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using parallel computers. In this paper we provide error estimates, preconditioners and
numerical results. The spectral element functions are fully non-conforming. We propose
preconditioners on non-smooth domains which can be diagonalized using separation
of variables technique. Optimal error estimates in terms of number of layers in the

Ig;ﬁg?;fse'l ement method geometrical mesh and in terms of number of degrees of freedom are obtained. The
Geometric mesh method is easy to implement on a parallel computer and we briefly outline computational
Numerical scheme techniques. We give results of numerical simulations to confirm the theoretical estimates.
Preconditioner Theoretical results have been also validated by computational experiments which are
Error estimates published independently in Dutt et al. (2014).

Exponential accuracy © 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the regularity of solutions of elliptic boundary value problems on polyhedral domains is severely
affected due to the presence of singularities in the form of corners and edges in the domain. There are three type of
singularities caused by non-smoothness of domains in R?: the vertex, the edge, and the vertex-edge combined singularities.
The solutions of many practical problems on polyhedral domains may be analytic except at the vertices and edges, and
their derivative may grow rapidly towards the vertices or edges with increasing order. The regularity results on non-smooth
domains described in terms of usual Sobolev spaces and classical weighted Sobolev spaces (see [ 1-7] and references therein)
were unable to reflect the natures of singularities, and qualitative features of the growth of the derivatives of the solutions
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were missing. The regularity results of Babuska and Guo [8,9] in terms of countably weighted Sobolev spaces and countably
normed spaces with dynamical weights in the neighbourhoods of vertices, edges and vertex-edges over polyhedral domains
address these issues and proved to be the foundation stones for comprehensive study of the regularity theory for solving
elliptic problems in three-dimensional non-smooth domain arising from mechanics and engineering. Recently, Costabel
and coworkers settled the proof of the analytic regularity estimates [10,11] using anisotropic weighted Sobolev spaces
introduced in [8,9] by filling the gap which was left over by Babuska and Guo.

The h-p version of the finite element method (FEM) for elliptic problems was proposed in the mid 80ies by Babuska and
his coworkers for solving problems in structural mechanics. The h-p version simultaneously refines the mesh and increases
the polynomial degree to solve problems on non-smooth domains and achieve optimal convergence. The h-p version of
Spectral Element Method (SEM) is a new development of the FEM which employ global polynomials of higher degree in order
to recover the so called spectral/exponential convergence. It is well established that SEM deliver exponential convergence
for elliptic problems on smooth domains and have been successfully implemented in practical problems (see [12-14] and
references therein). However, in many engineering and scientific applications we require the numerical solutions of elliptic
boundary value problems in non-smooth domains which give rise to singularities in the solution. In such cases the accuracy
of the solution obtained by SEM deteriorates and we need to devise an efficient numerical scheme to capture the spectral
accuracy.

In [15-18] we proposed a non-conforming h-p spectral element method to solve elliptic boundary value problems on
non-smooth domains in R3. To formulate the numerical scheme we minimize a functional over the space of spectral element
functions which is the sum of a weighted squared norm of the residuals in the partial differential equations and the squared
norm of the residuals in the boundary conditions in fractional Sobolev spaces and enforce continuity by adding a term which
measures the jump in the function and its derivatives at inter-element boundaries in fractional Sobolev norms suitably
weighted, to the functional being minimized.

The method is essentially a least-squares collocation method as formulated in [ 19,20] in two dimensions and to obtain the
solution we need to solve the normal equations corresponding to the least-squares formulation. We apply Preconditioned
Conjugate Gradient Method (PCGM) to solve normal equations. In this paper we show that the residual in the normal
equations can be computed inexpensively without having to compute and store mass and stiffness matrices. Moreover,
we show that a preconditioner can be defined for the quadratic form corresponding to the minimization problem. The
preconditioner is obtained in the same way as the residuals in the normal equations, but with homogeneous boundary data
and the homogeneous form of the partial differential equation. Hence, the algorithm for the preconditioner is quite simple
and easy to implement. We prove that our preconditioners are spectrally equivalent to new quadratic forms which can be
diagonalized using separation of variables and therefore easy to invert.

This paper is the third of a series of papers devoted to the study of h-p spectral element methods for three dimensional
elliptic problems on non-smooth domains using parallel computers. In this paper we use differentiability (regularity)
estimates and stability estimates of [15,16] to describe parallel preconditioners, computational complexity and prove
optimal error estimates for h-p version of the spectral element method for elliptic problems on polyhedral domains
containing singularities. Numerical results for problems with analytic and singular solutions are presented to verify the
theory and analyse the performance of our method.

The first paper [15] deals with the regularity of the solution in the neighbourhoods of vertices, edges and vertex-edges
and describe the stability theorem. The second paper [16] addresses proof of the stability theorem. Results of numerical
experiments that have been performed to validate the theoretical estimates are presented in [17].

Throughout this paper (x1, X2, X3), (0, ¢, 6) and (r, 6, x3) denote the Cartesian, the spherical and the cylindrical
coordinates respectively. The scope of this paper is as follows. In Section 2, we shall quote the notations and definitions
introduced in [ 15] and recall our main stability theorem, proved in [ 16], for a non-conforming h-p spectral element method.
Error estimates are obtained in Section 3 and it is shown that the error decays exponentially with respect to the number of
layers in the geometric mesh and the number of degrees of freedom in each variable on each element. Preconditioners on
regular as well as singular regions are discussed in Section 4, where we show that there exists a new diagonal preconditioner
using separation of variables technique. Section 5, gives a brief description of computational techniques and numerical
results are presented in Section 6. Concluding remarks are given in Section 7.

2. Preliminaries

Let £2 denote a polyhedron in R?, as shown in Fig. 1(a). Let I},i € 4 = {1, 2, ..., I}, be the faces of the polyhedron. Let D
be a subset of £ and & = £ \ . We impose Dirichlet boundary conditions on the faces I3, i € £ and Neumann boundary
conditions on the faces I}, j € . Further, let 32 = ' u i1, 0 = J._ I7and 'Y = | J,_,, I3 Let us consider the
elliptic boundary value problem:

Lw=F ing2,
w=g% forxe r,

d
(—w> =g forxe r™, (2.1)
on J,
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Fig. 1. (a) Polyhedral domain £2, (b) Vertex neighbourhood £2?, (c) Edge neighbourhood £2¢, (d) Vertex-edge neighbourhood £2V~¢.

where n denotes the outward normal and ( %—';) , is the usual conormal derivative. Here, the differential operator

3 P 3
Lwx) = Z —%(a,-,ijj) + Z biwy, + cw
i,j=1 i=1
is a strongly elliptic differential operator which satisfies the Lax-Milgram conditions. Moreover, A = a;; = aj; for all i, j and
the coefficients of the differential operator are analytic. The data F, g% and g!"! are analytic on each open face and g!% is
continuous on | ;.o 7.

In [15,16] we had decomposed the domain §2 into a regular region, a set of vertex neighbourhoods, a set of edge
neighbourhoods and a set of vertex-edge neighbourhoods. To overcome the singularities which arise in the neighbourhoods
of the vertices, vertex-edges and edges we use local systems of coordinates introduced in [15]. These local coordinates are
modified versions of spherical and cylindrical coordinate systems in their respective neighbourhoods. Away from these
neighbourhoods standard Cartesian coordinates are used in the regular region of the polyhedron. Table 1 summarizes the
system of coordinates used in various regions of the polyhedron £2. For details we refer to [15].

We now briefly recall the notations, definitions and description of various neighbourhoods of vertices and edges of the
polyhedron £2 (see [15] for more details). Let I3,i € 4 = {1,2,...,1}, be the faces (open), S;, j € § = {1,2,...,]}, be
the edges and Ay, k € X = {1,2,...,K}, be the vertices of the polyhedron. We shall also denote an edge by e, where
e € & = {55, ...,5} the set of edges, and a vertex by v where v € ¥ = {A1, A, ..., A¢}, the set of vertices. Now
consider a vertex v and let e denote one of the edges passing through it, which we assume to coincide with x3 axis. Let ¢
denote the angle which x = (x1, X5, x3) makes with the x5 axis. By £27, we denote the vertex neighbourhood of the vertex v
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Table 1

System of coordinates used in various parts of £2.
Region Coordinates Type
Regular X1, X2, X3 Standard Cartesian
Vertex neighbourhood X{=¢,x=0,x3 =x = Inp Modified spherical
Edge neighbourhood X=t=Inrx;=0,x=x3 Modified cylindrical
Vertex-edge neighbourhood xﬁj’e =y = In(tan¢),x;°* =0, Hybrid

X3¢ =¢ = Inx;
defined by
; I
9 = BpU (U) \ U 7//%,1%(”’ e) m Q’
ec&V

where B,, (v) = {x : dist(x,v) < p,}and ¥, 4, (v,e) = {x € 2 : 0 < dist(x,v) < p,, 0 < ¢ < ¢}, where ¢, is a
constant. For every vertex v, p, and ¢, are chosen so small that B, (v) N By, (v') = @ if the vertices v and v’ are distinct
and 7, 4, (v, €) () ¥,.6, (v, €7) = P if €and e” are distinct edges having v as a common vertex. Moreover, p, and ¢, are
chosen so that p, sin(¢,) = Z, a constant for all v € V, the set of vertices.

