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a b s t r a c t

The present paper is the third of a series of papers devoted to the study of h-p
spectral elementmethods for three dimensional elliptic problems on non-smooth domains
using parallel computers. In this paper we provide error estimates, preconditioners and
numerical results. The spectral element functions are fully non-conforming. We propose
preconditioners on non-smooth domains which can be diagonalized using separation
of variables technique. Optimal error estimates in terms of number of layers in the
geometrical mesh and in terms of number of degrees of freedom are obtained. The
method is easy to implement on a parallel computer and we briefly outline computational
techniques. We give results of numerical simulations to confirm the theoretical estimates.
Theoretical results have been also validated by computational experiments which are
published independently in Dutt et al. (2014).

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

It is well known that the regularity of solutions of elliptic boundary value problems on polyhedral domains is severely
affected due to the presence of singularities in the form of corners and edges in the domain. There are three type of
singularities caused by non-smoothness of domains in R3: the vertex, the edge, and the vertex-edge combined singularities.
The solutions of many practical problems on polyhedral domains may be analytic except at the vertices and edges, and
their derivativemay grow rapidly towards the vertices or edges with increasing order. The regularity results on non-smooth
domains described in terms of usual Sobolev spaces and classical weighted Sobolev spaces (see [1–7] and references therein)
were unable to reflect the natures of singularities, and qualitative features of the growth of the derivatives of the solutions
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were missing. The regularity results of Babuška and Guo [8,9] in terms of countably weighted Sobolev spaces and countably
normed spaces with dynamical weights in the neighbourhoods of vertices, edges and vertex-edges over polyhedral domains
address these issues and proved to be the foundation stones for comprehensive study of the regularity theory for solving
elliptic problems in three-dimensional non-smooth domain arising from mechanics and engineering. Recently, Costabel
and coworkers settled the proof of the analytic regularity estimates [10,11] using anisotropic weighted Sobolev spaces
introduced in [8,9] by filling the gap which was left over by Babuška and Guo.

The h-p version of the finite element method (FEM) for elliptic problems was proposed in the mid 80ies by Babuška and
his coworkers for solving problems in structural mechanics. The h-p version simultaneously refines the mesh and increases
the polynomial degree to solve problems on non-smooth domains and achieve optimal convergence. The h-p version of
Spectral ElementMethod (SEM) is a newdevelopment of the FEMwhich employ global polynomials of higher degree in order
to recover the so called spectral/exponential convergence. It is well established that SEM deliver exponential convergence
for elliptic problems on smooth domains and have been successfully implemented in practical problems (see [12–14] and
references therein). However, in many engineering and scientific applications we require the numerical solutions of elliptic
boundary value problems in non-smooth domains which give rise to singularities in the solution. In such cases the accuracy
of the solution obtained by SEM deteriorates and we need to devise an efficient numerical scheme to capture the spectral
accuracy.

In [15–18] we proposed a non-conforming h-p spectral element method to solve elliptic boundary value problems on
non-smooth domains in R3. To formulate the numerical schemeweminimize a functional over the space of spectral element
functions which is the sum of a weighted squared norm of the residuals in the partial differential equations and the squared
norm of the residuals in the boundary conditions in fractional Sobolev spaces and enforce continuity by adding a termwhich
measures the jump in the function and its derivatives at inter-element boundaries in fractional Sobolev norms suitably
weighted, to the functional being minimized.

Themethod is essentially a least-squares collocationmethod as formulated in [19,20] in twodimensions and to obtain the
solution we need to solve the normal equations corresponding to the least-squares formulation. We apply Preconditioned
Conjugate Gradient Method (PCGM) to solve normal equations. In this paper we show that the residual in the normal
equations can be computed inexpensively without having to compute and store mass and stiffness matrices. Moreover,
we show that a preconditioner can be defined for the quadratic form corresponding to the minimization problem. The
preconditioner is obtained in the same way as the residuals in the normal equations, but with homogeneous boundary data
and the homogeneous form of the partial differential equation. Hence, the algorithm for the preconditioner is quite simple
and easy to implement. We prove that our preconditioners are spectrally equivalent to new quadratic forms which can be
diagonalized using separation of variables and therefore easy to invert.

This paper is the third of a series of papers devoted to the study of h-p spectral element methods for three dimensional
elliptic problems on non-smooth domains using parallel computers. In this paper we use differentiability (regularity)
estimates and stability estimates of [15,16] to describe parallel preconditioners, computational complexity and prove
optimal error estimates for h-p version of the spectral element method for elliptic problems on polyhedral domains
containing singularities. Numerical results for problems with analytic and singular solutions are presented to verify the
theory and analyse the performance of our method.

The first paper [15] deals with the regularity of the solution in the neighbourhoods of vertices, edges and vertex-edges
and describe the stability theorem. The second paper [16] addresses proof of the stability theorem. Results of numerical
experiments that have been performed to validate the theoretical estimates are presented in [17].

Throughout this paper (x1, x2, x3), (ρ, φ, θ) and (r, θ, x3) denote the Cartesian, the spherical and the cylindrical
coordinates respectively. The scope of this paper is as follows. In Section 2, we shall quote the notations and definitions
introduced in [15] and recall our main stability theorem, proved in [16], for a non-conforming h-p spectral element method.
Error estimates are obtained in Section 3 and it is shown that the error decays exponentially with respect to the number of
layers in the geometric mesh and the number of degrees of freedom in each variable on each element. Preconditioners on
regular aswell as singular regions are discussed in Section 4, wherewe show that there exists a newdiagonal preconditioner
using separation of variables technique. Section 5, gives a brief description of computational techniques and numerical
results are presented in Section 6. Concluding remarks are given in Section 7.

2. Preliminaries

LetΩ denote a polyhedron in R3, as shown in Fig. 1(a). Let Γi, i ∈ I = {1, 2, . . . , I}, be the faces of the polyhedron. Let D

be a subset of I and N = I \ D . We impose Dirichlet boundary conditions on the faces Γi, i ∈ D and Neumann boundary
conditions on the faces Γj, j ∈ N . Further, let ∂Ω = Γ [0] ∪ Γ [1],Γ [0] =


i∈D Γ̄i and Γ

[1] =


i∈N Γ̄i. Let us consider the
elliptic boundary value problem:

Lw = F inΩ,

w = g [0] for x ∈ Γ [0],

∂w

∂n



A

= g [1] for x ∈ Γ [1], (2.1)
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Fig. 1. (a) Polyhedral domainΩ , (b) Vertex neighbourhoodΩv , (c) Edge neighbourhoodΩe , (d) Vertex-edge neighbourhoodΩv−e .

where n denotes the outward normal and

∂w
∂n


A
is the usual conormal derivative. Here, the differential operator

Lw(x) =
3

i,j=1

−
∂

∂xi
(ai,jwxj)+

3

i=1

biwxi + cw

is a strongly elliptic differential operator which satisfies the Lax–Milgram conditions. Moreover, A = aij = aji for all i, j and

the coefficients of the differential operator are analytic. The data F , g [0] and g [1] are analytic on each open face and g [0] is
continuous on


i∈D Γ̄i.

In [15,16] we had decomposed the domain Ω into a regular region, a set of vertex neighbourhoods, a set of edge
neighbourhoods and a set of vertex-edge neighbourhoods. To overcome the singularities which arise in the neighbourhoods
of the vertices, vertex-edges and edges we use local systems of coordinates introduced in [15]. These local coordinates are
modified versions of spherical and cylindrical coordinate systems in their respective neighbourhoods. Away from these
neighbourhoods standard Cartesian coordinates are used in the regular region of the polyhedron. Table 1 summarizes the
system of coordinates used in various regions of the polyhedronΩ . For details we refer to [15].

