

statistical analysis to determine their individual effects. The

two above-mentioned studies have focused on larger facial

regions by dividing the face into two halves (laterally and

horizontally). Intuitively, the subjects should perform better

when the whole face is shown. However the results in Table

II show that even though the whole face yields an accuracy

of 58.36%, it is not very much different compared to local

regions. The local features such as not-T region and T region

show an accuracy of 57.02% and 55.92% respectively. The

trend remains the same even when unfamiliar image responses

are taken into account. The accuracy of T region increases

to 63.45% when the image subjects are known to humans

indicating that the eye features along with the nose play an

important role in kinship verification.

These results are supported by the d′ test of perception

and total information entropy values from the stimulus and

response of participants. The complete face region has the

highest d′ value of 0.4531 and total entropy value of 0.0221

as shown in Table II, followed by the not-T region and the T

region. A z-test of proportion at 95% also validates the above

pattern. The results are consistent with the face recognition

studies where it has been observed that face outline, eyes, and

upper face are important areas for perceiving faces [42].

III. PROPOSED KINSHIP VERIFICATION LEARNING

The analysis of human performance suggests that out of

the five facial regions, full face, T-region, and not T-region

yield the best performance for kinship verification. Inspired by

this observation, we design a kinship verification framework

that classifies a pair of input images as kin or not-kin using

these three regions. As discussed earlier, it is challenging to

define the similarities and differences in kin and non-kin image

pairs. Therefore in this research, we propose the Kinship

Verification via Representation Learning framework to learn

the representations of faces for kinship verification using deep

learning paradigm. Fig. 3 shows the steps involved in the

proposed framework.

In the first stage of this framework, the representations

of each facial region are learned from external training data

in an unsupervised manner. These are learned through the

proposed filtered contractive DBN (fcDBN) approach. The

individually learned representations are combined to form

a compact representation of the face in the second stage.

Finally, a multi-layer neural network is trained using these

learned feature representations for supervised classification of

kin and non-kin. Section III-A gives an overview of deep belief

networks followed by the proposed filtered contractive RBMs,

and Section III-B describes the kinship feature learning and

classification framework.

A. Proposed Filtered Contractive DBN

A Deep Belief Network (DBN) is a graphical model that

consists of stacked Restricted Boltzmann Machines (RBM)

and is trained greedily layer by layer [44]. An RBM represents

a bipartite graph where one set of nodes is the visible layer

and the other set of nodes is the hidden layer. The energy

function of an RBM is defined as:

E(v, h; θ) = −

D
∑

i=1

F
∑

j=1

viWijhj −

D
∑

i=1

bivi −

F
∑

j=1

ajhj (4)

or
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Fig. 3. Proposed hierarchical kinship verification via representation learning (KVRL-fcDBN) framework. In the first stage of Fig. 3(a), representations of
individual regions are learned. A combined representation is learned in the second stage of Fig. 3(a). Fig. 3(b) shows the steps involved in kin vs non-kin
classification.

E(v, h; θ) = −vTWh− bTv − aTh (5)

where, v ∈ {0, 1}D denotes the visible variables and

h ∈ {0, 1}F denotes the hidden variables. The model

parameters are denoted by θ = {a,b,W} and Wij denotes

the weight of the connection between the ith visible unit

and jth hidden unit and bi and aj denote the bias terms of

the model. For handling real-valued visible variables such as

image pixel intensities, Gaussian-Bernoulli RBMs are one of

the popular formulations and the energy function is defined as:

Er(v, h; θ) = −

D
∑

i=1

F
∑

j=1

vi

σi

Wijhj−

D
∑

i=1

(vi − bi)
2

2σ2
−

F
∑

j=1

ajhj

(6)

Here, v ∈ R
D denotes the real-valued visible vector and θ =

{a,b,W, σ} are the model parameters. The joint distribution

over v and h, and the marginal distribution over v is defined

as:

P (v, h) =
1

Z
exp(−E(v, h; θ)) (7)

and

P (v) =
∑

h

P (v, h) (8)

where, Z =
∑

v,h exp(−E(v, h)) is a partition function.

Let LRBM be the loss function of RBM with the energy

function defined in Eq. 5. It can be defined as

LRBM = −

n
∑

i=1

logP (vi) (9)

In this paper, we extend this formulation and propose

filtered contractive DBN (fcDBN) which utilizes filtered con-

tractive RBMs (fcRBM) as its building block. fcRBM has two

components: a contractive regularization term and a filtering

component which is discussed in detail below.

The idea of introducing contractive penalty stems from Rifai

et. al [45] where they introduce contractive autoencoders. A

regularization term is added in the autoencoder loss function

for learning robust features as shown in Eq. 10.

LAE = arg minθ ‖ v − φ(W ′(φ(Wv + b)) + b′) ‖2

+ λ ‖ J ‖2F
(10)

where, θ = {W , b} represents the weight and the bias of the

autoencoder to be learned, φ represents the activation function,

λ represents the regularization parameter, and

‖ J ‖2F = ‖ (J(φ(Wv))) ‖2F
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represents the Jacobian of the input with respect to the encoder

function of the autoencoder. For a linear activation function,

the contractive penalty boils down to a simple weight decay

term (Tikhonov-type regularization). For a sigmoid the penalty

is smooth and is given by:

‖ J ‖2F =‖ J(φ(Wv)) ‖2F

=
∑

i

(

φ(Wv)i(1− φ(Wv)i)
)2 ∑

j

W
2

ij
(11)

Our work is motivated by the analytic insight and practical

success of contractive autoencoders. We propose to apply the

contractive penalty term to the RBM formulation. Thus, the

modified loss function for contractive RBMs (c-RBM) can be

expressed as:

Lc−RBM = LRBM + α ‖ J ‖2F (12)

where, ‖ J ‖2F represents Frobenius norm of the Jacobian

matrix (i.e. it is l2-norm of the second order differential)

as shown in Eq. 11. Penalizing the Frobenius norm of the

Jacobian matrix leads to penalization of the sensitivity; which

encourages robustness of the representation. The contractive

penalty encourages the mapping to the feature space to be

contractive to the neighborhood of the training data. The

flatness induced by having low valued first derivatives will

lead to invariance of the representation for small variations in

the input.

We further introduce a filtering approach in the RBM. Facial

images have an inherent structure and filters can be used to

extract this structural information in order to train the network

using only the relevant filtered information. Therefore, we

propose extending Eq. 5 (and in a similar manner, Eq. 6)

with a filtering approach that can incorporate the structural

and relational information in the image using filters.

Ef (Vk, h; θf ) = −VT
k Wh− bTVk − aTh (13)

where, Vk = (fk · v) and “·” is the convolution operation. fk
is the kth learned filter of size mn and therefore, θf includes

fk and other weight parameters. Here, the filters fk transform

the input image v, emphasizing relevant structural information

which is used to train the RBM. Utilizing the above energy

function, the loss function of the filtered RBM, LfRBM is

defined similarly to Eq. 9. Note that, the proposed formulation

is different from convolutional RBMs [46]. In convolutional

RBMs, the weights are shared among all locations in the image

and thus, a pooling step is required to learn high-level repre-

sentations. In the proposed formulation, we have introduced

separate filters that will account for the structure of the image

and learn these filters and weight matrix simultaneously.

Combining the above two components, we define filtered

contractive RBMs (fcRBM) and the loss function is modeled

as:

LfcRBM = LfRBM + α ‖ J ‖2F +β ‖ f ‖2
2

(14)

where, α and β are the regularization parameters. l2-norm

applied over the filters prevents large deviation of values that

could potentially have an unwarranted filtering effect on the

images. Both the components of the proposed formulation are

smooth and hence differentiable; and can be solved iteratively

using contrastive divergence based approach. Multiple fcRBMs

are then stacked together to form fcDBN.

B. KVRL-fcDBN for Kinship Verification

The KVRL framework proposed in this research comprises

of two phases:

• Unsupervised hierarchical two-stage face feature repre-

sentation learning

• Supervised training using extracted features and kin ver-

ification using the learned model

KVRL-fcDBN: The representation of face image is learned

by stacking fcRBMs and learning the weights in a greedy

layer by layer fashion to form a filtered contractive deep belief

network (fcDBN). As shown in Fig. 3, we extract three regions

from the input face image to learn both global and local

features. These regions are selected based on the results of the

human study that indicates complete face, T region and not-T

region are more significant than other face regions. In the first

stage of the proposed KVRL-fcDBN framework, each region

is first resized to a standard M ×N image and is converted to

1 ×MN vector. Three separate fcDBNs are trained, one for

each region and the output from these fcDBNs are combined

using another fcDBNs which acts as the second stage of the

proposed hierarchical feature learning.

We next apply dropout based regularization throughout the

architecture. Srivastava et al. [47] proposed dropout training

as a successful way for preventing overfitting and an alternate

method for regularization in the network. The motivation

is to inhibit the complex co-adaptation between the hidden

nodes by randomly dropping out a few neurons during the

training phase. It can be seen as a sampling process from

a larger network to create random sub-networks with the

aim of achieving good generalization capability. Let f denote

the activation function for the nth layer, and W, b be the

weights and biases for the layer, ∗ denotes the element-wise

multiplication, and m is a binary mask with entries drawn

i.i.d. from Bernoulli (1-r) indicating which activations are not

dropped out. Then the forward propagation to compute the

activation yn of nth layer of the architecture involving dropout

can be calculated as,

yn = f

(

1

1− r
yn−1 ∗mW + b

)

(15)

By introducing dropout in the proposed approach, we ob-

tain good generalization that emulates sparse representations

to mitigate any possible overfitting. In summary, while the

first stage of the KVRL-fcDBN framework learns the local

and global facial features, the second stage assimilates the

information (i.e. feature fusion) which is used for kinship

verification.

The number of images in currently available kinship datasets

are limited and cannot be used directly to train the deep

learning algorithms. Therefore, a separate database is needed

to train the model employed in the KVRL-fcDBN framework
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Fig. 4. Illustrating the steps involved in the proposed context boosting algorithm where kinship verification scores generated from the KVRL framework are
used to improve the face verification performance.

Fig. 5. Humans utilize kinship as a context to identify siblings of famous
personalities.

(details are given in Section V-A). The representations learned

from the proposed KVRL-fcDBN framework are used for

kinship verification. As shown in Fig. 3(b), for a pair of kin

images, the features are concatenated to form the input vector

for supervised classification. A three-layer feed-forward neural

network is trained for classifying the image pair as kin or non-

kin.

IV. BOOSTING FACE VERIFICATION USING KINSHIP

Soft biometrics modalities lack the individualization charac-

teristics on their own but can be integrated within a verification

system that uses the primary biometric trait such as face to

boost the accuracy [48]. Soft biometric traits can often be

based on association wherein the context of association can

be used to increase the recognition performance in challenging

image scenarios [49]. In this research, we propose kinship as

a context that can be used as a soft biometric modality to

improve the accuracy of face verification. Kinship cues are

used by humans in daily life for recognition. For instance, we

may recognize a person based on their familiarity with their

kin even though we may not have met the person earlier. Such

a scenario is depicted in Fig. 5. To incorporate this context,

we propose a formulation to incorporate kinship verification

Fig. 6. A probe image can have a match score (s) with an image in the
gallery and a kin score (k) with the associated kin in the gallery to boost the
face verification performance.

scores generated by the proposed framework to boost the

performance of any face verification algorithm.

Fig. 4 shows how the proposed KVRL-fcDBN framework

is used to improve the performance of face verification al-

gorithms using kin-verification scores. This formulation is

generic in nature and independent of the kinship verification

and face verification algorithms. As shown in Fig. 6, given

a probe face image, face verification score and kinship clas-

sification score are computed from the gallery data (claimed

identity and associated kin image), which are then used in

the proposed formulation. We demonstrate two methods for

boosting the performance using Product of Likelihood Ratio

(PLR) [50] and Support Vector Machine (SVM) [51].
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• PLR based Score Boosting Algorithm: Let s be the

face matching score obtained by matching a probe image

and a gallery image. k1, k2, . . . , kn represent the kin

scores obtained from the probe image and images of the

gallery subject. The product of likelihood ratio [52] can

be calculated as:

PLR =
P (s | ω1)

P (s | ω2)
×

N
∏

i=1

P (ki | ks1)

P (ki | ks2)
(16)

Here, ks1 represents the true kin class, ks2 represents

the non-kin class, ω1 represents the genuine class, ω2

represents the impostor class. P (s | ω1) and P (s | ω2)
represent the class conditional probability of the input

vector. All four variables are modeled using mixture of

Gaussian distributions.

• SVM based Score Boosting Algorithm: Let pi be the

feature vector representing the concatenation of the face

matching and kin verification scores i.e pi = [si ki]. A

support vector machine can be trained on the combined

score vector to boost the performance of face verification.

Since we are proposing a generic approach which is in-

dependent of the features used for face verification, we have

used the commonly explored local binary patterns (LBP) [53]

and histogram of oriented gradients (HOG) [54] for face

verification.

V. EXPERIMENTAL EVALUATION

This section describes the datasets, implementation details,

and experimental protocols used for evaluating the effec-

tiveness of the proposed representation learning for kinship

using hierarchical multi-stage filtered contractive deep belief

network (KVRL-fcDBN) along with the PRL and SVM based

face verification score boosting algorithms.

A. Datasets

The efficacy of the proposed kinship verification algorithm

is evaluated on the following four publicly available databases.

• UB KinFace Dataset [19],

• Cornell Kinship Dataset [15],

• KinFace-I [24], and

• KinFace-II [24].

Along with these four, we have also prepared a new kinship

database, known as the WVU Kinship Database, containing

multiple images of every person1. The WVU Kinship dataset

consists of 113 pairs of individuals. The dataset has four im-

ages per person, which allows us to have intra-class variations

for a specific kin-pair along with the inter-class variations

generally available with all other databases. It consists of

seven kin-relations: Brother-Brother (BB), Brother-Sister (BS),

Sister-Sister (SS), Mother-Daughter (MD), Mother-Son (MS),

Father-Son (FS), and Father-Daughter (FD). The database has

22 pairs of BB, 9 pairs of BS, 13 pairs of SS, 14 pairs of

1The chrominance based algorithm, given by Bordallo et al. [55] performs
poorly on the WVU Kinship database which validates the correctness of the
database.

Fig. 7. Challenges of pose, illumination, and occlusion in multiple images
of the same kin-pair.

FD, 34 pairs of FS, 13 pairs of MD and 8 pairs of MS

where every pair has eight images each. As shown in Fig.

7, the multiple images per kin-pair also include variations in

pose, illumination and occlusion. Table III summarizes the

characteristics of all five databases.

Kinship verification results are shown on all five databases.

However, the results of face score boosting are shown only on

the WVU Kinship database because the other four databases

only contain a single image per person.

B. Implementation Details

Training the fcDBN algorithm to learn the face represen-

tation for kinship requires a large number of face images.

For this purpose, about 600,000 face images are used. These

images are obtained from various sources including CMU-

MultiPIE and Youtube faces databases [56], [57]. Note that,

existing algorithms do not use outside data; however, as

mentioned previously, due to the nature of deep learning

paradigm, the proposed algorithm requires large data to learn

face representation useful for kinship verification.

For face detection, all the images are aligned using affine

transformation and Viola-Jones face detection algorithm [58].

Facial regions are extracted from each image and resized to

32× 32. The resized regions are converted to a vector of size

1024 and given as input to individual fcDBN deep learning

algorithm in the first stage of Fig 3(a). For every individual

fcDBN, three filtered contractive RBMs are stacked together

and all of them are learned in a greedy layer-wise fashion

where each layer receives the representation of the output from

the previous layer. In the first stage, the number of nodes are

1024, 512, and 512 respectively. An output vector of size 512

is obtained from each deep belief network and is concatenated

to form a vector of size 1536. A compact representation is

learned from the fcDBN in the second stage and is used for

training the classifier. In the second stage of the deep belief

network, the size of the three layers are 1536, 1024, and 512,

respectively. The dropout is applied with probability 0.5 on the

hidden nodes and 0.2 on the input vectors. The performance of

the proposed KVRL-fcDBN algorithm is also evaluated when

only face is used or all the five facial regions (shown in Fig.

2) are used.

C. Experimental Protocol

1) Kinship Verification: The performance of the proposed

KVRL-fcDBN framework is evaluated on the same experimen-
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TABLE III. Characteristics of the five databases used in this research.

Database No. of Subjects Total Images Kin Relations Multiple Images

Cornell Kin [15] 286 286 4 No

UB KinFace [19] 400 600 4 No

KinFaceW-I [24] 1066 1066 4 No

KinFaceW-II [24] 2000 2000 4 No

WVU Kinship 226 904 7 Yes

(a) Cornell Kinship Database (b) KinFace-I Database (c) KinFace-II Database

(d) UB Kinship Database (e) WVU Kinship Database

Fig. 8. Results of kinship verification using the proposed hierarchical KVRL framework.

TABLE IV. Kinship verification performance of the proposed KVRL framework on 5 different datasets

Algorithm Cornell UB KinFace-I KinFace-II WVU

KVRL-SDAE 82.0 85.9 92.3 92.7 78.7

KVRL-DBN 83.6 88.3 93.0 93.9 83.5

KVRL-fcDBN 89.5 91.8 96.1 96.2 90.8

tal protocol as described by Yan et al. [25], where five-fold

cross-validation for kin verification is performed by keeping

the images in all relations to be roughly equal in all folds. This

protocol is followed to ensure that the experimental results are

directly comparable even though the list of negative pairs may

vary. In this algorithm, a random negative pair for kinship

is generated such that each image is used only once in the

training phase. The performance of the proposed algorithm

(KVRL-fcDBN) is compared with the baseline evaluations of

KVRL framework along with three state-of-the-art algorithms.

• Multiview neighborhood repulsed metric learning (MN-

RML) [24]†,

• Discriminative multi-metric learning (DMML) [25]† , and

†Since the experimental protocol is same, results are directly reported
from the papers.

• Discriminative model [26]† .

Since the proposed architecture is flexible in nature, we also

utilize Sparse Denoising Autoencoders (SDAE) and Deep Be-

lief Network (DBN) in the KVRL framework. We term these

approaches of KVRL framework as KVRL-SDAE and KVRL-

DBN. The proposed approach (KVRL-fcDBN) is compared

with KVRL-SDAE, KVRL-DBN and KVRL-cDBN (where

contractive RBMs are utilized in the KVRL framework). We

also analyze the effect of regions is observed where different

combinations of facial regions are given as input to the KVRL-

fcDBN framework.

2) Boosting Face Verification using Kinship as Context:

The WVU Kinship database is divided into training and testing

sets. Similar to kinship verification experiments, the training

partition consists of 60% of the dataset and the testing partition

consists of the remaining 40% where the subjects are mutually
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TABLE V. Comparing the kinship verification performance (%) of the proposed KVRL framework with existing kinship verification algorithms on multiple
datasets.

(a) Cornell Kinship Dataset

Algorithm FS FD MS MD

MNRML [24] 74.5 68.8 77.2 65.8

DMML [25] 76.0 70.5 77.5 71.0

KVRL using SDAE 85.0 80.0 85.0 75.0

KVRL using DBN 88.3 80.0 90.0 72.5

KVRL using c-DBN 90.0 84.8 90.0 78.9

KVRL using fcDBN 91.7 87.9 95.2 84.2

(b) UB Kinship Dataset

Algorithm Child-Young Parents Child-Old Parents

MNRML [24] 66.5 65.5

DMML [25] 74.5 70.0

KVRL using SDAE 85.9 84.8

KVRL using DBN 88.5 88.0

KVRL using c-DBN 90.0 89.5

KVRL using fcDBN 92.0 91.5

(c) KinFace-I Dataset

Algorithm FS FD MS MD

MRNML [24] 72.5 66.5 66.2 72.0

DML [25] 74.5 69.5 69.5 75.5

Discriminative [26] 76.4 72.5 71.9 77.3

KVRL using SDAE 95.5 88.8 87.1 96.9

KVRL using DBN 96.2 89.6 87.9 97.6

KVRL using c-DBN 97.4 93.3 90.5 98.4

KVRL using fcDBN 98.1 96.3 90.5 98.4

(d) KinFace-II Dataset

Algorithm FS FD MS MD

MNRML [24] 76.9 74.3 77.4 77.6

DML [25] 78.5 76.5 78.5 79.5

Discriminative [26] 83.9 76.7 83.4 84.8

KVRL using SDAE 94.0 89.2 93.6 94.0

KVRL using DBN 94.8 90.8 94.8 95.6

KVRL using c-DBN 96.0 92.4 96.4 96.8

KVRL using fcDBN 96.8 94.0 97.2 96.8

(e) WVU Kinship Dataset

Algorithm FS FD MS MD BB BS SS

KVRL using SDAE 80.9 76.1 74.2 80.7 81.6 76.5 80.3

KVRL using DBN 85.9 79.3 76.0 84.8 85.0 79.9 85.7

KVRL using c-DBN 87.9 79.9 83.6 91.3 86.9 82.6 91.8

KVRL using fcDBN 90.8 84.4 90.6 95.2 90.9 87.5 95.7

(a) Verification performance with changing the number of filters.
(b) Kinship verification performance with respect to regions taken in the KVRL-
fcDBN framework.

Fig. 9. Variations in the performance of KVRL-fcDBN with respect to number of filters and type of facial regions on the WVU kinship database.

independent and disjoint. In both the sets, two images of an

individual are used as probe, while the remaining are used

as gallery. Four images of the kin of the individual are kept

in the gallery where the association between the kin in the

gallery set is known. The proposed KVRL-fcDBN framework

is used to generate the kinship scores between the probes and

kin images using the fcDBN deep learning algorithm.

D. Results of Kinship Verification

Table IV and Fig. 8 shows the results obtained using the ex-

periments conducted on multiple databases. It is observed that

KVRL-fcDBN consistently performs better than the KVRL-

SDAE and KVRL-DBN approach on all the datasets. The

transformation of original input through the filters improves

learning of the underlying representations.

Table V also shows the results for different kin-relations ob-

tained using the proposed deep learning algorithms. Compared

to existing algorithms, KVRL-fcDBN framework consistently

yields state-of-the-art results and shows improvement of up to

21% for all kin relations. It is observed that for UB database,

the algorithm performs better when the images belong to

children and young parents (Set 1) as compared to when
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(a) ROC using HOG descriptor (b) ROC using LBP descriptor

Fig. 10. ROC curves summarizing the results of Kinship aided Face Verification using PLR and SVM.

there is a considerable gap between the ages of the kin (Set

2). A general trend appears for KinFace-I, KinFace-II and

WVU Kinship database, where the images of kin of the same

gender perform better than images belonging to a different

gender. Specifically, Father-Son and Mother-Daughter kinship

relations have a higher accuracy than Father-Daughter and

Mother-Son. This relationship is also observed for the brothers

and sisters as compared to Brother-Sister pair in the WVU

Kinship database.

The performance of the KVRL-fcDBN approach is also

computed with respect to the number of filters as shown in

Fig. 9(a). It is observed that the accuracy increases as the

number of filters increases but no noticeable improvement is

observed after six filters. From the human study, as mentioned

previously, it is observed that the full face, T and Not-

T regions are more discriminatory and thus are utilized in

the KVRL-fcDBN framework. For validation, experiments

are performed by providing different regions as input to the

KVRL framework and the results are shown in Fig. 9 (b).

It is observed experimentally that the combination of face, T

and Not-T regions perform the best in the proposed KVRL-

fcDBN framework. This approach is also computationally less

intensive than using all the regions in the framework.

We also compare the performance of neural network classi-

fier with SVM classifier for kinship verification. Using SVM

with RBF kernel, across all the databases yields slightly

lower performance compared to the neural network and the

difference is 0.2-0.5%. Computationally, on a six-core Xeon

Processor with 64GB RAM, the proposed framework requires

1 second for feature extraction and kinship verification.

E. Results of Boosting Face Verification using Kinship as

Context

The results from boosting the face verification performance

using both PLR and SVM are shown in Fig. 10. It is ob-

served that HOG descriptor performs better than LBP for face

verification on the WVU Kinship dataset. However for both

HOG and LBP, the face verification accuracy increases over

20% when kinship scores obtained using the proposed KVRL-

fcDBN framework is used to boost the face verification scores.

At 0.01% FAR, a performance of 59.4% is observed by using

HOG descriptor. This improves to 79.3% when kinship scores

are utilized using fcDBN as context and PLR algorithm is used.

Similarly, the performance improves to 80.0% when SVM is

used along with fcDBN. The improvement is more pronounced

for true positive rate (TPR) at lower values of false positive

rate (FPR). It is to be noted that the proposed experiment can

be performed with any face verification algorithm or feature

descriptor and these results suggest that incorporating kinship

as soft biometric information improves the face verification

performance.

VI. CONCLUSION

The contributions of this research are four folds: (1) evalu-

ation of human performance in kinship verification, (2) deep

learning framework using proposed filtered contractive DBN

(fcDBN) for kinship verification, (3) utilizing kinship as soft

biometric information for boosting face verification perfor-

mance, and (4) a new kinship verification database where each

subject has multiple images, that is suitable for computation of

both kinship verification and kinship-aided face verification.

Kin pairs having at least one female subject are found to

be easily detected as kin with the pairing of mother-son

and sister-sister having the two highest significance. Further,

the proposed two-stage hierarchical representation learning

framework (KVRL-fcDBN) utilizes the trained deep learning

representations of faces to calculate a kinship similarity score

and is shown to outperform recently reported results on mul-

tiple kinship datasets. Finally, we illustrate that kinship score

can be used as a soft biometric to boost the performance of

any standard face verification algorithm. As a future research

direction, we can extend the proposed algorithm to build the

family tree and evaluate the performance on newer kinship

databases such as Family In the Wild [59].
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