Next, let e denote an edge, which we assume to coincide with the x5 axis, whose end points are the vertices v and v'.
Then we define the edge neighbourhood of the edge e denoted as £2¢ shown in Fig. 1(c) by

=xeR: 8, <x3<l,—68y,0<r<Z},

where [, is the length of the edge e, §, = p, cos(¢,), 8,y = py cos(¢y) and r = /x1% + x,2.
Now, by £2V~¢ we denote the vertex-edge neighbourhood of the vertex v and the edge e shown in Fig. 1(d) defined by

T ={xeR:0<p <¢,,0 <x3 <8, = p,COsP,}.

Finally, £2" denote the portion of the polyhedron 2 obtained after the closure of the vertex-neighbourhoods, edge
neighbourhoods and vertex-edge neighbourhoods have been removed from it. Thus let

s fus)olus]e| U o)

vey ec& v—ee¥ —-&

Then
" =02\A.

Unless otherwise stated, as in Babuska and Guo [8,9] we let w(x"), w(x"~¢), w(x®) denote w(x(x")), w(x(x"~¢)), w(x(x%))
respectively. Similar notation is being used for the spectral element functions u(x"), u(x*~¢), u(x®) etc. in the ensuing
sections.

2.1. Spectral element functions

A set of non-conforming spectral element functions which are a sum of tensor products of polynomials in their respective
coordinates are defined on the elements in the regular and singular regions of the domain £2. Let N denote the number of
refinements in the geometrical mesh and W denote an upper bound on the polynomial degree. We shall assume that N is
proportional to W. We remark that throughout the paper % and W refers to h and p respectively for notational uniformity.

In [15,16] we had further divided each of the elements in the regular region, vertex neighbourhoods, edge neighbour-
hoods and vertex-edge neighbourhoods into still smaller elements as curvilinear hexahedrons, tetrahedrons and prisms
using a geometric mesh (Fig. 2) and by virtue of the fact that a tetrahedron can be split into four hexahedrons [21,22] and
a prism can be split into three hexahedrons we can assume that all our elements are hexahedrons to keep the presentation
simple.

Let us first consider the regular region £2". The regular region £27 is divided into N, curvilinear hexahedrons, tetrahedrons
and prisms. Let £2/ be one of the elements into which £2" is divided (Fig. 2(a)), which we shall assume is a curvilinear
hexahedron. Let Q denote the standard cube Q = (—1, 1)>. Then there is an analytic map My from Q to £2] which has an
analytic inverse. Let {Fl,ri}lsisn,’ be the faces of §2/. The map M/ is of the form

x =M (A1, Az, A3)
where (A1, A2, A3) € Q, the master cube. Define the spectral element function uj on £2] by

w w w

U = D ik s,
i=0 j=0 k=0
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Fig. 2. (a) Elements in 2", Geometric mesh and elements in the (b) vertex neighbourhood £27, (c) vertex-edge neighbourhood £2?~¢ and (d) edge
neighbourhood £2°.

Let v be one of the vertices of £2. In Fig. 1(a) the vertex neighbourhood £2? is shown. Let S* denote the intersection of the
surface of the sphere B,,, (v) with £27, i.e.

SY = {x e 2" :dist(x,v) = p} .
We divide the surface S into a set of triangular and quadrilateral elements as shown in Fig. 3. Let S’ denote these elements
where 1 < j < I,. Here, I, denotes a fixed constant. We now divide 2" into N, = I, (N + 1) curvilinear hexahedrons and
prisms {£2}1<i<n, (Fig. 2(b)), where £2/ is of the form
Q= {x: (¢,0) eSj”, P <p< p,'j_H}
for1<j<I,and 0 <k < N.Here, p’ = p,(t,)""'"*and 0 < p, < 1for 1 < k < N + 1. Moreover, p{ = 0.
Let fZ,” denote the image of the element §2/ in x" coordinates. Then the geometric mesh {£2/'}1</<n,, is mapped to a
quasi-uniform mesh { lev}lslva' except that the corner elements
Q= {X: (. 0) €S/, 0<p <pf}
are mapped to the semi-infinite elements
2'={x": (¢.0) €S’ —00 < x <Inp}}.
If f?,” is a corner element of the form
Q' ={x": (¢.0) €S, —00 < x <Inpj}
then we define u} (x”) = ug, where ug is a constant.

Now there is an analytic map M}’ from Q, the master cube to fZ,", which has an analytic inverse. Here, the map M/’ is of
the form

X" = M/ (A1, A2, 13).
We define the spectral element function u}' on £2” (which is not a corner element) by

Wi Wi W

W) =YY Y BrahiAshs.

t=0 s=0 r=0
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T3
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Fig. 3. Mesh imposed on the spherical boundary S”.

Here, 1 < W, < W. Moreover, as in [23], W; = [uqi] for 1 < i < N, where i; > 0 is a degree factor. Hereafter, [a] denotes
the greatest positive integer < a.

Next, we define the spectral element function in the vertex-edge neighbourhoods. Let v—e denote one of the vertex-edges
of 2. Here,v — e € V — §&, the set of vertex-edges of §2. Let £2V~¢ denote the vertex-edge neighbourhood corresponding to
the vertex-edge v — e shown in Fig. 1(d) defined by

2V ={xeR: 0<x<68,,0<¢ <g,}.

Here, 8, = p, cos ¢,. We divide £2"~¢ into N,_, elements £2/7°, | = 1,2, ..., N, as follows:
We impose a geometrical mesh on £2V~¢ (Fig. 2(c)) by defining

(*3)o =0 and (x3); = &, ()N~

for1<i<N+1lLlets'*=In((x3))for0<i<N+1

Let us introduce points ¢y °, ..., ¢y such that ¢y~ = Oand tan ¢ ¢ = pl ™' tan(¢,), for 1 <i <N+1,0 < pe <
1. Thus, we impose a geometrical mesh on ¢ with mesh ratio ..

Finally, 6% < 6 < 6)~°. A quasi-uniform mesh

v—e __ pv—e v—e . v—e __ puv—e
0 " =0, <0, "< <91v—e_9u

is imposed in 6. B
Let £2V~¢ be the image of £2V¢ in x*~¢ coordinates. Thus, £2V~¢ is divided into N,_, = I,_(N + 1) hexahedrons

Q= {x"‘e YT <y < wi'f]e, 9;’76 <0 < Gj':]e, <t < {,:f}.
We now define the spectral element functions on the elements in £2V~. Consider an element

Q= {x"*e YT <Y <Y 60770 <0 <0, —oo < < ;1”_3}.

Then on 2 ~° we define
Uy =uy t=ug

where ug is the same constant as for the spectral element function u;’ defined on the corner element
Q' ={x": (4.0 €S’ —oo<y<Inp)}.

Next, we consider the element
Q=" o <Y < YT 0 <0 <00 Q<< GUS) k=1

Then on le”_e we define

Wi

uTRT) =) Bt

t=0
Here, 1 < W, < W. Moreover, W, = [uyk] for 1 < k < N, where , > 0 is a degree factor.
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Now consider an element of the form (which is a non-corner element away from edges and vertices)
Q= {x”fe YT <Y <Y 00T <0 <01, g < < ;,f;f}

for1<i<N,1<k< N.Thenoan“ ¢ we define

w w Vv
TR =N s WO
r=0 s=0 t=0
Here,1 < W, < Wand 1 < V; < W. Moreover, W, = [u1i], V; = [uzk] for 1 < i,k < N, where w1, i, > 0 are degree

factors [23].
Finally, we consider the edge e whose end points are v and v’. The edge e coincides with the x5 axis and the vertex v with
the origin. Let the length of the edge e be I,. Now the edge neighbourhood §2¢ shown in Fig. 1(c) is defined as

2°={xeR:0<r<Z=p,sing.0,_, <0 <06',8 <x3<l—38,}.
A geometrical mesh in r (Fig. 2(d)) is imposed by defining r; = 0 and rje = Z(u)N 1 forj = 1,2,...,N + 1. We
impose the same quasi-uniform mesh on 6 as we did in the vertex-edge neighbourhood, viz.
Of =065 <6;<---<6:=86..
Here, I, = I,_. and 6§ = 6,7 for 0 < k < . A quasi-uniform mesh is defined in x3, by choosing
Sy =25 <Zi < <7} =l -6,

v—e’

Let 2¢ be the image of £2¢ in x¢ coordinates. Thus, Q¢ is divided into N, = I, J, (N + 1) hexahedrons {fz,e},:],_.,,NE where
Qf ={x":In(rf) <xj <In(f ). 0 <x5 <674, Z¢ <x§ <Zf ).

We now define the spectral element functions on the elements in £2¢. Consider an element of the form
Q2 ={x":—o0 <xj <In(r), 0f <x§ < 67,,.Z¢ <x§ <Zf,}.

Then we define

w
u(x) =Y o).
t=0

This representation is valid for all j for fixed k.
Next, consider the element (away from edges)
Qf ={x":In(rf) <x{ <In(f ), 0 <x5 <071, Z¢ <x§ < Zf 4}
for 1 <i < N.Then we define
wow w
uf (x) = ZZZam(x ) () ()"
r=0 s=0 t=l

Here, 1 < W, < W. Moreover, W; = [u,i] forall 1 <i < N, where p; > 0 is a degree factor [23].
Let {#,} denote the spectral element representation of the function u on the whole domain 2. We now define the
functional RNY ({#,}) in brief (for details see [15]) which is used to formulate our numerical scheme, as follows:

‘RN W {‘(FU}) - regular ({‘?U}) + ‘Rvemces {$U}) + tﬂvertex edges ({‘(FU}) + ‘Redges {$U}) (2‘2)

Let L = (A1, Az, Az) andlet f[ (A) = f(M] (A1, A2, A3)) where A € Q forl =1, 2, ..., N; and let J/ (1) denote the Jacobian
of the mapping M]. Define F/ (1) = f{ (1),/J] (1), and Lju} () = Luf (M] () /J} (M.

Now consider the boundary conditions w = g on I for k € & = ' and (“’“’) = hyon I fork € & = 0,
Let I, = I N 852/ be the image of the mapping M; corresponding to A; = —1.Let g/, = g (M;(—1, A2, A3)) and
hrk = hk(M ( 1, )\.2, )\.3)) where —1 < )\.2, )\.3 <1

We now define

Rﬁ’gﬁv,m({%}) = / uy () —F[(A)|2dk
Q=)=
3

+ ) (u[u]né,m +Z||[uxk]||f/wi)

eenae ' k=1 ’

8ul r 2

+ Z ”ul gll||3/2 rT + Z P Li (23)

rjeriol rert V' /a 1217,

Here, [-] denotes the jump in the function and its derivatives at the inter element boundaries.
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Now we define R;% . ({F,}). Consider the vertex neighbourhood £2° of the vertex v € 7V, the set of vertices. Define
FP(x) = /2 /sin¢f (x(x")) forx! € 27,1 < < N, and we define L"u} (x") so that

/_ |L”u}’(x“)f2 dx? :/ p? |Luf(x)|2dx.
ov QP

1
Here, dx denotes a volume element in x coordinates.
We now consider the boundary conditions w = gjon I;fori € D& = I''and (%), = hjon I;fori € & = ',
Let I} = I3 N 082/ and suppose £2 is not a corner element. Moreover, it is assumed that 7% lies on the x, — x3 plane for
simplicity. Define ’

B/ = w =8 o [ < ro,

9
b (x") = ( w) = —h(xx") forr}}c ri.
' v J 4 sm¢>

LetR}; = SUPy e (e"g). We now define the functional
’ S

AW En= 3 /Q ) e a3 (H\/E[u]Hzr+gH\/E[u]

2
‘1/2,f,”i

=1 //.(Qv)<oo 2U\a2
H(FI 1)<oo
/ ou 2
H Rl i ~ 8 ‘3 2, 1‘“ ’\/> ((811:) hﬁi) - (2:4)
ry crlo], / rher [, /2,1
/L(r[_l)<00 /L(I‘Ll)<oo
The functional R, . ({F,}) is then given by
vernces {#h = Z ‘QN W ({FD. (2.5)

vev
Next, we define ‘R{;Vér‘/:gx—edges({?U})' Consider the vertex-edge neighbourhood £2"7¢ of the vertex-edgev —e € V — 6.
Let F'*(x*¢) = e 3% (x(x0¢)) for x'—¢ € 2/7%,1<1<N,_, and we define L"~°u} ~°(x*~) such that

/_ |L”_eu})"3(x”_e)|2 dx’~¢ = / 0% sin® ¢|Luj (x)|*dx.
5 told

We now consider the boundary conditions w = gx on Iy fork € ® = I''% and (%—’f)A = hionTjfork e & = 11,
Then (;2%),,. = — &5 M hy(x(x'"°)). Let I ¢ = N 982}~ and suppose 2/~ is not a corner element. Moreover, it
is assumed that F, . ¢ lies on the x, — x5 plane for simplicity and ,u(Fl ) < oo. Define

g () = w = g(x(x') for I € IO,

Jw v— v—
hy (X8 = < w_g) =9 e h(x(x'"%) for I < .
AU*E’

We define the functional

Ny—e
—_ — _ — _ev |2 _
Nf\/;/({?u}) — Z ) IV eu;J e(xv e) _F’v e(xv e)’ dxV—¢
oyl QU—E
=1, ;L(.Q" €y <00
2
v—e ~v—e v—e
S (VS VT Y S O FI
0 ecm €\002, 1, Lk
p'(rluk e)<oo
v—e v—e 2
VEk -gi)| m (uxg*e — (& )X,l,,e) e
e Ecr[O] 0. ¢ Tk
I’»(Fl,, €)<co
2 2
v—e v—e v—e
+ H El,k (ng—e — (gl,k )xg—e) 1_“L79> H <av” e) — hl,k ; (26)
‘ o, we e

Rl =0
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Here, E, k= SUPg—ccf e(sin¢) and F,”k ¢ = sup,,— el e (€ 3 ) Moreover, Gfk ¢ and the anisotropic Sobolev norms ||| (.) ||

are as defined in Chapter 2 of[18]
Then the functional Ruertexfedges({‘TU}) is defined as follows:

‘Rvertex edges({‘?ll}) - Z ‘Rﬁl—‘?’/({fu}) (2.7)

—ecV—E

Finally, we define the functional ,‘Redges({?'u}) Consider the edge neighbourhood 2° of the edge e € &. Let F/(x°) =
ez"lf(x(xe)) forx¢ e .(2, , 1 <1< N, and we define L°uj (x°) such that

/ |Leuf(xe)|2dxe :/ r?|Luf (x)|2dx.
2f o

We now consider the boundary conditions w = gy on I'x fork € © = I'® and (%’)A = hyonTjfork e ¥ = 1,
Then (dve) = ¢4 he(x(x%)). Let I'y , = I, N 9527 and suppose £27, is not a corner element. Moreover, it is assumed that
m « lies on the x, — x3 plane for simplicity and w(l k) < o0. Define

gk (X)) = w =g (x(x9)) for Iy, < ',
3 .
h  (X°) = (a%) = eih(x(x9)) for Iy, < i
AE

We define

Ne
RQI’W({TU}) — Z /~E |L€uf(xe) _ Fle(xe)|2 dx®

l:l,u(.(.?e)<oo i

(H\/ m,k
M(Fm k)<oo

w2 (1l + [ (s - o),

+

e

' ol

1 e

e

)

Fﬁ},kg[o]-
/L(fffl.k)<oc
) 2
(4 e
m,k (leg - (gm,k)xg) ‘ fvni,k> (ave> m,k f;’k (28)
mre k)<oo
Here, Gy, |, = = SUPyecre (e") and H;, , and the anisotropic Sobolev norms || (.) || are as defined in Chapter 2 of [18].
The functional J{edges({fu}) is now defined as
Roaes (Fu) = Y REVAF). (2.9)
ecé
Finally, using (2.3), (2.5), (2.7) and (2.9) in (2.2) we can define RN'W ({F,)).
Define the quadratic forms VNV ({#,}) and UMW ({%,}) by
VY (Fa)) = Vigar (Fad) + Voarices (Fad) + Voo —edges (Fu}) + Vaggos (Fa)) (2.10)
and
uN’W ({?u}) = regular ({?u}) + uvernces ({ﬁu}) + uvertex edges ({ﬁu}) + uedges ({?L‘}) (2']1)

Here, VN'W ({F,)) is the functional R¥-W ({F,}) as defined in (2.2) with zero data for F, g{® and g/ in (2.1) and
2
{#h = / > |pguf|® da
regular u Z Q= )_1(91) 4= A

vertlces ({3:;4}) - Z uN W({fu})

vev
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u:\)]emx edges ({‘¢U}) - Z u[:;‘/;/ ({~¢U})

v—eeV—§&

edges {fu}) - Z uN W {fFu})

ecé

with

U (7)) = Z f et 3 Dt o),

Jor|<2

Nve

Nw 92uve v e 2
U, e {(Fu}) = —L ] 4+ sin?
e ({(Fu)) = fm e = 12 axf—eax;—e Z ¢ (3 v eaxg e)

I=1 u(Q” )

32 v—e 2 auv—e 2 8uv—e 2
+ sin* + l + sin? ( L + (7" ) dx"°
¢(<a = ) 2 () +omo (=) +ai
Nv e
f U7E)Zengewv—e(xl{fe)dxv—e’

[L(le E =00

d%uf ? - d2uf 2 4 [ M ’
Uy ({Fu)) = / + e ( ) + e
o o\ 2, oo )+ 2 s (o)’

=1, ;1,(91)<oo 3

auc\? aut
+Z<axi) +e (8)(;> +(u?))dx + Z /(ue) we (%) dx°.

i=1 i

and

"e
nep)=

Here, dx’, dx"~¢ and dx° denote volume elements in x”, "¢ and x° coordinates respectively. Moreover, ; denotes measure
and w¥™¢(x]™°), we(x9) are properly chosen weight functions [ 18]. Note that the Sobolev norms defined above are weighted
and are anisotropic in the edge and vertex-edge neighbourhoods.

We now state the main stability estimate theorem of [15].

Theorem 2.1 (Theorem 4.1 of [15]). Consider the elliptic boundary value problem (2.1). Suppose the boundary conditions are
Dirichlet. Then
UMW ({F)) < CAnw)* vV F))

provided W = 0(eM*) for « < 1/2.

Next, we state the corresponding result for general boundary conditions.

Theorem 2.2 (Theorem 4.2 of [15]). If the boundary conditions for the elliptic boundary value problem (2.1) are mixed then
UMW ((F)) < NtV ((F)D)

provided W = 0(eN®) for « < 1/2.

For proof of the stability theorem we refer to [15,16].

In [17], we presented a numerical scheme based on the stability estimate theorem where we minimize a functional
over the space of spectral element functions which is the sum of a weighted squared norm of the residuals in the partial
differential equations and the squared norm of the residuals in the boundary conditions in fractional Sobolev spaces and
enforce continuity by adding a term which measures the jump in the function and its derivatives at inter-element boundaries
in fractional Sobolev norms suitably weighted, to the functional being minimized. Thus, our numerical scheme reads as:

Find % € "W (£2) which minimizes the functional R¥W ({#,}) over all F, € 8NV, Here, 8NV (£2) denotes the space of
spectral element functions ¥, on 2 and RN'W ({F,}) is as defined in (2.2).

3. Error estimates
It is well known that for three dimensional elliptic problems containing singularities in the form of vertices and edges,

the geometric mesh and a proper choice of element degree distribution leads to exponential convergence and efficiency of
computations (see [24,23,25] and references therein).
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In this section we show that the error obtained from the proposed method is exponentially small in N. The optimal rate
of convergence with respect to Nyos, the number of degrees of freedom is also provided. Our analysis of error estimates is
similar to that in two dimensions (see [26,24,27,20] and references therein). Here, we briefly describe the main steps of the
proof and leave the details which are similar to those in [27].

Let VW (2V), sNW(2v—¢), sNW(2¢), and $¥W(£27) denote the restrictions of SNV (£2) to the set of vertex neigh-
bourhoods 27, vertex-edge neighbourhoods §2"¢, edge neighbourhoods §2¢ and regular region 2" respectively. Let {F,}
minimize RV ({F,}) over all {F,} € 8NV (£2), the space of spectral element functions. We write one more representation
for {F,} as follows:

Ny Ny—e

Nr - Ne
{72} = {{z{(m, VEIVEY I P AL C N0 ) W EA (/NI S ) S P4 G x3)},:1} .
Here, z] (A1, A2, A3) is a polynomial of degree W in each of its variables.
On corner elements fz,v with u(f),”) = oo, we let z/ = a,, where a, is a constant. In all other elements in the vertex
neighbourhoods, z/(¢, 6, x) is a polynomial of degree W, 1 < W, < W, W; = [yi]forall1 <i <N+ 1,in¢, 0 and x
variables separately, where ©; > 0 is a degree factor.

z/7¢ = a,_, = a,, on corner elements £2;~° of the form

QT =X YT < <Yl 607 <0 <01, —oo < <)

and z,”’e is a polynomial of degree V;in¢,1 <V, < W,V, = [uyn] forall1 <n <N, u, > 0, on corner elements .{N?l”’e of
the form

HV—e —e . —e —e —e - —e
oM :{x”e.—oo<1//<1//;’ ,t9j” <9<0j”+1,§,f“"<§<§:+1}

withn > 1.

On the remaining elements in the vertex-edge neighbourhoods, z/ ~°(y, 6, ¢) is a polynomial of degree W;, 1 < W; <
W, W, = [ui]forall 1 <i < N,in ¢, 6 variables and of degree V;, 1 <V, < W, V, = [uyn] forall 1 < n < N, in ¢ variable
with 1 > 0, up > 0. _ ~ _

Finally, on corner elements §2] with (§2f) = 00, z{ is a polynomial of degree W in x3 and on the remaining elements £2/
away from edges z{ (z, 0, x3) is a polynomial of degree W;, 1 < W, < W, W; = [u4i], 1 <i < N, 4 > 01in 7, 0 variables
and of degree W in the x5 variable.

Approximation in the regular region:

Let us first consider the regular region £2" of £2. £2" has been divided into §2/,1 = 1, ..., N, curvilinear hexahedrons,
tetrahedrons and prisms. Let M[ be the analytic map from Q to £2/.

Let 17""*""""’(u)(M,r (1))) denote the projection of the solution w into the space of polynomials of degree N in each of its
variables with respect to the usual inner product in H2(Q). Then on £2[ we define

si) = T Ywm () = TV W (w@)), forx € Q.

Approximation in vertex neighbourhoods:
Let us now consider the vertex neighbourhood £2* of the vertex v € V, where V denotes the set of vertices of §2 (see
Fig. 2(b)). We had divided £2” into 2/, =1, ..., N, elements [15]. If £2/’ is a corner element of the form

2 ={x":(¢.0) €S}, —00 < x < In(p})}
then on le” we define
s; = wy,

where w, = w(v) denotes the value of w at the vertex v.
If 2 is of the form

2 =" (@,0) €5}, In(p}) < x < In(p}y)}

then on fz,” we approximate (w(x") — w,) by its projection, denoted by /7"-W-Wi into the space of polynomials of degree
N in each of its variables separately with respect to the usual inner product in Hz(é,") and define

st = M () — wy) + w,.

Here,1 < W, < W, W, = [ i]forall 1 <i < N, where u; > 0is a degree factor [23].

Approximation in vertex-edge neighbourhoods:

We now consider the vertex-edge neighbourhood £2V~¢ of the vertex-edge v —e € V — & (see Fig. 2(c)). Here, as earlier,
V — € denotes the set of vertex-edges of the domain £2. £2°7° is divided into £2;7°, ¢ = 1,...,N,_. elements using a
geometric mesh in ¢, x5 variables and a quasi-uniform mesh in 6 variable.
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Let .{NZ;*E be the image of Q;*e in x" ¢ coordinates. If fZ(;’*e is a corner element of the form

Q=T YT < <Yl 077 <0 <0, —oo <& <)

then on fZ;‘e we define

v—e
S| = Wy—e = Wy

Here, w, is the value of w at the vertex v.
Next, suppose £2] ~¢is a corner element of the form

Sv—e —e . —e v—e v—e —e )—e
Q=X 0o <Y <Y 0 <0 <0/, 4 <0 <4yt

withn > 1. Let s(xg_e) = w(X1, X2, X3)| (x,=0,x,—0) b€ the value of w along the edge e. Define
o (X3 %) =s(x37°) — wy.

Let [TV (o (x37°)) be the orthogonal projection of o (x;°) into the space of polynomials in H2(I). Then we define
s = Y0 (857%)) + wy = IT"Is(x3~°).

Here, 1 < V; < W. Moreover, Wy = [u,n] forall 1 <n < N, where u, > 0is a degree factor [23].

The remaining elements fZ;‘e in £2v~ are of the form

HV—e —e . v—e v—e v—e v—e —e v—e
Qe =X YT < < U 67T <0 <00 G <t < G

withi > 1,k > 1. Let us write ¢(x*"%) = w(x""¢) — s(x;”°). Then on f);‘e we approximate «(x"~¢) by its projection,
denoted by I7%#-Wa:Ya into the space of polynomials with respect to the usual inner product in H? (Q;‘e). We now define
S| 70T = I @) + 1T (s(57).

Here,1 < W, < W and 1 <V, < W. Moreover, Wy = [u1i], Vg = [upn] forall 1 <i,n < N, where 11, uy > 0 are degree
factors [23].

Approximation in edge neighbourhoods:

Finally, we discuss approximation in the edge neighbourhood elements and define comparison functions there. Consider
the edge neighbourhood £2° of the edge e € & (see Fig. 2(d)). Here, as before, & denotes the set of edges of the domain £2.
We had divided £2¢ into Q;, p=1,..., N, elements.

Let f); be the image of .Q; in x° coordinates. Let f); be a corner element of the form

Q2 ={x":—o0 <xj <In(),0f <x5 <6,,.Z¢ <xi <Zi,}.
Let s(x§) = w (X1, X2, X3) | (x,=0,x,=0)- Then on fz; we approximate s(x$) by its projection onto the space of polynomials
with respect to the usual inner product in H*(I). Let [TV (s(x)) denote this projection, then we define
SE(5) = Y (s(x3)).
Next, let £2¢ be of the form

Qp={x:In(rf) <x§ <In(f, ). 0 <x5 <07, 2% <x§ <Z,,}
withl1 <i < N,0<j<I, 0 <n <J.Letus write (x°) = w(x°) — s(x§). Then on fZlf we approximate S(x¢) by its
projection, denoted by I7%-"»-W, into the space of polynomials with respect to the usual inner product in H?(£2f). Define
sf(x) = I W (B (x)) + 1TV (s(x5)).
Here, 1 < W, < W.Moreover, W, = [p4i] forall 1 <i < N, where jt; > 0is a degree factor [23].
Now consider the set of functions [{slr NS, (S0 fi’l’e, {sf Le]} and denote it by {¥}. We will show that the

functional RN'W ({#;}) is exponentially small in N.
Using results on approximation theory in [24,27] it follows that there exist constants C and b > 0 such that the estimate

RVW ((F)) < ce™™ (3.1)

holds.
Now {#,} minimizes RV'Y ({#,}) over all {#,} € 8"V (£2), the space of spectral element functions. Then from (3.1), we
have

KRNW ((Fh < ce™N. (32)
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Let VN-W be the quadratic form as defined in [15]. Then from (3.1) and (3.2) we can conclude that
VW ({Fis-0))) < Ce™N, (33)

where C and b are generic constants.
Hence, using the Stability Theorem 2.1 we obtain

UMW ({Fisop)) < Ce™. (3.4)
Here, the quadratic form UMY ({#(;_,)}) is defined similar to the quadratic form UN" ({#,}) as in (2.10).
Let U'(A) = wX[ (A1, 22,43)) = wM[(})) for A € Q,U(x") = wk’) forx’ e o, U (x°¢) = w(x'~®) for

X' ¢ e fZ,"’e and Uf (x) = w(x®) for x° € fo Here, w is the solution of the boundary value problem (2.1).
We now define another quadratic form &YW ({z — U}) by

SN’W { U}) = gregular({zl Ul }) + 8vemces({zl Ul }) + 8vertex edges({zlv - Ulv e}) + gedges({zl Ule})’ (3‘5)

where

gregular {ZI Ul }) = Z/ |D§f (er - U’r) ()\)|2 d}‘"

Q=(M])~ 1(-Q,) la|<2

gve’rtices({zlv - Ulv}) = Z gN v ( Ul )

veV
Ny
6" ({2 = Uy =Zf ed Y |p% (2 - UP) ()| dx,
1= Q la|<2
gz’)\iz‘r‘gxfedges({zlv UIU e}) = Z é‘v —e (Z Ulvie),
v—e€V—§&
NU*E

& (7 =u " n =) Z D (27 = UP™) ) [P dx e,

= I o] <2

edges {7 = Uh = Z ébé\]’w(zle -Up,

ect
Ne
8 et ~ Uy = Z [ 3 Ios G - v e ae
=174 |a|<2
Using (3.4) it is easy to verify that
Ereguar (5] = UTD) < Ce™™,
Eremees (1] = U')) < Ce7N,
B edges (1517 = U ™)) < Ce ™V,
Euts (155 — U = Ce™™, 56)

st —UJ}) s Eloniees ({sY — U}) etc. are defined similar to those in (2.10). Now define

where the quadratic forms 8regu,ar ({s] vertices

"™ ({s = U = Eregutar (5] = UTD) + Erices (50 — UP'D) + Eperten—eatges (51 = Uy’ ™D + Exges (57 — UFD.
Then from (3.6) it follows that

eVW ({s — U} < ce PN, (3.7)
Finally, using estimates (3.4) and (3.7), we obtain

UNW ({J'?(Z—U)}) < Ce PN
Our main theorem on error estimates is now stated

Theorem 3.1. Let {F,} minimize RNW ({F,}) over all {F,} € 8NV (2). Then there exist constants C and b (independent of N)
such that

UNY ({Fiou))) < Ce™. (3.8)
Here, UN'W ({F_u)}) is as defined in (2.11).
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Remark 3.1. After having obtained the non-conforming spectral element solution we can make a correction to it so that the
corrected solution is conforming and the error in the H! norm is exponentially small in N. These corrections are explained
in Appendix-C of [18].

To end this section, let us estimate the error in terms of number of degrees of freedom in various subregions of the
domain £2.
The regular region §2":

The regular region £2” contains no vertices and edges of the domain 2. Here, the solution w has no singularity and is
analytic.

There are O(1) number of elements in this region and each element has O(W?) degrees of freedom. Let Ngor (£27) denotes
the number of degrees of freedom in £27. Then

Nior (£27) = O(W?) = O(N?).

The vertex neighbourhoods $2°:
In a vertex neighbourhood £2V there are O(N) elements with O(W?) degrees of freedom in each element. If Ngos (£27)
denotes the number of degrees of freedom in £2". Then

Naor (227) = O(NW?) = O(N*).

The vertex-edge neighbourhoods £2V¢:
There are O(N?) number of elements in each of the vertex-edge neighbourhoods 2V~ and each element has O(W?)
degrees of freedom. Then

Ngof (£2V7°) = O(N*W?) = O(N°).
Here, Nyor (£2V7¢) denotes the number of degrees of freedom in £27°.

The edge neighbourhoods $2¢:
An edge neighbourhood £2€ has O(N) elements with O(W?) degrees of freedom within each element. Let Ngor (£2°) be the
number of degrees of freedom in £2¢. Then

Naop (£22°) = O(NW?) = O(N*).

Hence, the error estimate Theorem 3.1 in terms of number of degrees of freedom assumes the form

Theorem 3.2. Let {F,} minimizes RN ({#,)) over all {F,} € 8"V (£2). Then there exist constants C and b (independent of N)
such that

_le/S

UMY ({Fe—u)}) < Ce "aer . (3.9)

Here, UNW ({F,—u)}) is as defined in (2.11) and Ngoy = dim (8" (£2)) is the number of degrees of freedom.

Proof. Follows from Theorem 3.1. O

Remark 3.2. From the above theorem it is clear that the exponential rate of convergence will be visible only for a large
value of Ny, as a result we need to sufficiently refine the geometric mesh both in the direction of edges and in the direction
perpendicular to the edges.

Remark 3.3. It follows that with a fewer number of layers in the geometric mesh, we may expect the convergence rate to

B
—bN. a1 1
d = =
bee " with 7 < 8 < =.

Remark 3.4. Since the majority of degrees of freedom is present in the vertex-edge neighbourhoods the factor N;(fjf in the

N1/5
theorem is due to the vertex-edge singularity in the solution. Hence the optimal convergence rate will be e Doy

Remark 3.5. It was conjectured in [24,23] that for h — p version of the finite element method in R* the optimal convergence

_pN/? . . . . . . o
rate will be e~ ?Naor , and it cannot be improved further with any mesh and any anisotropic polynomial order within the
elements.

1/5

—bN .
dof may be improved

Remark 3.6. It can be argued as in [24,23] that computationally, the optimal convergence rate e
further by properly selecting the geometric mesh factors and degree factors t,, e, 1, t2 etc.
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4. Preconditioners

Our construction of preconditioners is similar to that for elliptic problems in two dimensions (see [ 19,20]). As mentioned
in earlier sections, we had divided the polyhedral domain 2 into a regular region £2", a set of vertex neighbourhoods 27,
a set of edge neighbourhoods £2¢ and a set of vertex-edge neighbourhoods £2V7¢. £2" is divided into a set of curvilinear
hexahedrons, tetrahedrons and prisms and the elements in the singular regions in the neighbourhoods of vertices, edges
and vertex-edges are divided into hexahedrons and prisms using a geometric mesh. The elements in the regular region
and the vertex neighbourhoods are mapped to the unit cube Q = (—1, 1)>. The numerical solution is approximated by a
constant on the corner most elements in vertex and vertex-edge neighbourhoods and it is a function of only one variable on
the corner elements in edge and vertex-edge neighbourhoods that are in the direction of the edges away from the vertices.
In the regular region and vertex neighbourhoods we approximate the solution by a polynomial of degree N in A, A, and A3
variables separately, where A1, A; and A3 denote the transformed variables on the unit cube Q. In the remaining elements in
edge neighbourhoods and vertex-edge neighbourhoods, the solution is approximated by a polynomial of degree W in each of
the variables in the modified coordinates in their respective neighbourhoods. Then the proposed method gives exponentially
accurate solution in N provided the data satisfy usual conditions [23,28,15,20].

We construct a preconditioner 8 (u) on each of these element in the neighbourhoods of vertices, edges, vertex-edges and
the regular region. We shall prove as in [29] that there is another quadratic form € (u) which is spectrally equivalent to 8B (u)
and which can be easily diagonalized using the separation of variables. Then the matrix corresponding to the quadratic form
C(u) will be easy to invert.

4.1. Preconditioners on the regular region

In the regular region the preconditioner which needs to be examined corresponds to the quadratic form

BW) = |l (4.1)

where Q = (—1, 1)3> = master cube, u = u(X) = u(iq, A, A3) is a polynomial of degree W in A1, A, and A3 separately.
Let u(Xq, A2, A3) be the spectral element function, defined on Q = (—1, 1)3, as

w w w

u(ha, A2, A3) = D " aijukiGa)Li(A2)Le(As). (42)

i=0 j=0 k=0

Here, L;(-) denotes the Legendre polynomial of degree i.
The quadratic form 8 (u) can be written as

B(u) :f > IDgulda. (4.3)
Qjo|<2
Let I denote the interval (—1, 1) and
w
V(A1) = Y Bili(A1). (4.4)
i=0
Moreover, b = (B, B1, . . ., Bw)T. We now define the quadratic form
6(v) = f (7, + 5 )dA (4.5)
1
and
H(v) = /vzd)q. (4.6)
1
Clearly there exist (W + 1) x (W + 1) matrices G and H such that
9(v) =b"Gb (4.7)
and
J¢(v) = b"Hb. (4.8)
Here, the matrices G and H are symmetric and H is positive definite.
Hence, there exist W + 1 eigenvalues 0 < pg < w1 < --- < uw and W+ 1 eigenvectors by, by, . . ., by of the symmetric

eigenvalue problem
(G— uH)b=0. (4.9)
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Here,
(G— piH)b; = 0.
The eigenvectors b; are normalized so that
b/ Hb; = 5. (4.10a)
Moreover, the relations
bj Gbj = ;8] (4.10b)
hold. Let b; = (bi 0, bi1, - - ., biw). We now define the polynomial
w
$i() = Y _bijLi(Ay) for0<i<W. (4.11)
j=0

Next, let v; j x denote the polynomial

Yijk(A1, Az, A3) = di(A1)Pj(A2)dr(A3) (4.12)

for0<i<W,0=<j<W,0<k=<W.
Let u(Xq, A2, A3) be a polynomial as in (4.2). Define the quadratic form

e = / W, U, U, s U 4 ul + u)dhdigd)s. (4.13)
Q

Then the quadratic form € (u) is spectrally equivalent to the quadratic form B(u), defined in (4.1). Moreover, the quadratic
form C(u) can be diagonalized in the basis ¥ x(A1, A2, A3). Note that {;; (A1, A2, A3)}ij« is the tensor product of the
polynomials ¢;(11), ¢j(A>) and ¢, (A3). The eigenvalue p; j x corresponding to the eigenvector ; j  is given by the relation

Mijhe = i + 1+ pr + 1. (4.14)

Hence, the matrix corresponding to the quadratic form C(u) is easy to invert.

Using the extension theorems in [30] and Lemma 2.1 in [29] we can extend u(A1, A3, A3) defined in (4.2) to U(X1, A2, A3)
by the method of reflection (see Theorem 4.26 of [30]). This extension U(\i, Ay, A3) of u(Aq, Ay, A3) is such that
U(A, A2, A3) € H?(R?) and satisfies the estimate

/]R3 (U)%ﬂ»] + U)%z)»z + U}?3A3 + Uz) di = I<A (uiﬂ»] + uizkz + ui3l3 + uz) da.

Here, K is a constant independent of W. Now making use of Theorem 2.1 of [29] and extending it to three dimensions it
follows that there exists a constant L (independent of W) such that

1 2 2 2 2 2 2 2 2
z”u”Hz(Q) =< / (|u)»1)»1| + |ul2)»2| + |u)»3)»3| + |u)»1| + |u)»2| + |u)»3| + |u| )d)"
Q

2
H2(Q)"

i.e. the quadratic forms 8B (u) and C(u) are spectrally equivalent.

=< lfull

Theorem 4.1. The quadratic forms B(u) and C(u) are spectrally equivalent.

We now show that the quadratic form C(u) defined in (4.13) as
G(U) = /(; (uim + uiz)hz + ui;)@ + ui] + uiz + ui3 + Uz) dAidAyd)s

can be diagonalized in the basis {1 j x}; j k. Here, u is a polynomial in A1, A, and A3 as defined in (4.2). Let 5([, g) denote the
bilinear form induced by the quadratic form € (u). Then

c(f,g) = / (Bt F Fono@ioio + frsns&isis + fir8ay + fu&iy + 1380 +f8) dArdizds. (4.15)
Q

Let ¢(v) and #(v) be the quadratic forms defined in (4.5) and (4.6) and let g(f, g) and J?(f, g) denote the bilinear forms
induced by 4 (v) and # (v) respectively. Then

5.8 = /(fxmgxm + fi,81)dM (4.16a)
I



P. Dutt et al. / Computers and Mathematics with Applications 71 (2016) 1745-1771 1761

Table 2
Condition number « as a function of W.
w K
2 3.69999999999999
4 4.90406593328559
6 5.27448215795748
8 5.48239323328901
10 5.62480021244268
12 5.72673215953223
14 5.80192403338903
16 5.85907843805046
and
H({,g) = ffgdh. (4.16Db)
I

Here, I denotes the unit interval and f (A1), g(A1) are polynomials of degree W in A;.
Finally, let ¢;(11) be the polynomial as defined in (4.11). Then relation (4.10a) may be written as

H(pi, ¢) = /¢i(?»1)¢j()»1)d)»1 =34 (4.17a)
I

Moreover, relation (4.10b) may be stated as

(¢, ¢) = f((¢i)xm @)y + (@)1, (Pa,)dAq = Mi5;- (4.17b)
I
Recalling that v; j (A1, A2, A3) = ¢i(A1)Pj(X2)Pr(A3) and using (4.17) in (4.15) it is easy to show that
CWijies Vimn) = (i + 1+ o + 188,85
= /Llij;(S{nSﬁ
Hence, the eigenvectors of the quadratic form C(u) are {; j x}i j x and the eigenvalues are {1 j x}i jr. Moreover, the quadratic

form € (u) can be diagonalized in the basis {; j }i jx and consequently the matrix corresponding to C(u) is easy to invert.
Let

wow w
u(r, Az, A3) = Z Z Z BijaLi(A1)Lj(A2) L (A3)

=0 j=0 k=0

=~

and B denotes the column vector whose components are §; j  arranged in lexicographic order. Then there is a (W + 1)% x
(W + 1)3 matrix C such that
C) = BTcB.
As in [29] it can be shown that the system of equations
CB=p
can be solved in O(W*) operations. Therefore the quadratic form €(u) can be inverted in O(W*) operations.
Let x« denote the condition number of the preconditioned system obtained by using the quadratic form C(u) as a

preconditioner for the quadratic form B(u). Then the values of « as a function of W are shown in Table 2.
In Fig. 4, the condition number « is plotted against the polynomial order W.

4.2. Preconditioners on singular regions

A set of spectral element functions has been defined on all elements in the regular region and various singular regions.
We choose our spectral element functions to be fully non-conforming. As earlier, let ¥, denote the spectral element
representation of the function u.

We define the quadratic form

WN'W({?u}) = regular({fu}) + errnces({fu}) + errtex edges({fu}) + Wedges({f“}) (4‘]8)

Here, Wregu,ar({ifu}) ermces({ifu}) whhw edges({ﬂ}) and W, edges({ﬂ}) are defined similar to the quadratic forms

regular({fu}) U (FD, U edges {Fu}) and ‘uedges({fu}) respectively asin (2.10). Then using Theorem 2.1 it follows
that for problems with Dirichlet boundary conditions the estimate

WhY({F)) < CAnw)? VMY ((7,)) (4.19)
holds, provided W = 0(eM*) fora < 1/2.
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Fig. 4. Condition number « vs. W.
At the same time using trace theorems for Sobolev spaces there exists a constant k such that

1
LV AERD = WEAED. (4.20)
k
Hence, using (4.19) and (4.20) we conclude that the two quadratic forms W"W ({#,}) and VN'W ({#,}) are spectrally
equivalent and there exists a constant K such that
1
LV AERD = WETAERD = Kinw)? v (ED (421)
provided W = 0(eM") fora < 1/2.
We can now use the quadratic form WN-W ({#,}) which consists of a decoupled set of quadratic forms on each element
as a preconditioner. It follows that the condition number of the preconditioned system is O(In W)2.
The other case is when the boundary conditions are of mixed Neumann and Dirichlet type. In this case, as above, using
Theorem 2.2 and trace theorems for Sobolev spaces it follows that for W and N large enough the following estimate holds

%VN’W({m < WY RD < KNV (R,

Here, K is a constant. It is clear that the quadratic form WN-" ({#,}) can be used as a preconditioner and the condition
number of the preconditioned system is O(N4).

We will now construct preconditioners on each of the elements in the neighbourhoods of vertices, edges, vertex-edges
and the regular region. Here, u denotes the spectral element function which is a polynomial of degree W in each of its
variables separately defined in various regions of the polyhedron.

The quadratic forms which need to be examined are

Breguiar (W) = || U (172, = /Q HZZ DY 5, 25Ul dArdAadis, (4.22)
2
Buertices(W) = || €U 259y = f e’ Y D%, ul’dpdody, (4.23)
2 al<2

G(Bverte‘x—edges (Ll) = /: e (ulzp\/, + uze + ufye + Sinz d)u;( =+ Sinz d)ué;
Qe
+ sin® gu, + uj, + uf + sin’ pu; + u’)dy dode, (4.24)
Bedges (1) = f W3, +ugy + 1y + Tl +eTup, + el L+l +uf + e¥Tul + u)drdodxs. (4.25)
2f

Here, (¢,0, x), (¥,60,¢) and (7,0, x3) denote the modified systems of coordinates introduced in Table 1 in vertex
neighbourhoods, vertex-edge neighbourhoods and edge neighbourhoods respectively. Moreover le”, fZ,”_e and fzf denote
elements in the vertex neighbourhood, vertex-edge neighbourhood and edge neighbourhood respectively.

The construction of preconditioners corresponding to the quadratic forms Bregyiar (1) and Byertices (1) is similar to the case
of a smooth domain already discussed so we omit the details. It follows that there exist quadratic forms Creguiar (1) and
Chertices () Which are spectrally equivalent t0 Breguiar (1) and Byerices (1) respectively and which can be diagonalized using
separation of variables technique.

We will now obtain preconditioners for elements in edge and vertex-edge neighbourhood. For this purpose we observe
that for quadratic forms in edge and vertex-edge neighbourhoods it is enough to examine the quadratic form

1 1 1
B*(u) = / / / (uf + 1wy, + U, + n*ul, + 0, + uf + ) + nPul + u?)dxdydz. (4.26)
1Jo1J
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Here, n = sin¢ and n = e’ for vertex-edge and edge neighbourhood elements respectively. We remark that the factor »

becomes smaller towards the vertices and edges of the domain 2.

Making the transformation z = % so that % = 14 ‘the quadratic form 8*(u) assumes the form

ndz'
1
n
B*(u) = f

1
n

1 pl
/ / W + u;y + uiy +u + uf,z +u 4 ul + uf, + uZ + u*)dxdydz.
-1J-1
Let us define the quadratic form
1 p1 pl
C*(u) = / f / (4 w5, + 02, 4+ uf +u + n*u’ + u)dxdydz. (4.27)
-1J-1J-1

We now show that the quadratic form €*(u) is spectrally equivalent to the quadratic form 8*(u), defined in (4.26).
Moreover, C*(u) can be diagonalized using separation of variables technique.
Let

w w
v =Y ALK, and v(@) =) yL).
i=0 i=0

Moreover b = (Bo, B1, ..., Bw)T andd = (yo, y1, ..., Yw)'.
We now define the quadratic forms

G(v) = f (g +vhdx, H(v) = / vidx, (4.28)
I I

and

M) = /(1741)222 +n*vl)dz, N() = /vzdz. (4.29)

I I

Here, I denotes the unit interval (—1, 1). Clearly, there exist (W 4 1) x (W 4 1) matrices G, M and H, N such that

6(v) = b'Gb, M(v) = d"Md, (4.30)
and

H() =b"Hb,  N(v)=d Nd. (4.31)
Here, the matrices G, M and H, N are symmetric and H, N are positive definite.

Hence, there exist W + 1 eigenvalues 0 < po < uq < --- < uw and W + 1 eigenvectors by, b1, ..., by of the symmetric

eigenvalue problem

(G—uH)b=0. (4.32)
Here,

(G — uiH)b; = 0.
Similarly, there exist W + 1 eigenvalues 0 < vy < v; < --- < vy and W + 1 eigenvectors dg, d1, . . ., dy of the symmetric
eigenvalue problem

(M —vN)d =0. (4.33)
Here,

(M —vyN)d; = 0.

The eigenvectors b; and c; are normalized so that

b{Hb; =8/, and d/Nd; = 5. (4.34a)
Moreover, the relations

b Gbj = ;8] and d] Md; = v} (4.34b)
hold. Let b; = (bi o, bi1, ..., biw) and d; = (dio, di 1, - .., diw). We now define the polynomials

w w w
¢ =Y binln(®), GO =D binln(®), @) =) dinln(@) for0<ij k<W.
m=0 m=0

m=0
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Next, let x;;  denote the polynomial

Xijk (X, ¥, 2) = ¢i(X)¢; ()0 (2) (4.35)

forO<i<W,0<j<W,0<k<W.
Note that {x;;«(x,¥,2)}ij« is the tensor product of the polynomials ¢;(x), ¢;j(y) and 6c(z). The eigenvalue o;
corresponding to the eigenvector ; j x is given by the relation

Oijk = Mi+ pj+ve+ 1. (4.36)
Let 5*(f , &) be the bilinear form induced by the quadratic form €*(u). Then

1 1 1
e (f.g) = f / (ffix +fyygyy + 774fzzgzz + fx8x +fygy + nzfzgz + fg)dxdydz.
—1J-1J-1

It is easy to show that

5*(Xi,j,k, Ximn) = (i + @ + v + 1)8181 8%
= 01,1618 8%

Hence, the eigenvectors of the quadratic form C*(u) are {x;;«}i; and the eigenvalues are {0} Thus, the quadratic
form C*(u) can be diagonalized in the basis { x; j x}ij - Therefore, the matrix corresponding to the quadratic form €*(u) is
easy to invert.

Now proceeding as earlier, it can be shown that the quadratic forms 8* (1) and C*(u) are spectrally equivalent. Moreover,
the quadratic form €* (u) can be inverted in O(W#) operations. Thus, it follows that there exist quadratic forms Coertex—edges (1)
and Ceqges (1) which are spectrally equivalent to Byerrex—edges(U) and Begges (U) Tespectively and which can be diagonalized
using separation of variables technique.

5. Computational techniques

In minimizing the functional R¥-" ({ #,}) we seek a solution which minimizes the sum of weighted norms of the residuals
in the partial differential equation and a fractional Sobolev norm of the residuals in the boundary conditions and enforce
continuity by adding a term which measures the sum of squares of the jumps in the function and its derivatives at inter-
element boundaries in appropriate anisotropic Sobolev norm, suitably weighted in various regions of the polyhedron.

In this section, we show how to compute the residuals in the normal equations without having to compute and store
mass and stiffness matrices and we discuss computational complexity of our method in brief.

In order to obtain a solution using PCGM we must we able to compute residuals in the normal equations inexpensively,
since we are minimizing RV ({F,}) over all {F,} € 8" (space of spectral element functions) we have

RV U + V) = RV (U) + 2eVE(XU — YG) + 0(€?)

for all V, where U is a vector assembles from the values of
Ny PN L —e v—ey | No—e Ne
[ GoRE, uren ), Rt fued ks, |-

V is a vector similarly assembled and G is assembled from the data. Here, X and Y denote matrices. Thus we have to solve
XU — YG = 0 and so we must be able to compute XU — YG economically during the iterative process. The idea is very similar
to the case of two dimensional problems so we refer the reader to [20] for details.

The above minimization amounts to an overdetermined system of equations consisting of collocating the residuals in
the partial differential equation, the residuals in the boundary conditions and jumps in the function and its derivatives at
inter-element boundaries at an over determined set of collocation points, weighted suitably. In fact we collocate the partial
differential equation on a finer grid of Gauss-Lobatto-Legendre (GLL) points and then we apply the adjoint differential
operator to these residuals and project these values back to the original grid. Such a treatment obviously involves integration
by parts and hence leads to evaluation of terms at the boundaries. These boundary terms can be evaluated by a collocation
procedure and the other boundary terms corresponding to jump terms at the inter-element boundaries can be easily
calculated (see [18]).

Since the majority of elements i.e. O(N?) is concentrated in the neighbourhoods of vertices and edges and each element
is mapped onto a separate processor therefore, we employ a parallel computer with O(N?) processors. For problems with
Dirichlet boundary conditions the condition number of the preconditioned system is O((In W)?2), provided W = 0(eN®) for
a < 1/2. Hence, the method requires O(N In N) iterations of the PCGM to obtain solution to an accuracy of O(e~"") and it
requires O(N° In(N)) operations on a parallel computer with O(N?) processors to compute the solution. For mixed problems
with Neumann and Dirichlet boundary conditions the condition number of the preconditioned system is O(N*), provided
W = 0(e) fora < 1/2. Hence, it requires O(N3) iterations of the PCGM to obtain solution to an accuracy of O(e~"N) and
requires O(N”) operations on a parallel computer with O(N?) processors to compute the solution.
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Fig.5. Mesh imposed on £ = (0, 1) with mesh size h = 0.5.

Table 3
Performance of the p-version for Laplace equation with Dirichlet boundary conditions.
p=W Naof Iterations I1E || e1(%)
2 64 51 0.380275E+-02
4 512 213 0.204875E4-01
6 1,728 303 0.269917E—01
8 4,096 380 0.221613E—03
10 8,000 456 0.106885E—05
12 13,824 523 0.452056E—08

6. Numerical results

We now present results of simulations that have been performed to validate the theory on polyhedral domains.
Throughout this section N denote the number of refinements in each direction and W the degree of the polynomials used
for approximation. In all our computations we have employed a parallel computer and each element is mapped onto a single
processor.

In what follows, by iterations, we always mean the total number of iterations required to compute the solution up to de-
sired accuracy by PCGM. In all our examples the relative error is plotted on a log-scale. Let us be the spectral element solution

obtained from the minimization problem and w be the exact solution. Then the relative error (in H'-norm) is defined as
lusg — wly
”E”rel =
lwllg

6.1. Test problems with smooth solutions

We first analyse performance of our method for various test problems on polyhedral domains on which the solution is
smooth. From Section 3, it is clear that the error in the regular (smooth) region obeys
1/3
—bNy; '

luse — wlly < Ce (6.1)

Here, Ng4or denotes the number of degrees of freedom (DOF).

Thus, in case the solution is analytic on £2, exponential convergence can be achieved by increasing the polynomial order
and keeping the number of elements fixed. Hence, for practical implementation it is enough to compute the error for p-
version of the method.

Example 6.1 (Laplace Equation with Dirichlet Boundary Conditions). Our first example is the Laplace equation in the unit cube
£2 = (0, 1)3 shown in Fig. 5, with Dirichlet boundary conditions:
Aw =0 in§$2,
w=g onaif

where the data g is chosen so that the exact solution is

wx,y,z) = sin(rx) sin(ry) sinh(«/inz).

72 sinh /27

The results are given in Table 3. The relative error (in %) against polynomial order W and iterations against W are plotted
in Fig. 6(a) and (b) respectively. In Fig. 6(c) a graph is drawn for ||E||,,; against degrees of freedom on a log scale. The error
curve is a straight line and this shows the exponential rate of convergence in agreement with (6.1).
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Fig. 7. The domain £2 = (—1, 1) with uniform mesh refinements (a) Mesh 1, (b) Mesh 2 and (c) Mesh 3.

The example presented above deals with a constant coefficient differential operator. However, the method works for a
general non self-adjoint elliptic problem too. Let £2 = (—1, 1)3 denote the standard cube in R* with boundary 3£2. In our
next example we impose three different meshes on £2 with uniform mesh size h = 2.0, 1.0 and 0.67 in each direction which
corresponds to N = 1, 2 and 3 respectively (Fig. 7).

Example 6.2 (General Elliptic Equation with Variable Coefficients: A Non Self-adjoint Problem). Let us consider the non self-
adjoint general elliptic problem with mixed boundary conditions.

ax,y, Dwx + b(x, y, Dwyy + c(X, ¥, 2wy + d(X, ¥, 2) (Wxy + Wy, + wy) +e(X,y,2)w =f in2

w=g ond,
0
—w:h on.N.
v

Here, D and & denote the Dirichlet and Neumann boundary part of 952 respectively such that D = I} U I3 U I3, where
I't, I; and I3 are the faces correspondingtox = —1,x = 1and y = —1 respectively. N = I'; U I's U I'5, where Iy, I's and
I's are the faces corresponding toy = 1,z = —1 and z = 1 respectively. Moreover, v denotes the outer unit normal to the
faces where Neumann boundary conditions are imposed. Further, we choose the coefficients of the problem as follows:

a(x,y,z) = —(0.50 + 0.05 exp(xyz)), b(x,y,z) = —(1.00 4+ 0.015cos(x + y)),
c(x,y,z) = —(2.50 + 0.02 exp(y + 2)), d(x,y,z) = —0.001sin(w(x +y + z))

(x z
and e(x,y,z) = 4.05+ 0.045 cos (%) .
Moreover, the right hand side function f and the data g and h are chosen such that the true solution is
. . (7Y
wx,y,z) = (sm(nx) + sin <7)> cos(mz).

We examine the p-version of the method on different meshes in Table 4 for polynomial degree W = 2,...,10. It is
clear that the method performs best on Mesh 3 and the error reduces to approximately 10~%%. However, on Mesh 1 the
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Table 4
Error as a function of W for different values of h for general elliptic (non self-
adjoint) problem.

p=W Mesh 1 Mesh 2 Mesh 3
2 0.498666E+-02 0.485737E+-02 0.291328E+02
3 0.507328E+-02 0.107829E+-02 0.586317E4-01
4 0.227058E+02 0.517751E+01 0.149092E+01
5 0.143968E+-02 0.814482E+-00 0.237686E+00
6 0.408230E+01 0.234810E+4-00 0.292025E—01
7 0.184822E+01 0.279261E—01 0.289156E—02
8 0.311612E+4-00 0.430208E—02 0.236661E—03
9 0.104765E+4-00 0.377498E—03 0.168223E—04

10 0.136308E—01 0.431639E—04 0.352480E—05

Table 5
Performance of the p-version for non self-adjoint problem.

p=W Naof Iterations Relative error(%)
2 64 207 0.670184E+02
3 216 364 0.741499E+01
4 512 464 0.536971E+01
5 1000 519 0.725120E+00
6 1728 547 0.228276E+00
7 2744 605 0.267290E—01
8 4096 642 0.420000E—02
9 5832 671 0.364194E—03

10 8000 694 0.424524E—04

relative error decays slowly (see Table 5). Fig. 8 shows log ||E | . plotted against W for different meshes. In Fig. 9(a) we plot
error against polynomial order W. Error as a function of degrees of freedom is plotted in Fig. 9(c) on a log-scale showing
exponential convergence.

6.2. Test problems containing singularities

To show the effectiveness of the proposed method for problems containing singularities we now consider test problems
having singularities of various types discussed in Section 2.

As earlier, N will denote the number of layers in the geometric mesh and W, the polynomial order used. In case of
examples with vertex and edge singularities all our calculations are based on a parallel computer with O(N) processors and
in case of vertex-edge singularities we employ a parallel computer with O(N?) processors (since there are N elements in
the geometric mesh in this case) with each element being mapped onto a single processor. The geometric mesh factors in
the neighbourhoods of singularities are chosen as , = 0.15 and . = 0.15 which give optimal results.

Our first example is the Poisson equation containing only a vertex singularity with mixed boundary conditions. For
computational simplicity we shall assume that the singularity arises only at one vertex of the domain under consideration.
Our example is similar to that of Guo and Oh reported in [28].

Example 6.3 (Mixed Problem Containing Vertex Singularity). Consider the axisymmetric Poisson equation with mixed
boundary conditions:

—Au=f inW,
u=g ond C 9RW,
ou )
— =h onN¥ =002\ D, (6.2)
ov

where the domain £2® is shown in Fig. 10 and
D=NULUGUIL =T UTlg,
ry={($,0,p):¢=m/6,7/3,0<6<37/2,0<p<1},
Iy =1{(¢.0,p):7/6<¢p<m/3,0=0,31/2,0<p<1),
N=Is={(¢,0,p)  T/6<¢ <7/3,0<0<3m/2,p=1}.

We choose data f, g and h such that the function w = p%'(1 — p) sin 2¢ is the true solution of (6.2) satisfying prescribed
boundary conditions. Here, v denotes the exterior unit normal to the part of the boundary where we impose Neumann
boundary conditions.
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Fig. 10. The domain 22 containing a vertex singularity.

We know that the error in the neighbourhoods of vertices satisfies

174
lluse — wly < Ce™*Neor .

(6.3)

Table 6 contains the relative error obtained by applying the method on geometrically refined mesh in p. Fig. 11 contains
plots for various parameters. The relative error vs. N;(ff‘l (on a log-scale) is depicted in Fig. 11(c). The error profile is almost
a straight line. This confirms our theoretical estimate (6.3) on the exponential convergence. Iterations against number of
layers are plotted in Fig. 11(b). The relative error against polynomial order and iterations is plotted in Fig. 11(a) and (d)
respectively. It is evident from the plots that the method is very effective in dealing with vertex singularities.
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Table 6
Performance of the h-p version for mixed problem on £2’ containing a vertex
singularity.
p=W Naof Iterations Relative error(%)
2 9 16 0.962637E+01
3 55 39 0.252012E+01
4 193 128 0.191490E+00
5 501 176 0.212320E—01
6 1081 314 0.192391E—02
7 2059 409 0.884830E—03
8 3585 743 0.412629E—03
9 5833 814 0.470681E—04
a 1012 T T T T T b 1000 T T T f_tj
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Fig. 11. (a)Error vs. p, (b) Iterations vs. N, (c) Error vs. Ngor and (d) Error vs. Iterations for mixed problem containing a vertex singularity.

Next, we apply our method to Laplace equation containing an edge singularity.

Example 6.4 (Laplace Equation Containing Edge Singularity). Consider the boundary value problem:
—Aw =0 inR®,
w=g ondN®, (6.4)
where the domain £2® (see Fig. 12) is given by
R0 ={(r,0,x):0<r<1,0<0<m/2,0<x;<1}.
We impose Dirichlet boundary conditions on all the faces marked as I5,i =1, ..., 5.

Let w(r, 6, x3) = rs sin(%)x3. Then w is the exact solution of (6.4) satisfying the Dirichlet boundary conditions u|

w. Note that w has an edge singularity.

Table 7 contains the numerical results and it shows that & 107> (%) of relative error in the H'-norm is achieved with
W = 10 and Ngos A 9000. The relative error against polynomial degree for W = 2, ..., 10 is drawn in Fig. 13(a). In
Fig. 13(c) and (d) error as a function of degrees of freedom and iterations is plotted on a log scale. It follows that the error
decays exponentially and obeys the theoretical estimate (6.3).

© =
902!

7. Summary and conclusions

We have established error estimates of our method for elliptic problems on three dimensional non-smooth domains,
based on the non-conforming hp-version of the spectral element method. The error between the exact and the approximate
solution is shown to be exponentially small in N, the number of layers in the geometrical mesh. The method is essentially a
least-squares method and we use PCGM to solve normal equations using a block diagonal preconditioner. Moreover, there
exists a new preconditioner which can be diagonalized in a new set of basis functions, and hence it is easily inverted on each
element. The residuals in the normal equations can be obtained without computing and storing mass and stiffness matrices.
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Table 7
Performance of the h-p version for Laplace equation on £2(©.
p=W Naof Iterations Relative error(%)
2 10 24 0.464542E4-00
3 57 34 0.131359E+00
4 196 38 0.402204E—01
5 504 49 0.123974E—-01
6 1085 58 0.364617E—02
7 2064 68 0.107525E—02
8 3592 75 0.315249E—03
9 5840 85 0.920349E—04
10 9001 98 0.279848E—04
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Fig. 13. (a) Error vs. p, (b) Iterations vs. N, (c) Error vs. Ngor and (d) Error vs. Iterations for Laplace equation containing an edge singularity.

Numerical experiments on non-smooth domains with analytic and singular solutions confirm our estimates of the error and
computational complexity.

The method presented in this series of papers can be applied to the elliptic problems arising from mechanics and
engineering such as elasticity problems on polyhedral domains and magnetic—electric problems on smooth and non-smooth
domains in three dimensions. We intend to do more rigorous computations on some of these problems in the future work.
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