We now briefly recall the notations, definitions and description of various neighbourhoods of vertices and edges of the
polyhedron Ω (see [15] for more details). Let Γi, i ∈ I = {1, 2, . . . , I}, be the faces (open), Sj, j ∈ J = {1, 2, . . . , J}, be
the edges and Ak, k ∈ K = {1, 2, . . . , K}, be the vertices of the polyhedron. We shall also denote an edge by e, where
e ∈ E = {S1, S2, . . . , SJ}, the set of edges, and a vertex by v where v ∈ V = {A1, A2, . . . , AK }, the set of vertices. Now
consider a vertex v and let e denote one of the edges passing through it, which we assume to coincide with x3 axis. Let φ
denote the angle which x = (x1, x2, x3)makes with the x3 axis. ByΩ

v , we denote the vertex neighbourhood of the vertex v
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Table 1

System of coordinates used in various parts ofΩ .

Region Coordinates Type

Regular x1, x2, x3 Standard Cartesian

Vertex neighbourhood xv1 = φ, xv2 = θ, xv3 = χ = ln ρ Modified spherical

Edge neighbourhood xe1 = τ = ln r, xe2 = θ, xe3 = x3 Modified cylindrical

Vertex-edge neighbourhood xv−e
1 = ψ = ln(tanφ), xv−e

2 = θ, Hybrid

xv−e
3 = ζ = ln x3

defined by

Ωv =

Bρv (v) \



e∈E v

Vρv ,φv (v, e)




Ω,

where Bρv (v) = {x : dist(x, v) < ρv} and Vρv ,φv (v, e) = {x ∈ Ω : 0 < dist(x, v) < ρv, 0 < φ < φv}, where φv is a
constant. For every vertex v, ρv and φv are chosen so small that Bρv (v) ∩ Bρv′ (v

′) = ∅ if the vertices v and v′ are distinct

and Vρv ,φv (v, e
′)


Vρv ,φv (v, e
′′) = ∅ if e′and e′′ are distinct edges having v as a common vertex. Moreover, ρv and φv are

chosen so that ρv sin(φv) = Z , a constant for all v ∈ V , the set of vertices.
Next, let e denote an edge, which we assume to coincide with the x3 axis, whose end points are the vertices v and v′.

Then we define the edge neighbourhood of the edge e denoted asΩe shown in Fig. 1(c) by

Ωe = {x ∈ Ω : δv < x3 < le − δv′ , 0 < r < Z} ,

where le is the length of the edge e, δv = ρv cos(φv), δv′ = ρv′ cos(φv′) and r =

x1

2 + x2
2.

Now, byΩv−e we denote the vertex-edge neighbourhood of the vertex v and the edge e shown in Fig. 1(d) defined by

Ωv−e = {x ∈ Ω : 0 < φ < φv, 0 < x3 < δv = ρv cosφv} .
Finally, Ω r denote the portion of the polyhedron Ω obtained after the closure of the vertex-neighbourhoods, edge

neighbourhoods and vertex-edge neighbourhoods have been removed from it. Thus let

∆ =



v∈V

Ω
v


∪



e∈E

Ω
e


∪




v−e∈V −E

Ω
v−e


.

Then

Ω r = Ω \ △.
Unless otherwise stated, as in Babuška and Guo [8,9] we let w(xv), w(xv−e), w(xe) denote w(x(xv)), w(x(xv−e)), w(x(xe))
respectively. Similar notation is being used for the spectral element functions u(xv), u(xv−e), u(xe) etc. in the ensuing
sections.

2.1. Spectral element functions

A set of non-conforming spectral element functionswhich are a sum of tensor products of polynomials in their respective
coordinates are defined on the elements in the regular and singular regions of the domain Ω . Let N denote the number of
refinements in the geometrical mesh and W denote an upper bound on the polynomial degree. We shall assume that N is
proportional toW . We remark that throughout the paper 1

N
and W refers to h and p respectively for notational uniformity.

In [15,16] we had further divided each of the elements in the regular region, vertex neighbourhoods, edge neighbour-
hoods and vertex-edge neighbourhoods into still smaller elements as curvilinear hexahedrons, tetrahedrons and prisms
using a geometric mesh (Fig. 2) and by virtue of the fact that a tetrahedron can be split into four hexahedrons [21,22] and
a prism can be split into three hexahedrons we can assume that all our elements are hexahedrons to keep the presentation
simple.

Let us first consider the regular regionΩ r . The regular regionΩ r is divided intoNr curvilinear hexahedrons, tetrahedrons
and prisms. Let Ω r

l be one of the elements into which Ω r is divided (Fig. 2(a)), which we shall assume is a curvilinear

hexahedron. Let Q denote the standard cube Q = (−1, 1)3. Then there is an analytic map Mr
l from Q to Ω r

l which has an
analytic inverse. Let {Γ r

l,i}1≤i≤nr
l
be the faces ofΩ r

l . The map Mr
l is of the form

x = Mr
l (λ1, λ2, λ3)

where (λ1, λ2, λ3) ∈ Q , the master cube. Define the spectral element function ur
l onΩ

r
l by

ur
l (λ) =

W

i=0

W

j=0

W

k=0

αi,j,kλ
i
1λ

j

2λ
k
3.
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Fig. 2. (a) Elements in Ω r , Geometric mesh and elements in the (b) vertex neighbourhood Ωv , (c) vertex-edge neighbourhood Ωv−e and (d) edge

neighbourhoodΩe .

Let v be one of the vertices of Ω . In Fig. 1(a) the vertex neighbourhood Ωv is shown. Let Sv denote the intersection of the
surface of the sphere Bρv (v)with Ω̄v , i.e.

Sv =

x ∈ Ω̄v : dist(x, v) = ρv


.

We divide the surface Sv into a set of triangular and quadrilateral elements as shown in Fig. 3. Let Svj denote these elements

where 1 ≤ j ≤ Iv . Here, Iv denotes a fixed constant. We now divide Ωv into Nv = Iv(N + 1) curvilinear hexahedrons and
prisms {Ωv

l }1≤l≤Nv (Fig. 2(b)), whereΩv
l is of the form

Ωv
l =


x : (φ, θ) ∈ Svj , ρ

v
k < ρ < ρvk+1



for 1 ≤ j ≤ Iv and 0 ≤ k ≤ N . Here, ρvk = ρv(µv)
N+1−k and 0 < µv < 1 for 1 ≤ k ≤ N + 1. Moreover, ρv0 = 0.

Let Ω̃v
l denote the image of the element Ωv

l in xv coordinates. Then the geometric mesh {Ωv
l }1≤l≤Nv , is mapped to a

quasi-uniform mesh {Ω̃v
l }1≤l≤Nv , except that the corner elements

Ωv
l =


x : (φ, θ) ∈ Svj , 0 < ρ < ρv1



are mapped to the semi-infinite elements

Ω̃v
l =


xv : (φ, θ) ∈ Svj ,−∞ < χ < ln ρv1


.

If Ω̃v
l is a corner element of the form

Ω̃v
l =


xv : (φ, θ) ∈ Svj ,−∞ < χ < ln ρv1



then we define uvl (x
v) = uv0 , where uv0 is a constant.

Now there is an analytic map Mv
l from Q , the master cube to Ω̃v

l , which has an analytic inverse. Here, the map Mv
l is of

the form

xv = Mv
l (λ1, λ2, λ3).

We define the spectral element function uvl on Ω̃v
l (which is not a corner element) by

uvl (λ) =
Wl

t=0

Wl

s=0

Wl

r=0

βr,s,tλ
r
1λ

s
2λ

t
3.
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Fig. 3. Mesh imposed on the spherical boundary Sv .

Here, 1 ≤ Wl ≤ W . Moreover, as in [23], Wl = [µ1i] for 1 ≤ i ≤ N , where µ1 > 0 is a degree factor. Hereafter, [a] denotes
the greatest positive integer ≤ a.

Next,wedefine the spectral element function in the vertex-edge neighbourhoods. Let v−edenote one of the vertex-edges
ofΩ . Here, v− e ∈ V − E , the set of vertex-edges ofΩ . LetΩv−e denote the vertex-edge neighbourhood corresponding to
the vertex-edge v − e shown in Fig. 1(d) defined by

Ωv−e = {x ∈ Ω : 0 < x3 < δv, 0 < φ < φv} .
Here, δv = ρv cosφv . We divideΩv−e into Nv−e elementsΩv−e

l , l = 1, 2, . . . ,Nv−e as follows:
We impose a geometrical mesh onΩv−e (Fig. 2(c)) by defining

(x3)0 = 0 and (x3)i = δv(µv)
N+1−i

for 1 ≤ i ≤ N + 1. Let ζ v−e
i = ln ((x3)i) for 0 ≤ i ≤ N + 1.

Let us introduce points φv−e
0 , . . . , φv−e

N+1 such that φv−e
0 = 0 and tanφv−e

i = µN+1−i
e tan(φv), for 1 ≤ i ≤ N +1, 0 < µe <

1. Thus, we impose a geometrical mesh on φ with mesh ratio µe.
Finally, θv−e

l < θ < θv−e
u . A quasi-uniform mesh

θv−e
l = θv−e

0 < θv−e
1 < · · · < θv−e

Iv−e
= θv−e

u

is imposed in θ .
Let Ω̃v−e be the image of Ωv−e in xv−e coordinates. Thus, Ω̃v−e is divided into Nv−e = Iv−e(N + 1)2 hexahedrons

{Ω̃v−e
l }l=1,...,Nv−e , where

Ω̃
v−e
l =


xv−e : ψv−e

i < ψ < ψv−e
i+1 , θ

v−e
j < θ < θv−e

j+1 , ζ
v−e
k < ζ < ζ v−e

k+1


.

We now define the spectral element functions on the elements in Ω̃v−e. Consider an element

Ω̃
v−e
l =


xv−e : ψv−e

i < ψ < ψv−e
i+1 , θ

v−e
j < θ < θv−e

j+1 , −∞ < ζ < ζ v−e
1


.

Then on Ω̃v−e
l we define

uv−e
l = uv−e

0 = uv0

where uv0 is the same constant as for the spectral element function uvl defined on the corner element

Ω̃v
l =


xv : (φ, θ) ∈ Svj , −∞ < χ < ln(ρv1 )


.

Next, we consider the element

Ω̃
v−e
l =


xv−e : −∞ < ψ < ψv−e

1 , θv−e
j < θ < θv−e

j+1 , ζ
v−e
k < ζ < ζ v−e

k+1


, k ≥ 1.

Then on Ω̃v−e
l we define

uv−e
l (xv−e) =

Wl

t=0

βtζ
t .

Here, 1 ≤ Wl ≤ W . Moreover,Wl = [µ2k] for 1 ≤ k ≤ N , where µ2 > 0 is a degree factor.
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Now consider an element of the form (which is a non-corner element away from edges and vertices)

Ω̃
v−e
l =


xv−e : ψv−e

i < ψ < ψv−e
i+1 , θ

v−e
j < θ < θv−e

j+1 , ζ
v−e
k < ζ < ζ v−e

k+1



for 1 ≤ i ≤ N, 1 ≤ k ≤ N . Then on Ω̃v−e
l we define

uv−e
l (xv−e) =

Wl

r=0

Wl

s=0

Vl

t=0

γr,s,t ψ
rθ sζ t .

Here, 1 ≤ Wl ≤ W and 1 ≤ Vl ≤ W . Moreover, Wl = [µ1i], Vl = [µ2k] for 1 ≤ i, k ≤ N , where µ1, µ2 > 0 are degree
factors [23].

Finally, we consider the edge ewhose end points are v and v′. The edge e coincides with the x3 axis and the vertex v with
the origin. Let the length of the edge e be le. Now the edge neighbourhoodΩe shown in Fig. 1(c) is defined as

Ωe =

x ∈ Ω : 0 < r < Z = ρv sinφv, θ

l
v−e < θ < θuv−e, δv < x3 < le − δ′

v


.

A geometrical mesh in r (Fig. 2(d)) is imposed by defining re0 = 0 and rej = Z(µe)
N+1−j for j = 1, 2, . . . ,N + 1. We

impose the same quasi-uniform mesh on θ as we did in the vertex-edge neighbourhood, viz.

θ el = θ e0 < θ e1 < · · · < θ eIe = θ eu .

Here, Ie = Iv−e and θ
e
k = θv−e

k for 0 ≤ k ≤ Ie. A quasi-uniform mesh is defined in x3, by choosing

δv = Z e
0 < Z e

1 < · · · < Z e
Je

= le − δ′
v.

Let Ω̃e be the image ofΩe in xe coordinates. Thus, Ω̃e is divided into Ne = Ie Je (N + 1) hexahedrons {Ω̃e
l }l=1,...,Ne where

Ω̃e
l =


xe : ln(rei ) < xe1 < ln(rei+1), θ

e
j < xe2 < θ ej+1, Z

e
k < xe3 < Z e

k+1


.

We now define the spectral element functions on the elements in Ω̃e. Consider an element of the form

Ω̃e
l =


xe : −∞ < xe1 < ln(re1), θ

e
j < xe2 < θ ej+1, Z

e
k < xe3 < Z e

k+1


.

Then we define

ue
l (x

e) =
W

t=0

αt(x
e
3)

t .

This representation is valid for all j for fixed k.
Next, consider the element (away from edges)

Ω̃e
l =


xe : ln(rei ) < xe1 < ln(rei+1), θ

e
j < xe2 < θ ej+1, Z

e
k < xe3 < Z e

k+1



for 1 ≤ i ≤ N . Then we define

ue
l (x

e) =
Wl

r=0

Wl

s=0

W

t=0

αr,s,t(x
e
1)

r(xe2)
s(xe3)

t .

Here, 1 ≤ Wl ≤ W . Moreover,Wl = [µ1i] for all 1 ≤ i ≤ N , where µ1 > 0 is a degree factor [23].
Let {Fu} denote the spectral element representation of the function u on the whole domain Ω . We now define the

functional RN,W ({Fu}) in brief (for details see [15]) which is used to formulate our numerical scheme, as follows:

RN,W ({Fu}) = R
N,W
regular ({Fu})+ R

N,W
vertices ({Fu})+ R

N,W
vertex−edges ({Fu})+ R

N,W
edges({Fu}). (2.2)

Let λ = (λ1, λ2, λ3) and let f rl (λ) = f (Mr
l (λ1, λ2, λ3))where λ ∈ Q for l = 1, 2, . . . ,Nr and let J rl (λ) denote the Jacobian

of the mappingMr
l . Define F r

l (λ) = f rl (λ)

J rl (λ), and Lrl u

r
l (λ) = Lur

l (M
r
l (λ))


J rl (λ).

Now consider the boundary conditions w = gk on Γk for k ∈ D = Γ [0] and

∂w
∂ν


A

= hk on Γk for k ∈ N = Γ [1].
Let Γ r

i,k = Γk ∩ ∂Ω r
i be the image of the mapping Mr

i corresponding to λ1 = −1. Let g r
i,k = gk(M

r
i (−1, λ2, λ3)) and

hr
i,k = hk(M

r
i (−1, λ2, λ3))where −1 ≤ λ2, λ3 ≤ 1.

We now define

R
N,W
regular({Fu}) =

Nr

l=1



Q=(Mr
l
)−1(Ωr

l
)

Lrl ur
l (λ)− F r

l (λ)
2 dλ

+


Γ r
l,i

⊆Ω̄r\∂Ω


∥[u]∥2

0,Γ r
l,i

+
3

k=1

[uxk ]
2
1/2,Γ r

l,i



+


Γ r
l,i

⊆Γ [0]

ur
l − g r

l,i

2
3/2,Γ r

l,i

+


Γ r
l,i

⊆Γ [1]



∂ur

l

∂ν



A

− hr
l,i


2

1/2,Γ r
l,i

. (2.3)

Here, [·] denotes the jump in the function and its derivatives at the inter element boundaries.
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Now we define R
N,W
vertices({Fu}). Consider the vertex neighbourhood Ωv of the vertex v ∈ V , the set of vertices. Define

F vl (x
v) = e5/2χ

√
sinφf (x(xv)) for xvl ∈ Ω̃v

l , 1 ≤ l ≤ Nv and we define Lvuvl (x
v) so that



Ω̃v
l

Lvuvl (xv)
2 dxv =



Ωv
l

ρ2
Luvl (x)

2 dx.

Here, dx denotes a volume element in x coordinates.
We now consider the boundary conditions w = gi on Γi for i ∈ D = Γ [0] and


∂w
∂ν


A

= hi on Γi for i ∈ N = Γ [1].
Let Γ v

l,i = Γi ∩ ∂Ωv
l and supposeΩv

l is not a corner element. Moreover, it is assumed that Γ v
l,i lies on the x2 − x3 plane for

simplicity. Define

gvl,i(x
v) = w = gi(x(x

v)) for Γ v
l,i ⊆ Γ [0],

hvl,i(x
v) =


∂w

∂νv



Av

=
eχ

sinφ
hi(x(x

v)) for Γ v
l,i ⊆ Γ [1].

Let Rvl,i = supxv∈Γ̃ v
l,i
(ex

v
3 ). We now define the functional

RN,W
v ({Fu}) =

Nv

l=1,µ(Ω̃v
l
)<∞



Ω̃v
l

Lvuvl (xv)− F vl (x
v)
2 dxv +



Γ v
l,i

⊆Ω̄v\∂Ω
µ(Γ̃ v

l,i
)<∞



Rvl,i[u]


2

0,Γ̃ v
l,i

+
3

k=1



Rvl,i[uxv

k
]

2

1/2,Γ̃ v
l,i



+


Γ v
l,i

⊆Γ [0],
µ(Γ̃ v

l,i
)<∞



Rvl,i


uvl − gvl,i


2

3/2,Γ̃ v
l,i

+


Γ v
l,i

⊆Γ [1],
µ(Γ̃ v

l,i
)<∞



Rvl,i


∂uvl

∂νv



Av

− hvl,i


2

1/2,Γ̃ v
l,i

. (2.4)

The functional R
N,W
vertices({Fu}) is then given by

R
N,W
vertices({Fu}) =



v∈V

RN,W
v ({Fu}). (2.5)

Next, we define R
N,W
vertex−edges({Fu}). Consider the vertex-edge neighbourhood Ωv−e of the vertex-edge v − e ∈ V − E .

Let F v−e
l (xv−e) = e2x

v−e
1 e

5
2
x
v−e
3 f (x(xv−e)) for xv−e ∈ Ω̃v−e

l , 1 ≤ l ≤ Nv−e and we define Lv−euv−e
l (xv−e) such that



Ω̃
v−e
n

Lv−euv−e
l (xv−e)

2 dxv−e =


Ωv
l

ρ2 sin2 φ|Luvl (x)|2dx.

We now consider the boundary conditions w = gk on Γk for k ∈ D = Γ [0] and

∂w
∂ν


A

= hk on Γk for k ∈ N = Γ [1].

Then

∂w

∂νv−e


Av−e = ex

v−e
3 ex

v−e
1 hk(x(x

v−e)). Let Γ v−e
l,k = Γk ∩ ∂Ωv−e

l and supposeΩv−e
l is not a corner element. Moreover, it

is assumed that Γ v−e
l,k lies on the x2 − x3 plane for simplicity and µ(Γ̃ v−e

l,k ) < ∞. Define

gv−e
l,k (x

v−e) = w = gk(x(x
v−e)) for Γ v−e

l,k ⊆ Γ [0],

hv−e
l,k (x

v−e) =

∂w

∂νv−e



Av−e

= ex
v−e
3 ex

v−e
1 hk(x(x

v−e)) for Γ v−e
l,k ⊆ Γ [1].

We define the functional

R
N,W
v−e ({Fu}) =

Nv−e

l=1,µ(Ω̃v−e
l

)<∞



Ω̃
v−e
l

Lv−euv−e
l (xv−e)− F v−e

l (xv−e)
2 dxv−e

+


Γ
v−e
l,k

⊆Ω̄v−e\∂Ω,

µ(Γ̃
v−e
l,k

)<∞



F v−e
l,k Gv−e

l,k [u]

2

0,Γ̃ v−e
l,k

+

 [ux

v−e
1

]


2

Γ̃
v−e
l,k

+

[ux

v−e
2

]


2

Γ̃
v−e
l,k

+

Ev−e

l,k [ux
v−e
3

]


2

Γ̃
v−e
l,k



+


Γ
v−e
l,k

⊆Γ [0],

µ(Γ̃
v−e
l,k

)<∞



F v−e
l,k


uv−e
l − gv−e

l,k

 
2

0,Γ̃ v−e
l,k

+



ux
v−e
1

− (gv−e
l,k )xv−e

1



2

Γ̃
v−e
l,k

+

Ev−e

l,k


ux
v−e
3

− (gv−e
l,k )xv−e

3



2

Γ̃
v−e
l,k


+



Γ
v−e
l,k

⊆Γ [1],

µ(Γ̃
v−e
l,k

)<∞





∂u

∂νv−e



Av−e

− hv−e
l,k



2

Γ̃
v−e
l,k

. (2.6)
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Here, Ev−e
l,k = supxv−e∈Γ̃ v−e

l,k
(sinφ) and F v−e

l,k = supxv−e∈Γ̃ v−e
l,k
(ex

v−e
3 ). Moreover, Gv−e

l,k and the anisotropic Sobolev norms |∥(.)|∥
are as defined in Chapter 2 of [18].

Then the functional R
N,W
vertex−edges({Fu}) is defined as follows:

R
N,W
vertex−edges({Fu}) =



v−e∈V−E

R
N,W
v−e ({Fu}). (2.7)

Finally, we define the functional R
N,W
edges({Fu}). Consider the edge neighbourhood Ωe of the edge e ∈ E . Let F e

l (x
e) =

e2x
e
1 f (x(xe)) for xe ∈ Ω̃e

l , 1 ≤ l ≤ Ne and we define Leue
l (x

e) such that


Ω̃e
l

Leue
l (x

e)
2 dxe =



Ωe
l

r2|Lue
l (x)|2dx.

We now consider the boundary conditions w = gk on Γk for k ∈ D = Γ [0] and

∂w
∂ν


A

= hk on Γk for k ∈ N = Γ [1].

Then

∂w
∂νe


Ae

= ex
e
1hk(x(x

e)). Let Γ e
m,k = Γk ∩ ∂Ωe

m and suppose Ωe
m is not a corner element. Moreover, it is assumed that

Γ e
m,k lies on the x2 − x3 plane for simplicity and µ(Γ̃ e

m,k) < ∞. Define

ge
m,k(x

e) = w = gk(x(x
e)) for Γ e

m,k ⊆ Γ [0],

he
m,k(x

e) =

∂w

∂νe



Ae

= ex
e
1hk(x(x

e)) for Γ e
m,k ⊆ Γ [1].

We define

RN,W
e ({Fu}) =

Ne

l=1,µ(Ω̃e
l
)<∞



Ω̃e
l

Leue
l (x

e)− F e
l (x

e)
2 dxe

+


Γ e
m,k

⊆Ω̄e\∂Ω,
µ(Γ̃ e

m,k
)<∞



He

m,k [u]

2

0,Γ̃ e
m,k

+

 [uxe

1
]


2

Γ̃ e
m,k

+

[uxe

2
]


2

Γ̃ e
m,k

+

Ge

m,k [uxe
3
]


2

Γ̃ e
m,k



+


Γ e
m,k

⊆Γ [0],
µ(Γ̃ e

m,k
)<∞

 ue
m − ge

m,k

 2
0,Γ̃ e

m,k

+



uxe

1
− (ge

m,k)xe1



2

Γ̃ e
m,k

+

Ge

m,k


uxe

3
− (ge

m,k)xe3



2

Γ̃ e
m,k


+



Γ e
m,k

⊆Γ [1],
µ(Γ̃ e

m,k
)<∞




∂u

∂νe



Ae

− he
m,k



2

Γ̃ e
m,k

. (2.8)

Here, Ge
m,k = supxe∈Γ̃ e

m,k
(eτ ) and He

m,k and the anisotropic Sobolev norms |∥(.)|∥ are as defined in Chapter 2 of [18].

The functional R
N,W
edges({Fu}) is now defined as

R
N,W
edges({Fu}) =



e∈E

RN,W
e ({Fu}). (2.9)

Finally, using (2.3), (2.5), (2.7) and (2.9) in (2.2) we can define RN,W ({Fu}).
Define the quadratic forms VN,W ({Fu}) and UN,W ({Fu}) by

VN,W ({Fu}) = V
N,W
regular ({Fu})+ V

N,W
vertices ({Fu})+ V

N,W
vertex−edges ({Fu})+ V

N,W
edges ({Fu}) (2.10)

and

UN,W ({Fu}) = U
N,W
regular ({Fu})+ U

N,W
vertices ({Fu})+ U

N,W
vertex−edges ({Fu})+ U

N,W
edges ({Fu}) . (2.11)

Here, VN,W ({Fu}) is the functional RN,W ({Fu}) as defined in (2.2) with zero data for F , g [0] and g [1] in (2.1) and

U
N,W
regular ({Fu}) =

Nr

l=1



Q=(Mr
l
)−1(Ωr

l
)



|α|≤2

Dαλur
l

2 dλ

U
N,W
vertices ({Fu}) =



v∈V

UN,W
v ({Fu})
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U
N,W
vertex−edges ({Fu}) =



v−e∈V−E

U
N,W
v−e ({Fu})

U
N,W
edges ({Fu}) =



e∈E

UN,W
e ({Fu})

with

UN,W
v ({Fu}) =

Nv

l=1



Ω̃v
l

ex
v
3



|α|≤2

Dαxvuvl (xv)
2 dxv,

U
N,W
v−e ({Fu}) =

Nv−e

l=1,µ(Ω̃v−e
l

)<∞



Ω̃
v−e
l

ex
v−e
3




i,j=1,2


∂2uv−e

l

∂xv−e
i ∂xv−e

j

2

+
2

i=1

sin2 φ


∂2uv−e

l

∂xv−e
i ∂xv−e

3

2

+ sin4 φ


∂2uv−e

l
∂xv−e

3

2

2

+
2

i=1


∂uv−e

l

∂xv−e
i

2

+ sin2 φ


∂uv−e

l

∂xv−e
3

2

+ (uv−e
l )2


dxv−e

+
Nv−e

l=1,

µ(Ω̃
v−e
l

)=∞



Ω̃
v−e
l

(uv−e
l )2ex

v−e
3 wv−e(xv−e

1 )dxv−e,

and

UN,W
e ({Fu}) =

Ne

l=1,µ(Ω̃e
l
)<∞



Ω̃e
l




i,j=1,2


∂2ue

l

∂xei ∂x
e
j

2

+ e2τ
2

i=1


∂2ue

l

∂xei ∂x
e
3

2

+ e4τ


∂2ue

l
∂xe3
2

2

+
2

i=1


∂ue

l

∂xei

2

+ e2τ

∂ue

l

∂xe3

2

+ (ue
l )

2


dxe +

Ne

l=1,

µ(Ω̃e
l
)=∞



Ω̃e
l

(ue
l )

2we(xe1)dx
e.

Here, dxv, dxv−e and dxe denote volume elements in xv, xv−e and xe coordinates respectively. Moreover, µ denotes measure
andwv−e(xv−e

1 ), we(xe1) are properly chosenweight functions [18]. Note that the Sobolev norms defined above are weighted
and are anisotropic in the edge and vertex-edge neighbourhoods.

We now state the main stability estimate theorem of [15].

Theorem 2.1 (Theorem 4.1 of [15]). Consider the elliptic boundary value problem (2.1). Suppose the boundary conditions are

Dirichlet. Then

UN,W ({Fu}) ≤ C(lnW )2VN,W ({Fu})

provided W = O(eN
α
) for α < 1/2.

Next, we state the corresponding result for general boundary conditions.

Theorem 2.2 (Theorem 4.2 of [15]). If the boundary conditions for the elliptic boundary value problem (2.1) are mixed then

UN,W ({Fu}) ≤ CN4VN,W ({Fu})

provided W = O(eN
α
) for α < 1/2.

For proof of the stability theorem we refer to [15,16].
In [17], we presented a numerical scheme based on the stability estimate theorem where we minimize a functional

over the space of spectral element functions which is the sum of a weighted squared norm of the residuals in the partial
differential equations and the squared norm of the residuals in the boundary conditions in fractional Sobolev spaces and
enforce continuity by adding a termwhichmeasures the jump in the function and its derivatives at inter-element boundaries
in fractional Sobolev norms suitably weighted, to the functional being minimized. Thus, our numerical scheme reads as:

Find Fs ∈ SN,W (Ω) which minimizes the functional RN,W ({Fu}) over all Fu ∈ SN,W . Here, SN,W (Ω) denotes the space of

spectral element functions Fu onΩ and RN,W ({Fu}) is as defined in (2.2).

3. Error estimates

It is well known that for three dimensional elliptic problems containing singularities in the form of vertices and edges,
the geometric mesh and a proper choice of element degree distribution leads to exponential convergence and efficiency of
computations (see [24,23,25] and references therein).
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In this section we show that the error obtained from the proposed method is exponentially small in N . The optimal rate
of convergence with respect to Ndof , the number of degrees of freedom is also provided. Our analysis of error estimates is
similar to that in two dimensions (see [26,24,27,20] and references therein). Here, we briefly describe the main steps of the
proof and leave the details which are similar to those in [27].

Let SN,W (Ωv), SN,W (Ωv−e), SN,W (Ωe), and SN,W (Ω r) denote the restrictions of SN,W (Ω) to the set of vertex neigh-
bourhoods Ωv , vertex-edge neighbourhoods Ωv−e, edge neighbourhoods Ωe and regular region Ω r respectively. Let {Fz}
minimize RN,W ({Fu}) over all {Fu} ∈ SN,W (Ω), the space of spectral element functions. We write one more representation
for {Fz} as follows:

{Fz} =


zrl (λ1, λ2, λ3)
Nr

l=1
,

zvl (φ, θ, χ)

Nv
l=1
,

zv−e
l (ψ, θ, ζ )

Nv−e

l=1
,

zel (τ , θ, x3)

Ne

l=1


.

Here, zrl (λ1, λ2, λ3) is a polynomial of degreeW in each of its variables.

On corner elements Ω̃v
l with µ(Ω̃v

l ) = ∞, we let zvl = av , where av is a constant. In all other elements in the vertex
neighbourhoods, zvl (φ, θ, χ) is a polynomial of degree Wl, 1 ≤ Wl ≤ W ,Wl = [µ1i] for all 1 ≤ i ≤ N + 1, in φ, θ and χ
variables separately, where µ1 > 0 is a degree factor.

zv−e
l = av−e = av , on corner elements Ω̃v−e

l of the form

Ω̃
v−e
l = {xv−e : ψv−e

i < ψ < ψv−e
i+1 , θ

v−e
j < θ < θv−e

j+1 , −∞ < ζ < ζ v−e
1 }

and zv−e
l is a polynomial of degree Vl in ζ , 1 ≤ Vl ≤ W , Vl = [µ2n] for all 1 ≤ n ≤ N, µ2 > 0, on corner elements Ω̃v−e

l of
the form

Ω̃
v−e
l =


xv−e : −∞ < ψ < ψv−e

1 , θv−e
j < θ < θv−e

j+1 , ζ
v−e
n < ζ < ζ v−e

n+1



with n ≥ 1.
On the remaining elements in the vertex-edge neighbourhoods, zv−e

l (ψ, θ, ζ ) is a polynomial of degree Wl, 1 ≤ Wl ≤
W ,Wl = [µ1i] for all 1 ≤ i ≤ N , inψ, θ variables and of degree Vl, 1 ≤ Vl ≤ W , Vl = [µ2n] for all 1 ≤ n ≤ N , in ζ variable
with µ1 > 0, µ2 > 0.

Finally, on corner elements Ω̃e
l withµ(Ω̃e

l ) = ∞, zel is a polynomial of degreeW in x3 and on the remaining elements Ω̃e
l

away from edges zel (τ , θ, x3) is a polynomial of degree Wl, 1 ≤ Wl ≤ W ,Wl = [µ1i], 1 ≤ i ≤ N, µ1 > 0 in τ , θ variables
and of degreeW in the x3 variable.

Approximation in the regular region:

Let us first consider the regular region Ω r of Ω . Ω r has been divided into Ω r
l , l = 1, . . . ,Nr curvilinear hexahedrons,

tetrahedrons and prisms. LetMr
l be the analytic map from Q toΩ r

l .

LetΠW ,W ,W (w(Mr
l (λ))) denote the projection of the solution w into the space of polynomials of degree N in each of its

variables with respect to the usual inner product in H2(Q ). Then onΩ r
l we define

srl (λ) = ΠW ,W ,W (w(Mr
l (λ))) = ΠW ,W ,W (w(λ)), for λ ∈ Q .

Approximation in vertex neighbourhoods:

Let us now consider the vertex neighbourhood Ωv of the vertex v ∈ V , where V denotes the set of vertices of Ω (see
Fig. 2(b)). We had dividedΩv intoΩv

l , l = 1, . . . ,Nv elements [15]. If Ω̃v
l is a corner element of the form

Ω̃v
l = {xv : (φ, θ) ∈ Svj ,−∞ < χ < ln(ρv1 )}

then on Ω̃v
l we define

svl = wv,

wherewv = w(v) denotes the value ofw at the vertex v.
If Ω̃v

l is of the form

Ω̃v
l = {xv : (φ, θ) ∈ Svj , ln(ρ

v
i ) < χ < ln(ρvi+1)}

then on Ω̃v
l we approximate (w(xv)− wv) by its projection, denoted byΠWl,Wl,Wl , into the space of polynomials of degree

N in each of its variables separately with respect to the usual inner product in H2(Ω̃v
l ) and define

svl (x
v) = ΠWl,Wl,Wl(w(xv)− wv)+ wv.

Here, 1 ≤ Wl ≤ W ,Wl = [µ1i] for all 1 ≤ i ≤ N , where µ1 > 0 is a degree factor [23].

Approximation in vertex-edge neighbourhoods:

We now consider the vertex-edge neighbourhood Ωv−e of the vertex-edge v− e ∈ V − E (see Fig. 2(c)). Here, as earlier,
V − E denotes the set of vertex-edges of the domain Ω . Ωv−e is divided into Ωv−e

q , q = 1, . . . ,Nv−e elements using a
geometric mesh in φ, x3 variables and a quasi-uniform mesh in θ variable.
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Let Ω̃v−e
q be the image ofΩv−e

q in xv−e coordinates. If Ω̃v−e
q is a corner element of the form

Ω̃v−e
q = {xv−e : ψv−e

i < ψ < ψv−e
i+1 , θ

v−e
j < θ < θv−e

j+1 , −∞ < ζ < ζ v−e
1 }

then on Ω̃v−e
q we define

sv−e
l = wv−e = wv.

Here,wv is the value ofw at the vertex v.
Next, suppose Ω̃v−e

q is a corner element of the form

Ω̃v−e
q =


xv−e : −∞ < ψ < ψv−e

1 , θv−e
j < θ < θv−e

j+1 , ζ
v−e
n < ζ < ζ v−e

n+1



with n ≥ 1. Let s(xv−e
3 ) = w(x1, x2, x3)|(x1=0,x2=0) be the value ofw along the edge e. Define

σ(xv−e
3 ) = s(xv−e

3 )− wv.

LetΠVq(σ (xv−e
3 )) be the orthogonal projection of σ(xv−e

3 ) into the space of polynomials in H2(I). Then we define

sv−e
l (xv−e

3 ) = ΠVq(σ (xv−e
3 ))+ wv = ΠVqs(xv−e

3 ).

Here, 1 ≤ Vq ≤ W . Moreover,Wq = [µ2n] for all 1 ≤ n ≤ N , where µ2 > 0 is a degree factor [23].

The remaining elements Ω̃v−e
q in Ω̃v−e are of the form

Ω̃v−e
q =


xv−e : ψv−e

i < ψ < ψv−e
i+1 , θ

v−e
j < θ < θv−e

j+1 , ζ
v−e
n < ζ < ζ v−e

n+1



with i ≥ 1, k ≥ 1. Let us write α(xv−e) = w(xv−e) − s(xv−e
3 ). Then on Ω̃v−e

q we approximate α(xv−e) by its projection,

denoted byΠWq,Wq,Vq , into the space of polynomials with respect to the usual inner product in H2(Ω̃v−e
q ). We now define

sv−e
l (xv−e) = ΠWq,Wq,Vq(α(xv−e))+ΠVq(s(xv−e

3 )).

Here, 1 ≤ Wq ≤ W and 1 ≤ Vq ≤ W . Moreover, Wq = [µ1i], Vq = [µ2n] for all 1 ≤ i, n ≤ N , where µ1, µ2 > 0 are degree
factors [23].

Approximation in edge neighbourhoods:

Finally, we discuss approximation in the edge neighbourhood elements and define comparison functions there. Consider
the edge neighbourhood Ωe of the edge e ∈ E (see Fig. 2(d)). Here, as before, E denotes the set of edges of the domainΩ .
We had dividedΩe intoΩe

p, p = 1, . . . ,Ne elements.

Let Ω̃e
p be the image ofΩe

p in xe coordinates. Let Ω̃e
p be a corner element of the form

Ω̃e
p =


xe : −∞ < xe1 < ln(re1), θ

e
j < xe2 < θ ej+1, Z

e
n < xe3 < Z e

n+1


.

Let s(xe3) = w (x1, x2, x3) |(x1=0,x2=0). Then on Ω̃e
p we approximate s(xe3) by its projection onto the space of polynomials

with respect to the usual inner product in H2(I). LetΠW (s(xe3)) denote this projection, then we define

sel (x
e
3) = ΠW (s(xe3)).

Next, let Ω̃e
p be of the form

Ω̃e
p =


xe : ln(rei ) < xe1 < ln(rei+1), θ

e
j < xe2 < θ ej+1, Z

e
n < xe3 < Z e

n+1



with 1 ≤ i ≤ N, 0 ≤ j ≤ Ie, 0 ≤ n ≤ Je. Let us write β(xe) = w(xe) − s(xe3). Then on Ω̃e
p we approximate β(xe) by its

projection, denoted byΠWp,Wp,W , into the space of polynomials with respect to the usual inner product in H2(Ω̃e
p). Define

sel (x
e) = ΠWp,Wp,W (β(xe))+ΠW (s(xe3)).

Here, 1 ≤ Wp ≤ W . Moreover, Wp = [µ1i] for all 1 ≤ i ≤ N , where µ1 > 0 is a degree factor [23].

Now consider the set of functions

{srl }

Nr
l=1, {svl }

Nv
l=1, {s

v−e
l }Nv−e

l=1 , {sel }
Ne

l=1


and denote it by {Fs}. We will show that the

functional RN,W ({Fs}) is exponentially small in N .
Using results on approximation theory in [24,27] it follows that there exist constants C and b > 0 such that the estimate

RN,W ({Fs}) ≤ Ce−bN (3.1)

holds.
Now {Fz} minimizes RN,W ({Fu}) over all {Fu} ∈ SN,W (Ω), the space of spectral element functions. Then from (3.1), we

have

RN,W ({Fz}) ≤ Ce−bN . (3.2)
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Let VN,W be the quadratic form as defined in [15]. Then from (3.1) and (3.2) we can conclude that

VN,W

{F(s−z)}


≤ Ce−bN , (3.3)

where C and b are generic constants.
Hence, using the Stability Theorem 2.1 we obtain

UN,W

{F(s−z)}


≤ Ce−bN . (3.4)

Here, the quadratic form UN,W

{F(s−z)}


is defined similar to the quadratic form UN,W ({Fu}) as in (2.10).

Let U r
l (λ) = w(X r

l (λ1, λ2, λ3)) ≡ w(Mr
l (λ)) for λ ∈ Q ,Uvl (x

v) = w(xv) for xv ∈ Ω̃v
l ,U

v−e
l (xv−e) = w(xv−e) for

xv−e ∈ Ω̃v−e
l and Ue

l (x
e) = w(xe) for xe ∈ Ω̃e

l . Here,w is the solution of the boundary value problem (2.1).

We now define another quadratic form EN,W ({z − U}) by

EN,W ({z − U}) = E
N,W
regular({zrl − U r

l })+ E
N,W
vertices({zvl − Uvl })+ E

N,W
vertex−edges({z

v−e
l − Uv−e

l })+ E
N,W
edges({zel − Ue

l }), (3.5)

where

E
N,W
regular({zrl − U r

l }) =
Nr

l=1



Q=(Mr
l
)−1(Ωr

l
)



|α|≤2

Dαλ

zrl − U r

l


(λ)
2 dλ,

E
N,W
vertices({zvl − Uvl }) =



v∈V

EN,W
v


zvl − Uvl


,

EN,W
v ({zvl − Uvl }) =

Nv

l=1



Ω̃v
l

ex
v
3



|α|≤2

Dαxv

zvl − Uvl


(xv)

2 dxv,

E
N,W
vertex−edges({z

v−e
l − Uv−e

l }) =


v−e∈V−E

E
N,W
v−e (z

v−e
l − Uv−e

l ),

E
N,W
v−e ({zv−e

l − Uv−e
l }) =

Nv−e

l=1



Ω̃
v−e
l

ex
v−e
3



|α|≤2

Dα
xv−e


zv−e
l − Uv−e

l


(xv−e)

2 dxv−e,

E
N,W
edges({zel − Ue

l }) =


e∈E

EN,W
e (zel − Ue

l ),

EN,W
e ({zel − Ue

l }) =
Ne

l=1



Ω̃e
l



|α|≤2

Dαxe

zel − Ue

l


(xe)

2 dxe.

Using (3.4) it is easy to verify that

E
N,W
regular({srl − U r

l }) ≤ Ce−bN ,

E
N,W
vertices({svl − Uvl }) ≤ Ce−bN ,

E
N,W
vertex−edges({s

v−e
l − Uv−e

l }) ≤ Ce−bN ,

E
N,W
edges({sel − Ue

l }) ≤ Ce−bN , (3.6)

where the quadratic forms E
N,W
regular


{srl − U r

l }

, E

N,W
vertices


{svl − Uvl }


etc. are defined similar to those in (2.10). Now define

EN,W ({s − U}) = E
N,W
regular({srl − U r

l })+ E
N,W
vertices({svl − Uvl })+ E

N,W
vertex−edges({s

v−e
l − Uv−e

l })+ E
N,W
edges({sel − Ue

l }).
Then from (3.6) it follows that

EN,W ({s − U}) ≤ Ce−bN . (3.7)

Finally, using estimates (3.4) and (3.7), we obtain

UN,W

{F(z−U)}


≤ Ce−bN .

Our main theorem on error estimates is now stated

Theorem 3.1. Let {Fz} minimize RN,W ({Fu}) over all {Fu} ∈ SN,W (Ω). Then there exist constants C and b (independent of N)

such that

UN,W

{F(z−U)}


≤ Ce−bN . (3.8)

Here, UN,W

{F(z−U)}


is as defined in (2.11).
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Remark 3.1. After having obtained the non-conforming spectral element solution we canmake a correction to it so that the
corrected solution is conforming and the error in the H1 norm is exponentially small in N . These corrections are explained
in Appendix-C of [18].

To end this section, let us estimate the error in terms of number of degrees of freedom in various subregions of the
domainΩ .

The regular regionΩ r :

The regular region Ω r contains no vertices and edges of the domain Ω . Here, the solution w has no singularity and is
analytic.

There are O(1) number of elements in this region and each element has O(W 3) degrees of freedom. Let Ndof (Ω
r) denotes

the number of degrees of freedom inΩ r . Then

Ndof (Ω
r) = O(W 3) = O(N3).

The vertex neighbourhoodsΩv:

In a vertex neighbourhood Ωv there are O(N) elements with O(W 3) degrees of freedom in each element. If Ndof (Ω
v)

denotes the number of degrees of freedom inΩv . Then

Ndof (Ω
v) = O(NW 3) = O(N4).

The vertex-edge neighbourhoodsΩv−e:

There are O(N2) number of elements in each of the vertex-edge neighbourhoods Ωv−e and each element has O(W 3)
degrees of freedom. Then

Ndof (Ω
v−e) = O(N2W 3) = O(N5).

Here, Ndof (Ω
v−e) denotes the number of degrees of freedom inΩv−e.

The edge neighbourhoodsΩe:

An edge neighbourhoodΩe has O(N) elements with O(W 3) degrees of freedomwithin each element. Let Ndof (Ω
e) be the

number of degrees of freedom inΩe. Then

Ndof (Ω
e) = O(NW 3) = O(N4).

Hence, the error estimate Theorem 3.1 in terms of number of degrees of freedom assumes the form

Theorem 3.2. Let {Fz} minimizes RN,W ({Fu}) over all {Fu} ∈ SN,W (Ω). Then there exist constants C and b (independent of N)

such that

UN,W

{F(z−U)}


≤ Ce

−bN
1/5
dof . (3.9)

Here, UN,W

{F(z−U)}


is as defined in (2.11) and Ndof = dim(SN,W (Ω)) is the number of degrees of freedom.

Proof. Follows from Theorem 3.1. �

Remark 3.2. From the above theorem it is clear that the exponential rate of convergence will be visible only for a large
value of Ndof , as a result we need to sufficiently refine the geometric mesh both in the direction of edges and in the direction
perpendicular to the edges.

Remark 3.3. It follows that with a fewer number of layers in the geometric mesh, we may expect the convergence rate to

be e
−bN

β
dof with 1

4
< β < 1

5
.

Remark 3.4. Since the majority of degrees of freedom is present in the vertex-edge neighbourhoods the factor N
1/5

dof in the

theorem is due to the vertex-edge singularity in the solution. Hence the optimal convergence rate will be e
−bN

1/5
dof .

Remark 3.5. It was conjectured in [24,23] that for h−p version of the finite elementmethod in R
3 the optimal convergence

rate will be e
−bN

1/5
dof , and it cannot be improved further with any mesh and any anisotropic polynomial order within the

elements.

Remark 3.6. It can be argued as in [24,23] that computationally, the optimal convergence rate e
−bN

1/5
dof may be improved

further by properly selecting the geometric mesh factors and degree factors µv, µe, µ1, µ2 etc.
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4. Preconditioners

Our construction of preconditioners is similar to that for elliptic problems in two dimensions (see [19,20]). As mentioned
in earlier sections, we had divided the polyhedral domain Ω into a regular region Ω r , a set of vertex neighbourhoods Ωv ,
a set of edge neighbourhoods Ωe and a set of vertex-edge neighbourhoods Ωv−e. Ω r is divided into a set of curvilinear
hexahedrons, tetrahedrons and prisms and the elements in the singular regions in the neighbourhoods of vertices, edges
and vertex-edges are divided into hexahedrons and prisms using a geometric mesh. The elements in the regular region
and the vertex neighbourhoods are mapped to the unit cube Q = (−1, 1)3. The numerical solution is approximated by a
constant on the corner most elements in vertex and vertex-edge neighbourhoods and it is a function of only one variable on
the corner elements in edge and vertex-edge neighbourhoods that are in the direction of the edges away from the vertices.
In the regular region and vertex neighbourhoods we approximate the solution by a polynomial of degree N in λ1, λ2 and λ3
variables separately, where λ1, λ2 and λ3 denote the transformed variables on the unit cube Q . In the remaining elements in
edge neighbourhoods and vertex-edge neighbourhoods, the solution is approximated by a polynomial of degreeW in each of
the variables in themodified coordinates in their respective neighbourhoods. Then the proposedmethod gives exponentially
accurate solution in N provided the data satisfy usual conditions [23,28,15,20].

We construct a preconditionerB(u) on each of these element in the neighbourhoods of vertices, edges, vertex-edges and
the regular region.We shall prove as in [29] that there is another quadratic formC(u)which is spectrally equivalent toB(u)
andwhich can be easily diagonalized using the separation of variables. Then thematrix corresponding to the quadratic form
C(u)will be easy to invert.

4.1. Preconditioners on the regular region

In the regular region the preconditioner which needs to be examined corresponds to the quadratic form

B(u) = ∥u∥2

H2(Q )
(4.1)

where Q = (−1, 1)3 = master cube, u = u(λ) = u(λ1, λ2, λ3) is a polynomial of degreeW in λ1, λ2 and λ3 separately.
Let u(λ1, λ2, λ3) be the spectral element function, defined on Q = (−1, 1)3, as

u(λ1, λ2, λ3) =
W

i=0

W

j=0

W

k=0

ai,j,kLi(λ1)Lj(λ2)Lk(λ3). (4.2)

Here, Li(·) denotes the Legendre polynomial of degree i.
The quadratic form B(u) can be written as

B(u) =


Q



|α|≤2

|Dαλu|2dλ. (4.3)

Let I denote the interval (−1, 1) and

v(λ1) =
W

i=0

βiLi(λ1). (4.4)

Moreover, b = (β0, β1, . . . , βW )
T . We now define the quadratic form

G(v) =


I

(v2λ1λ1 + v2λ1)dλ1 (4.5)

and

H(v) =


I

v2dλ1. (4.6)

Clearly there exist (W + 1)× (W + 1)matrices G and H such that

G(v) = bTGb (4.7)

and

H(v) = bTHb. (4.8)

Here, the matrices G and H are symmetric and H is positive definite.
Hence, there existW +1 eigenvalues 0 ≤ µ0 ≤ µ1 ≤ · · · ≤ µW andW +1 eigenvectors b0, b1, . . . , bW of the symmetric

eigenvalue problem

(G − µH)b = 0. (4.9)
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Here,

(G − µiH)bi = 0.

The eigenvectors bi are normalized so that

bTi Hbj = δij . (4.10a)

Moreover, the relations

bTi Gbj = µiδ
i
j (4.10b)

hold. Let bi = (bi,0, bi,1, . . . , bi,W ). We now define the polynomial

φi(λ1) =
W

j=0

bi,jLj(λ1) for 0 ≤ i ≤ W . (4.11)

Next, let ψi,j,k denote the polynomial

ψi,j,k(λ1, λ2, λ3) = φi(λ1)φj(λ2)φk(λ3) (4.12)

for 0 ≤ i ≤ W , 0 ≤ j ≤ W , 0 ≤ k ≤ W .
Let u(λ1, λ2, λ3) be a polynomial as in (4.2). Define the quadratic form

C(u) =


Q

(u2
λ1λ1

+ u2
λ2λ2

+ u2
λ3λ3

+ u2
λ1

+ u2
λ2

+ u2
λ3

+ u2)dλ1dλ2dλ3. (4.13)

Then the quadratic form C(u) is spectrally equivalent to the quadratic form B(u), defined in (4.1). Moreover, the quadratic
form C(u) can be diagonalized in the basis ψi,j,k(λ1, λ2, λ3). Note that {ψi,j,k(λ1, λ2, λ3)}i,j,k is the tensor product of the
polynomials φi(λ1), φj(λ2) and φk(λ3). The eigenvalue µi,j,k corresponding to the eigenvector ψi,j,k is given by the relation

µi,j,k = µi + µj + µk + 1. (4.14)

Hence, the matrix corresponding to the quadratic form C(u) is easy to invert.
Using the extension theorems in [30] and Lemma 2.1 in [29] we can extend u(λ1, λ2, λ3) defined in (4.2) to U(λ1, λ2, λ3)

by the method of reflection (see Theorem 4.26 of [30]). This extension U(λ1, λ2, λ3) of u(λ1, λ2, λ3) is such that
U(λ1, λ2, λ3) ∈ H2(R3) and satisfies the estimate



R3


U2
λ1λ1

+ U2
λ2λ2

+ U2
λ3λ3

+ U2

dλ ≤ K



Q


u2
λ1λ1

+ u2
λ2λ2

+ u2
λ3λ3

+ u2

dλ.

Here, K is a constant independent of W . Now making use of Theorem 2.1 of [29] and extending it to three dimensions it
follows that there exists a constant L (independent ofW ) such that

1

L
∥u∥2

H2(Q )
≤


Q


|uλ1λ1 |

2 + |uλ2λ2 |
2 + |uλ3λ3 |

2 + |uλ1 |
2 + |uλ2 |

2 + |uλ3 |
2 + |u|2


dλ

≤ ