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Abstract: In the tracking-by-detection approach of online multiple object tracking (MOT), a major challenge is how to associate
object detections on the new video frame with previously tracked objects. Two important aspects that directly influence the
performance of MOT are quality of detection and accuracy in data association. The authors propose an efficient and unified
MOT framework for improved object detection, followed by enhanced object tracking. The object detection and tracking are
considered as two independent functions in the tracking-by-detection paradigm. In this study, object detection accuracy has
been increased by employing a faster region-based convolutional neural network (Faster R-CNN) modified with the feedback
region proposals from the tracker. Target association is performed by the correlation filter-based Siamese CNN model, which
finds the similarity score between the input image patches. The Siamese CNN is trained using a supervised hard sample mining
strategy. An optical flow-based motion model is employed to predict the next probable location of the targets from the tracker
and these region proposals are fed back to the classifier module of Faster R-CNN. The authors’ extensive analysis of publicly
available MOT benchmark datasets and comparison with the state-of-the-art tracking methods demonstrate competitive tracking
performance of the proposed MOT framework.

1 Introduction
Multiple object tracking (MOT) is the process of localising
multiple moving objects over time. The problem of tracking
multiple objects in a video sequence poses several challenging
tasks, including estimation of the time-varying number of objects,
motion prediction of all objects, object re-identification and dealing
with long and short term occlusions. A common approach for
solving the multi-object visual tracking problem is tracking-by-
detection. In tracking-by-detection paradigm of MOT: first, an
object detector is applied to each frame of the video to locate the
objects of interest, then using data association algorithms, a unique
identity is assigned to every detected object. These identities are
linked across a sequence of frames to form object trajectories.

Online and batch methods are two commonly adopted methods
for trajectory extraction. Online methods [1, 2] use the current and
previous frames detections to object state estimation at each time
epoch. The batch techniques [3–5] require the observations from a
batch of frames in advance to estimate the final object state.
Therefore, batch methods are difficult to use reliably in real-time
applications. The proposed MOT-by-detection framework works in
online fashion.

In MOT, generally, the object detector and the tracker are
considered as two independent modules where the detection
responses need to be reliably linked to form target trajectories.
However, the performance of the tracker heavily relies on the
quality of detection results from the object detector. Recent
advancements in deep-learning-based object detection systems [6–
9] have improved the MOT performance significantly. In the
proposed MOT framework, the highly efficient Faster R-CNN
(faster region-based convolutional neural network) [8] is used as
the person detector module. However, the deployed detector
module does not consider temporal information while detecting the
object in the respective frames. Hence, in order to study the effect
of temporal feedback on MOT, in the proposed method, feedback
region proposals from the past object state estimation are given to
the object detector. This introduction of feedback helps to reduce
the missed detections in the video sequences and thus improves the
overall MOT accuracy.

Once the object detections are obtained from the detector, what
matters the most is how to associate the current detections with the
existing tracks. If there is a missing or inaccurate detection, the
target is prone to be lost. To alleviate such issues, the proposed
MOT approach integrates the merits of single object tracking and
data association methods in a unified framework. A single-object
tracker uses the detection in the first frame and updates the
appearance model online to find the target in the subsequent
frames. The data association method computes the similarity
between the detections in the frame and tracklets from the previous
frames. Recently, the application of the Siamese network [10–13]
is found to be very useful for reliable and robust data association in
MOT. In Siamese based architectures, the input is a pair of image
patches. The network learns a similarity metric between the
patches and outputs a similarity score between them. In the
proposed method, a correlation filter-based Siamese CNN (CFNet)
[11] is used in both roles; as a single-object tracker and as a data
association method. CFNet is trained for data association using a
supervised hard sample mining strategy. The hard positive and hard
negative training samples for learning are generated according to
the influence factor derived from the online MOT results with the
supervision of ground truth trajectories.

In this paper, we introduce an efficient MOT framework that
incorporates an improved object detector and an efficient data
association algorithm. Additionally, to handle the missed
detections, feedback region proposals from the tracker are
presented to the object detector. Likewise, the data association
problem is tackled by introducing a re-identification Siamese CNN
model (CFNet). The proposed method also benefits from the
strengths of CFNet as an online single-object tracker, where the
target appearance model is updated online to handle the detection
failures. In addition to this, the Siamese network is trained on a
supervised learning strategy, which helps the convolutional neural
network (CNN) model to learn the context in the MOT dataset. To
assess the effectiveness of the proposed MOT framework, a
comprehensive analysis is performed on the publicly available
MOT benchmark datasets, 2DMOT15 and MOT17. The
comparative results against some of the recent state-of-the-art
methods show that our method performs substantially better in
terms of common metrics used in the MOT literature.
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The remaining of the paper is organised as follows: In Section
2, we review the background on the MOT, object detection
methods and the Siamese CNN models. Section 3 describes the
proposed tracking framework in detail. The employed Faster R-
CNN module with the feedback region proposals framework is
briefly explained in Section 3.1 and the data association
methodology that incorporates the CFNet is discussed in Section
3.2. The training procedure adopted for training CFNet for data
association in the proposed MOT framework is discussed in
Section 3.3. Section 3.4 summarises the proposed MOT algorithm.
Experimental evaluations and results are detailed in Section 4.
Finally, we conclude the paper with a brief discussion on possible
future directions in Section 5.

2 Related works
MOT: Despite the recent advances in MOT, it remains a complex
and difficult task in crowded environments with frequent
occlusions, similar appearance, false detections, etc. Mainly the
MOT methods can be classified into three categories; (i) the data
association problem modelled as an optimisation problem or
graphs [14, 15], (ii) solve data association problem using an end-
to-end neural network [16, 17], (iii) use MOT paradigm other than
tracking-by-detection [18]. The first two categories give a solution
with a tracking-by-detection approach, where the detector and
tracker exist as two independent functions. Most of the recent
MOT trackers follow the tracking-by-detection paradigm [17–20].
In our framework, these two modules co-exist and the feedback
from the tracker is given to the detector in every frame. Finally, the
third category aims to search for novel and more simple MOT
methods, but the trade-off between performance and speed still
needs improvement.

Object detection: Most of the recent multiple object trackers
follow the tracking-by-detection approach, which heavily depends
on the quality of object detection. Initially, most of the object
detectors relied on using handcrafted features. But the introduction
of deep CNNs has demonstrated remarkable improvement in the
performance of object detectors. In [21], the idea of selective
search is employed for proposing probable object locations. The
recent development in object detection is driven by the success of
region-based CNNs (R-CNNs) [22]. Advances like SPPNet [6] and
Fast R-CNN [7] have improved the detection performance with
reduced running time. The Faster R-CNN detector [8] and further
SDP detector [23] employ a fully CNN for region proposals and
classification without any handcrafted features. Then Redmon et
al. [9] proposed You Only Look Once (YOLO) detector that
bypasses the need for a region proposal network.

Siamese CNNs: In MOT, data association can be addressed
using similarity learning between image patches. Siamese CNN is
widely used for similarity measurements and the CNN architecture
used in the model gives a better image feature representation.
Bertinetto et al. [10] proposed a fully convolutional Siamese
network to measure the similarity score between image patches,
which is employed for object tracking. CFNet [11] is an
asymmetric architecture that incorporates a correlation filter into
the Siamese network. Other variants to Siamese CNN include
DSiam [24] that uses fast transfer motion to update the model,
SINT [25] that makes use of optical flow methods and SA-Siam
[26] that utilises the combination of original Siamese architecture.
In [13], an end-to-end trainable Siamese region proposal network is
introduced for object tracking that includes a Siamese network for
feature extraction and a region proposal network with two
branches, one for foreground–background classification and the
other for proposal regression. In the proposed MOT framework, the
Siamese network performs in two roles: as a single object tracker
and as a similarity function.

3 Online MOT framework
We propose an online MOT framework that uses two popular CNN
architectures that are tailored according to the MOT framework; in
particular, we deploy Faster R-CNN [8] for person detection and
correlation filter-based Siamese network (CFNet) [11] for data
association. To enhance the accuracy of the detection and to reduce
missed detections, here we introduce feedback region proposals
from the tracker to the detector, using the optical flow based
motion model of the target objects. In tracking-by-detection, the
detections in the current frame are associated with the existing
tracks using an efficient data association algorithm. In this study,
we exploit the merits of both single object tracking and data
association to maintain target identities in a unified MOT
framework. The proposed MOT method benefits from the strengths
of CFNet, which allows us to use it as an online single-object
tracker and a similarity-based data association alternative. In the
following sections, a detailed description of the proposed five
online MOT algorithms is given.

3.1 Faster R-CNN detector with feedback region proposals

To perform an effective person detection, we employ Faster R-
CNN architecture in our framework. The block diagram
representation of the Faster R-CNN object detector with feedback
region proposals from the MOT tracker is shown in Fig. 1. There
are two main stages in the Faster R-CNN detector, a region

Fig. 1  Faster R-CNN object detector with feedback region proposals from the MOT tracker. For each input frame I
f , Faster R-CNN detector outputs

detection bounding boxes considering all the region proposals from the RPN module and feedback region proposals from the past trajectories. The data
association module incorporates CFNet functions as a single object tracker that outputs the location of the tracked targets and as a patch similarity metric
that gives a similarity score for the detection assignment of lost targets
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proposal network (RPN) and a classifier-regressor module. The
RPN generates a multitude of region proposals for each probable
object of interest in the input image. The prerequisite step for RPN
is feature extraction using a pre-trained convolution neural
network. To generate good quality feature maps, we use
ResNet-101 as our backbone CNN. RoI (Region of Interest)
pooling method is used to extract the feature maps for the
proposals in uniform scale and size. RoIs are then proceeded to the
classification and bounding box regression modules. The classifier
assigns a class score for each RoI and the regression module
realigns the bounding box to fit with the object. The final set of
detections is obtained after employing a non-maximum-
suppression (NMS) step to the bounding boxes. In this study, we
are interested only in the person category after detection.

Generally, in MOT, detection and data association are
considered as two independent strategies. It is, therefore, the
detector that does not require any temporal information of objects
to perform its task. Here, we investigate the performance
enhancement in an object detector when it is provided with
temporal information about the past target trajectories. The
probable locations of the existing targets (tracked and lost targets in
the previous frame I f − 1) in the current frame I f  are predicted using
its optical flow motion model and given as feedback to the detector
as region proposals. Let B f − 1 represents the set of target bounding
boxes in the frame I

f − 1, which includes the locations of tracked
and lost targets.

B
f − 1 = BT

f − 1, BL
f − 1 ,

BT
f − 1 = {bj

f − 1} j = 1

NT ; BL
f − 1 = {bk

f − 1}k = 1

NL , where

bi = x, y, w, h .

(1)

In (1), NT and NL are the numbers of tracked and lost targets, x, y

is the centre coordinates of the target, and w, h  are the width and
height of the target, respectively. In order to estimate the new target
location, we compute an optical flow from densely and uniformly
sampled points inside the current target template to the new video
frame. Specifically, given the current target position, p = x, y , we
find its corresponding location p

∗ = p + u = x + ux, y + uy  in the
new frame using the iterative Lucas–Kanade method with
pyramids [27], where u = ux, uy  is the optical flow at a point p.
We can predict the new bounding box for the target with centre p

∗

and size the same as the previous box (w, h), which is now treated
as the region proposal for that target in the new frame. As shown in
Fig. 1, the set of all the predicted feedback region proposals of the
current targets B ∗ f − 1 = BT

∗ f − 1, BL
∗ f − 1 , tracked and lost ones, are

given back to the Faster R-CNN detector module. Along with the
proposals from the RPN module of the detector, the feedback
region proposals from the tracker are provided to the RoI pooling.
The remaining flow of the Faster R-CNN is unchanged.

While evaluating the MOT framework, we observe that the two
measures that impact the performance are identity switches and
fragmentation related issues. The number of times a particular
target changes its identity is measured by identity switches.
Whereas, when the object is not detected in some frames, then
fragmented trajectories are generated. These two issues occur
mainly due to the missed detections in the video frames. The
feedback proposals from the previous tracks in the proposed MOT
algorithm helps to reduce the missed detections in each frame and

thereby reduces the identity switches of the target and fragmented
trajectories.

3.2 MOT – data association methodology

In this section, we extend our discussion on the proposed MOT
framework, where we now incorporate the correlation filter-based
Siamese network (CFNet) to tackle the data association problem.
For each video frame, Faster R-CNN provides person detections.
The data association algorithm identifies a correspondence between
the new object detections and pre-existing tracks. Here, we
integrate the merits of single-object tracking and CNN-based
similarity metric for data association. The Siamese CNN performs
better as both a single-object tracker and a similarity network.

In the proposed MOT framework, we adopt the state transitions
of the target, as explained in [28] with some modifications. A
target in the video can go through four different stages, such as
initialised, tracked, lost and inactive. Fig. 2 illustrates these state
transitions of the targets between the listed four stages. The object
trajectory is initialised when an object appeared in the video frame
for the first time. In the first frame, all the detections from the
detector are considered as tracked targets and for each detection a
new trajectory is initialised in the trajectory list. Now, the single-
object tracker has to take a decision whether to keep each target in
the tracked state or transfer it into the lost state. The state of the
target is set as tracked until it is not occluded or is not out of the
camera's field-of-view. Otherwise, the target is regarded as lost.
This decision making is related to the tracking score and
consistency of tracking results with the object detections. Once the
object is transferred into the lost state, the data association
algorithm tries to find out a match for the lost targets within the
detections, that are not covered by any tracked target. If the
similarity function could find a matched detection for the lost
target, the state is updated as tracked and tracking process resumes
for the same. If the target stays in the lost state for a long time (say
Ninact as the number of frames for which the target is in the lost
state), it is considered that the object entered into an inactive state
and we terminate the trajectory corresponding to that object.

In the proposed scheme, the tracking problem is addressed by
using a correlation filter-based Siamese CNN (CFNet) model that
predicts whether two image patches belong to the same trajectory
or not. The functions of the CFNet here are two-fold:

• If the target is in the tracked state, CFNet works as a single-
object tracker that finds out the new target location.

• If the object is occluded, i.e. in the lost state, CFNet acts as a
patch similarity function, that gives a similarity score between
the lost target template and detections from the detector module
that is not associated with tracked objects.

The pre-trained CFNet architecture with learned weights is adopted
in the proposed MOT framework and is retrained with the MOT
benchmark dataset on a supervised learning manner that uses a
hard sample mining strategy.

3.2.1 CFNet as a single-object tracker: Visual object tracking
algorithms based on a Siamese CNN architecture formulate
tracking as a template matching problem [10, 11, 13, 25]. The
network structure has two identical CNN branches that share the
network weights. One branch extracts the feature maps of the target
image patch and the other one of the search image patches, which
contains the candidate objects. The search area is chosen with the
centre, the same as the previous target location and size 2.5 times
larger than the target image. A number of candidate image patches
with the same size as the target are chosen within the search area.
Then we obtain a similarity score map by the cross-correlation
between the convolutional feature maps of target and candidate
patches. In object tracking, the goal is to find the new target
location and is obtained from the most similar candidate image
patch.

Let xT represents the target patch and xc represents the candidate
patch. These inputs are processed by CNN, ϕw, where w is the

Fig. 2  Target state transition in the proposed MOT framework. A target in
each video frame can go through four different stages: initialised
(detections from the object detector), tracked, lost and inactive (terminate
the trajectory)
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learnable parameters. Then the feature maps ϕw xT  and ϕw xc  are
cross-correlated (⋆) as given by

Ψw xT, xc = ϕw xT ⋆ ϕw xc (2)

The correlation filter-based Siamese network (CFNet) [11]
incorporates two additional layers within the baseline Siamese
network [10], correlation filter and crop layers, which makes it
shallower and faster without accuracy drop. The correlation filter
layer inserted between the CNN with target patch and cross-
correlation module estimates the discriminative features of the
target patches. Then the modifications in (2) can be formulated as

Ψw, α, β xT, xc = αΩc ϕw xT ⋆ ϕw xc + β, (3)

where Ωc .  represents the correlation filter layer that learns during
training, by solving a ridge regression problem in the frequency
domain by using Fourier transform. In this equation, α and β are
scale and bias parameters, respectively. The maximum score in the
similarity map corresponds to the new target location

xT = arg max
xc

i

Ψw, α, β xT, xc
i

(4)

3.2.2 CFNet for patch similarity: When the target is in the lost
state, the data association algorithm has to decide whether to retain
this target in the lost state, move into the tracked state or terminate
the target trajectory (inactive state). In order to move it from the
lost state to the tracked state, any of the detections from the person
detector needs to be associated with this lost target. A Siamese
network can also be used as a similarity function that checks the
pairwise similarity between the lost target patch and the detections.
Fig. 3 depicts how we use the CFNet architecture as the data
association module by considering the pairwise patch similarity
metric. To elaborate it further, let xL represents the lost target image
patch and D

f = {di
f }i = 1

N f  are the set of detections given in the
current frame, I

f . CFNet outputs N f  similarity score maps, each
corresponding to the match score between each detection and the
lost target. If the maximum similarity score sm is above the
threshold Ts, then the detection and lost target pair are considered
for data association. The Hungarian algorithm is employed to
assign the detections to the lost targets. If a detection is associated
with the lost target then it is transferred to the tracked state and the
detection corresponding to the maximum score, dm

f  is updated as
the target image, xL.

dm
f = arg max

di
f

Ψw, α, β xL, di
f ; i = 1: N f (5)

sm = max (Ψw, α, β(xL, dm
f )) (6)

state =
tracked, if sm ≥ Ts

lost, otherwise
(7)

x^L = dm
f ; if state = tracked (8)

3.3 Training CFNet – supervised hard sample mining

In this study, the CFNet architecture, which is trained offline [11] is
turned out to be a backbone Siamese CNN. Within the context of
MOT, the weight parameters of the network are then retrained
using a supervised hard sample mining strategy. In our framework,
hard samples are the errors in the decision or false alarms from the
trained CFNet system. Hard negative samples are the false
positives from the CFNet in which similarity score wrongly
indicates the presence of the target, while in reality, it is not
present. Hard positive samples are the false negatives from the
CFNet in which similarity score wrongly indicates the absence of
the target, while in reality, it is present. These hard negative and
hard positive samples can effectively influence the learnable
parameters when the network is trained to correct them.

The Siamese network learns the similarity function from the
positive and negative image pairs during the training process. The
proposed supervised hard sample mining method helps to mine
both hard positive and hard negative samples to fine-tune the
trained CFNet. The hard samples for learning are generated based
on the influence factor derived from the online MOT results with
the supervision from ground-truth trajectories. The approach we
used to generate hard training samples is shown in Fig. 4. Based on
the similarity score for data association, we assign a label,
z ∈ −1, 1  to the image pairs, xL, di

f  that indicate whether the lost
target, xL is associated (z = 1) or not (z = −1) to the detections, D f .

Fig. 3  CFNet as the patch similarity metric in data association of the targets in the lost state. The CFNet cross-correlate the image patches; the lost target
(xL) and detections in the current frame (D f) presented and generate the similarity score maps for each image pair (xL, di

f). The detection with maximum
similarity is considered to associate with the lost target

 

Fig. 4  Supervised hard sample mining: hard positive and hard negative
training samples are generated when the decision of the data association
system went wrong. The image pairs (lost target, detection) with the wrong
association are considered as hard negative samples. The image pairs (lost
target, true detection) that missed the association are considered as hard
positive samples
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During the training process, an influence factor, RIF xL, z  is
evaluated using the ground-truth track and the decision from the
data association module. To formulate the influence factor, we need
another function variable y xL ∈ −1, 1  whose value depends on
the ground-truth trajectory corresponding to target, xL.

y xL =
1, if max (overlap_ratio(xL

GT, di
f )) ≥ To

−1, otherwise
, (9)

where xL
GT is the ground-truth track for the lost target and To is the

overlap threshold. Equation (9) here means, y = + 1 if there is a
match for xL in the given detections and y = − 1 if there is no
association possible, according to the ground truth.

Table 1 lists the assigned influence factor value for different
decisions z on xL by adopted the data association rule. It is inferred
from the table that the influence factor, RIF = + 1 whenever the
data association took the right decision and influence factor,
RIF = − 1 if the decision is wrong. In the adopted data association
system, CFNet is updated only when it makes a mistake in decision
making. i.e. association estimation, z takes different actions as
desired by the ground-truth trajectory. There are two instances for
which the reward is negative. In the first case, the target is linked
(z = 1) to an object detection dm

f  (refer (5)–(8)), which is incorrect
according to the ground truth (y = − 1). This indicates a false
positive output from the trained CFNet. Then the image pair
xL, dm

f  is added to the training database as a hard negative sample.
In the second case, the decision is not to link (z = − 1) with any of
the detections from the detector. But the target, dk

f  is included in the
given detections according to the ground truth (y = 1). That means,
the association algorithm missed the right association. This
indicates a false negative output from the trained CFNet. Then the
image pair xL, dk

f  is included in the training database as a hard
positive sample.

In the training process, we start with the CFNet model that was
pre-trained on the ImageNet dataset. CFNet continues the learning
process during the MOT using the training samples and updates the
parameters based on the feedback from the dynamic status of the
target. During training, the parameters of the CFNet model are
updated by minimising the logistic loss over the new hard training
samples, obtained from the supervised hard sample mining.

arg min
p

∑
j

ℒ Ψw, α, β xj, d j , y xj , (10)

where w, α and β are the learnable parameters, scale, and bias
values, respectively. For each frame, we updated the parameters of
the CFNet architecture. In the following frame, MOT is done with
this updated CFNet. The trained CFNet model in the context of
MOT performs better under the challenging conditions and
provides better accuracy in tracking.

3.4 MOT algorithm

After accomplishing the training of Faster R-CNN with the
MOT-17 dataset and CFNet using the supervised hard sample
mining strategy, we utilise these trained architectures in the
proposed MOT framework. The proposed MOT algorithm is
summarised in Algorithm 1 given in Fig. 5. Given an image

sequence, the goal of the MOT problem is to estimate the optimal
sequential states of all the possible targets, i.e. the trajectory of
each target. For each input frame, the Faster R-CNN detector
outputs the person detections, D

f . Subsequently, in the data
association part, all the targets under consideration in the tracked
state get higher priority. The CFNet as a single-object tracker
determines whether the target should stay in the tracked state or
should be moved to the lost state. Then, for the lost targets, the
CFNet acts as a similarity function to compute the pairwise
similarity score with the object detections from the detector.
Hungarian algorithm is then employed next to associate the
detections to the lost targets based on the similarity score. The
targets that are linked with the detections are reassigned as tracked
targets. Finally, all the remaining detections that are not associated
with any of the tracked targets are considered as new targets and a
trajectory is initialised for each new detection. Here, to exempt the
already assigned detection, non-maximum suppression based on
bounding box overlap is applied. Nonetheless, as described in
Section 1, to improve the detection performance, we incorporate
feedback region proposals that provide temporal information about
the previous trajectories, to the detector.

4 Results
This section presents the experimental results of the proposed
multiple object tracker on benchmark datasets focusing on person
tracking to validate the efficiency and the tracking performance. To
obtain comparable results with the state-of-the-art trackers, we
evaluated our tracker framework on the MOT challenge dataset
[29, 30], a standard reference when addressing MOT problems.

MOT challenge: MOT challenge dataset is a centralised
benchmark dataset to test the MOT methods that include several
categories of challenging tracking sequences with different
characteristics such as object density, frame rate, occlusions,
illuminations, etc. Mainly, there are three separate tracking
sequence sets published by the MOT challenge, 2DMOT2015,
MOT16, and MOT17. Each of the benchmark datasets includes
separate video sequences for the training and the testing of the
tracker. Training sequences are provided with public object
detections from object detector and the ground-truth detections,
whereas testing sequences only include object detections. The
MOT17 dataset contains 14 challenging sequences of which seven
are used for training and 7 for testing the tracker. The sequences
are provided with three sets of detection from DPM [31], Faster R-
CNN [8] and SDP [23] object detectors. The benchmark sequences
included in MOT16 are the same as that of MOT17 with only DPM
detection. The benchmark dataset 2DMOT2015 includes a total of
22 sequences each of which provided with ACF detections.

There are several metrics [32] for the quantitative evaluation of
MOT that measure different aspects of tracker efficiency. The two
important parameters in the MOT17 challenge that measure the
object coverage and identity consistency are MOTA (MOT
Accuracy) and IDF1 score. MOTP (MOT Precision) measures the
misalignment between the groundtruth and the predicted bounding
boxes. MT (mostly tracked) and ML (mostly lost) are another two
parameters that indicate the percentage of ground-truth objects
whose trajectories are covered by the tracking output. FP and FN
represent, respectively, the total number of false positives and false
negatives. Precision and recall are two derived metric, where
precision is the fraction of true and relevant bounding boxes among
the retrieved bounding boxes, while recall is the fraction of the
total amount of relevant bounding boxes that were actually
retrieved. The number of times a particular target changes its
identity is measured by identity switches (IDSw). When the object
is not detected in some frames, then fragmented trajectories are
generated (Frag).

4.1 Implementation details

We accomplish the person detection using the ResNet-101-based
Faster R-CNN model. By convention, we initialise the pre-trained
model of Faster-RCNN and then retrained it with fine-tuning on the
MOT17 dataset in order to improve its accuracy in the task

Table 1 Influence factor (RIF) assigned for decision making
in data association in lost state. RIF = 1 indicated the right
decision and RIF = − 1 indicated the wrong decision
y xL z RIF xL, z = y xL × z

1 1 1
−1 1 −1
1 −1 −1
−1 −1 1
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domain. This fine-tuned Faster R-CNN is then integrated with the
proposed MOT framework as a person detector. Similarly, the pre-
trained CFNet architecture is trained within the context of MOT
using training sequences of the MOT benchmark. The supervised
hard sample mining strategy for adopted for training is detailed in
Section 3.3. The learnable parameters w and correlation filter Ωc

are initialised from the pre-trained values of CFNet. We follow the
back-propagation algorithm described in [11] to update the
parameters of the network, by minimising the logistic loss over the
new hard training samples. Training is conducted for 20 epochs for

each new sample, with an initial learning rate of 0.01. For each
frame, we updated the parameters of the CFNet architecture using
the hard samples generated in the current frame.

In the proposed MOT framework, the decision for state
transition of a target is based on two parameters, similarity
threshold Ts and the maximum number of frames the target stays in
the lost state before transferred into an inactive state, Ninact. Fig. 6
shows the IDF1 score and MT values with different values for
similarity threshold, Ts. The value of Ts is a threshold value for the
similarity score generated by the CFNet. If the similarity score is
above the threshold Ts, the input image pairs to the CFNet are
considered as similar. The optimum results obtained for the
proposed tracker with the value of Ts equal to 0.4. In our analysis,
we kept the value for Ninact as 20.

The proposed MOT algorithm is implemented in MATLAB
with MatConvNet [33]. All experiments are conducted on a
workstation with Intel Xeon X5675 at 3.06 GHz and an NVIDIA
Geforce Titan Xp 12 GB GPU. The code is available at https://
github.com/aswathyIIST/Feedback-Region-Proposals-for-MOT.

4.2 Analysis on validation dataset

In our MOT framework, the detector and tracker work
simultaneously, hence are not considered as separate units. The
proposed tracker generates its own object detections using the
Faster R-CNN detector with the feedback region proposals.
Therefore, the object detections provided in the MOT challenge
database are not directly used in this analysis. Since the object
detection annotations of the MOT test dataset are not released, we
use the MOT training sequences to conduct analysis about our
framework. The training data set is divided into training and
validation sequences. The splitting of the sequences is shown in
Table 2. We conducted our experiments to validate the importance
of each contribution in the proposed MOT algorithm.

4.2.1 Ablation study: Contribution of different components: We
investigate the contribution of different components in our
framework by disabling one component at a time and then
examining the performance drop in terms of MOTA on the
validation set. Fig. 7 shows the significance of each component
validating using the 2DMOT15 benchmark dataset. It is observed
that the trend of the MOTA remains the same for the evaluation
results on the MOT17 validation sequences. Table 3 presents the
experimental results on all MOT evaluation metric, to demonstrate
the importance of each component, evaluated on both MOT17 and
2DMOT2015 validation datasets. 

In Fig. 7, the first set: feedback proposals, presents the
importance of feedback region proposals from the tracker to the
detector. It is evident that feedback improves the accuracy of the
MOT framework. One of the challenging factors that affect the
MOTA value in MOT evaluation is identity switches (IDSw), a
measure that indicates the number of times the target changes its
identity in the whole tracking process. Fragmentation is another
factor that affects the performance of our proposed system.
Fragmented trajectories are formed when identity switches do not
occur, but the detector missed the target detection. The solution to
these two problems is to reduce the number of missed detections.
This can be done by improving the performance of the person
detector. The feedback region proposals can be viewed as a
reference given to the detector on the probable locations of existing
targets. This helps the detector to reduce the missed detections and
improve its efficiency. In the proposed full model MOT, we sent
back the region proposal prediction for both tracked and lost
targets. For the detailed analysis of this feedback proposal, we
consider three different situations on feedback. (i) Only feedback
tracked targets proposals (no lost targets), (ii) only feedback lost
targets proposals and (iii) no feedback proposals. It is obvious from
the results that with the feedback region proposals the performance
of our tracking framework is improved. In addition to that, it is
interested to note the accuracy difference with the region proposals
with any one of the target states, tracked or lost. For the target in
the tracked state, the appearance model of the tracked target is

Fig. 5  Algorithm 1: MOT algorithm
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getting updated in each frame. Also, in the proposed MOT frame
work, a single-object tracker is used to track the tracked targets.
Therefore, chances are less for a tracked target to be in a lost
category even if the detector missed the target detection. But in the
case of lost targets, the position or the appearance model is not
updated and the data association completely relies on the detections
from the detector. Therefore, if the detector missed the correct
target detection, the target will be continuing on its lost state and
the tracking accuracy reduces.

In Fig. 7, the second set: training, indicates the significance of
training on the pre-trained CNNs used in the proposed tracker. The
Faster R-CNN object detector with ResNet-101 pre-trained on
PASCAL-VOC and COCO training set is retrained on the MOT17
person detection dataset. As discussed in Section 3, the pre-trained
CFNet is trained using the supervised hard sample mining
supported by an influence factor for data association. It is clear
from both Fig. 7 that the detector and tracker CNNs improve its
accuracy after trained on the MOT benchmark dataset.

The third set: optical flow prediction, in Fig. 7 shows the
relevance of the motion model of the target to predict the feedback
region proposals. The motion model based on the Lucas–Kanade
optical flow method with pyramids is employed here to predict the
new location of the tracked or the lost targets. To study the
contribution of the motion model, the current target location is fed
back to the detector as the region proposals instead of the predicted
location from the motion model. The results show an accuracy drop
without optical flow-based motion prediction. Since the target in
the tracked state is moving slowly from one frame to the next
(usually verified from high frame rates), the regression module in
the Faster R-CNN detector is able to refine the proposal bounding
box of that slightly shifted target. But in case of lost targets, the
position of the target is not updated for all the lost frames.
Therefore, the regression module could not find the refined
location of the particular region proposal. If the detector's own
proposals do not include the lost target, then it causes a missed
detection. By using the optical flow-based motion prediction, most
of the time we could predict the location of the occluded targets
and could avoid these missed detections and thus improve the
tracking performance.

Table 3 shows the comparison of the proposed MOT framework
with different variants of the proposed tracker by disabling
different components, on the MOT17 and 2DMOT2015 validation
datasets. The best values for this evaluation are given in boldface
in Table 3. It is evident from the results that each component
significantly contributes to the improvement of the performance of
the proposed MOT framework. It is clear from Table 3 that the MT,
ML, IDSw and fragmentation metrics improved with feedback
region proposals. The proposed feedback region proposals help to
improve the detection accuracy and reduce the missed detections.
This helps to improve the overall performance of the MOT system.
In the proposed MOT framework we incorporate two pre-trained
CNN architectures after training on the MOT benchmark dataset. It
is inferred from Table 3 that the trained detector and tracker CNNs
help to enhance the performance of the MOT tracker. The
prediction of probable locations of the existing targets is predicted

Fig. 6  Performance analysis of the proposed MOT framework with
different values for similarity threshold, Ts on 2DMOT2015 validation set.
In the following analysis, Ts is set to 0.4

 

Table 2 Training and validation sequences that are used to
study the performance of the proposed MOT framework on
the MOT benchmark
Training Validation
2D MOT 15
TUD-Stadtmitte TUD-Campus
ETH-Bahnhof ETH-Sunnyday
PETS09-S2L1 ETH-Pedcross2, Venice-2
ADL-Rundle-6, KITTI-13 ADL-Rundle-8, KITTI-17
MOT17
MOT17-02 MOT17-04
MOT17-05 MOT17-09
MOT17-10 MOT17-11, MOT17-13
 

Fig. 7  Analysis of the proposed MOT framework on the 2DMOT2015
validation sequences with different components. The complete MOT
framework gives better results with the integration of each component

 

Table 3 Analysis of the proposed MOT framework on the validation datasets, both MOT17 and 2DMOT2015, and comparison
with different proposed tracker variants by disabling different components
Tracker MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ Recall ↑ Precision ↑ IDSw ↓ Frag.↓
MOT17
proposed MOT 60.8 78.2 53.7 74(25.1) 41(14.1) 4899 23,758 62.1 88.8 312 728
proposed MOT without feedback proposals 57.2 76.7 51.3 57(19.3) 61(20.8) 5936 25,158 58.7 85.7 506 851
proposed MOT without training 57.2 77.3 51.5 67(22.8) 56(19.2) 5381 25,693 59.3 87.4 478 798
proposed MOT without optical flow prediction 60.2 77.9 52.8 70(23.8) 44(14.8) 5039 23,978 61.5 88.4 352 749
2DMOT2015
proposed MOT 46.2 75.3 47.6 52(22.2) 36(15.4) 2135 10,158 55.4 85.5 124 256
proposed MOT without feedback proposals 38.2 71.9 46.1 42(18.0) 47(20.0) 3092 10,956 52.0 79.3 218 321
proposed MOT without training 38.1 73.1 46.7 45(19.2) 51(21.8) 2854 11,348 53.6 82.1 186 298
proposed MOT without optical flow prediction 43.2 74.2 47.1 49(21.1) 38(16.4) 2659 10,293 54.8 82.4 143 261
(The best values are in boldface).
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using optical flow-based motion model. The optical flow prediction
refines the location of the feedback region proposals and thereby
improves the MOT tracker framework.

4.2.2 Performance analysis with Siamese CNN variants: The
data association method designed in the proposed MOT framework
exploits the power of Siamese CNN as a single-object tracker and a
similarity metric. To study the performance of the proposed tracker
with different Siamese CNN structures, we employed some of the
existing variants of the Siamese network: SiameseFC [10], CFNet
[11] and DCFNet [34], for data association. The experimental
results on MOT17 validation data sequences are given in Table 4. 
We also compared the three variants of CFNet: CFNet-conv5 with
five convolutional layers, CFNet-conv2 with two convolutional
layers and CFNet-conv2(triplet) with two convolutional layers and
uses triplet loss [12] for training.

From the experimental results obtained, it is observed that the
performance of the proposed MOT framework is directly related to
the performance of the Siamese network as a single-object tracker.
Generally, if we deploy a Siamese CNN that achieves better speed
and accuracy, the performance of the proposed MOT framework
also will get improved. Among the variants of Siamese CNN tested
here, the CFNet with two convolutional layers (CFNet-conv2)
obtains high speed and slightly lower performance than the best.
Thus, it is selected as the data association architecture in our
proposed MOT framework.

4.3 Evaluation on test dataset

The proposed MOT framework is evaluated on the MOT test
dataset (on both MOT17 and 2DMOT2015). Some of the recent
and better performing multiple object trackers are selected for the

comparison study with our approach. These state-of-the-art
trackers evaluated with public detections provided by the MOT
challenge. For a fair comparison with these trackers, the proposed
MOT framework is slightly modified to perform all the test data
evaluation with the given public MOT detections. Here, we are not
using our Faster-RCNN detector to find new detections and all the
new tracks are initialised only from the frame to frame detections
provided with the MOT dataset. To deal with the proposed
feedback region proposals, only the classifier and the regression
modules of the Faster R-CNN are used. The classifier assigns a
class score for each proposal and the regression module realigns
the bounding box to fit with the object. From the bounding boxes,
the person detections are selected based on the class scores. The
detections generated here can be considered as private detections.
We forward the MOT detections along with the private detections
computed from the feedback region proposals to the MOT tracker
part. To avoid multiple detection entries for the same object, a non-
maximum suppression that based on bounding box overlap is
employed before the tracker module.

The proposed multiple object tracker trained on MOT training
sequences is then tested on the MOT17 and 2DMOT2015 testing
datasets. Our experimental results are then submitted to the MOT
challenge website for evaluation. Table 5 summarises the tracking
performance of our proposed tracker on the MOT benchmark,
where we compared it with other tracking methods. Moreover, the
contributions and impacts of various components, such as feedback
region proposals, supervised hard sample mining strategy for
learning and optical flow-based motion prediction model are also
given in Table 5. It is clear from the results that the introduction of
the feedback region proposals model helps to reduce the missed
detections and improved the performance of the proposed tracker.
It is also inferred from Table 5 that the re-trained CNN models and

Table 4 Analysis of the proposed MOT framework with variants of Siamese CNN on the MOT17 validation dataset
Tracker MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ Recall ↑ Precision ↑ IDSw ↓ Frag.↓ Hz ↑
proposed MOT + SiamFc 55.3 73.2 46.7 17.1 21.2 6479 25,928 58.3 84.8 594 874 2.0
proposed MOT + CFNet-conv5 60.4 75.3 48.3 23.5 15.1 5132 23,812 61.3 88.0 309 725 1.4
proposed MOT + CFNet-conv2 60.8 78.2 53.7 25.0 14.1 4899 23,758 62.1 88.8 312 712 1.8
proposed MOT + CFNet-conv2 (triplet) 61.1 77.8 54.1 26.0 14.8 4758 23,663 60.1 88.2 328 698 1.7
proposed MOT + DCFNet 61.6 78.9 54.5 26.0 13.1 4623 23,398 62.8 89.5 341 731 1.5
(The best results are in bold and the second best in italic).
 

Table 5 Comparison of the proposed MOT framework on the test dataset, both MOT17 and 2DMOT2015, with state-of-the-art
trackers
Tracker MOTA ↑ MOTP ↑ IDF1 ↑ MT ↑ ML ↓ FP ↓ FN ↓ Recall ↑ Precision ↑ IDSw ↓ Frag.↓
MOT17
proposed MOT 53.2 78.2 53.8 23.5 29.8 13,619 248,529 56.2 95.8 1649 3781
proposed MOT without feedback proposals 51.3 76.4 51.2 18.7 34.2 14,316 257,208 52.1 95.1 2941 4279
proposed MOT without training 52.9 77.3 51.8 19.2 32.8 13,983 249,431 54.2 95.5 1982 3974
proposed MOT without optical flow prediction 53.1 77.9 52.5 21.8 30.7 13,720 248,921 56.0 95.7 1728 3842
tractor++ [18] 53.5 78.0 52.3 19.5 36.6 12,201 248,047 56.0 96.3 2072 4611
DMAN [17] 48.2 75.7 55.7 19.3 38.3 26,218 263,608 53.3 92.0 2194 5378
Siamese Track-RCNN [35] 59.6 NA 60.1 23.9 33.9 15,532 210,519 NA NA 2068 NA
DEEPTAMA [36] 50.3 76.7 53.5 19.2 37.5 25,479 252,996 55.2 92.4 2192 3978
FAMNet [37] 52.0 76.5 48.7 19.1 33.4 14,138 253,616 55.1 95.6 3078 5318
jCC [38] 51.2 75.9 54.5 20.9 37.0 25,937 247,822 56.1 92.4 1802 2984
2DMOT2015
proposed MOT 44.3 74.6 46.8 21.7 26.2 5942 27,312 56.3 85.5 932 1473
proposed MOT without feedback proposals 37.0 72.1 44.5 17.0 30.4 7321 29,917 52.0 81.5 1429 1928
proposed MOT without training 41.3 72.9 45.3 19.1 29.3 6842 27,932 54.7 83.1 1242 1956
proposed MOT without optical flow prediction 43.2 73.0 45.9 20.9 27.1 6314 27,532 55.7 84.5 1023 1732
tracktor++ [18] 44.1 75.0 46.7 18.0 26.2 6477 26,577 56.7 84.3 1318 1790
FFT [39] 46.3 75.5 48.8 29.1 23.2 9870 21,913 NA NA 1232 1638
KCF [40] 38.9 70.6 44.5 16.6 31.5 7321 29,501 52.0 81.4 720 1440
AMIR15 [41] 37.6 71.7 46.0 15.8 26.8 7933 29,397 52.2 80.2 1026 2020
AM [42] 34.3 70.5 48.3 11.4 43.4 5154 34,846 43.3 83.8 348 1463
(Bold for the best values, italic for the second place and bold italic for the third place). NA represents the values that are not available in the publications.

 

IET Comput. Vis., 2020, Vol. 14 Iss. 7, pp. 434-442
© The Institution of Engineering and Technology 2020

441



region proposal prediction using the optical flow-based motion
model incorporates in the proposed MOT framework enhances the
tracking performance. The experiment results show that in
comparison with other MOT methods, the proposed MOT
framework achieves competitive tracking performance. The
evaluation on the benchmark datasets ensures that the proposed
MOT framework incorporates an improved object detection
followed by enhanced data association and tracking methods. From
the experimental results, it is inferred that the missed detections
and false alarms are significantly reduced in the proposed MOT
framework.

5 Conclusion
In this study, we developed a unified MOT framework with an
efficient object detection module and an accurate data association
method. The Faster R-CNN person detector with feedback region
proposals from the tracker reduces the missed detections and
provides better object detections that in turn help to improve the
data association accuracy. The data association algorithm designed
here exploits the strengths of the correlation filter-based Siamese
CNN (CFNet) as a single-object tracker and a similarity metric.
Furthermore, we proposed a supervised hard sample mining
strategy supported by an influence factor, derived from the online
tracking results, to train the Siamese network. The complete MOT
system is trained and evaluated over the benchmark MOT
challenge datasets. When comparing with the state-of-the-art
trackers, it is observed that the proposed MOT algorithm performs
better in terms of MOT evaluation metrics. The evaluation results
on the validation dataset also show the relevance of each proposed
component in the MOT framework. Moreover, from the
experimental results obtained, it is observed that the performance
of the proposed MOT framework is directly related to the
performance of the Siamese network employed. Therefore, with a
Siamese CNN with better accuracy and speed, the performance of
the proposed MOT framework can be further improved.
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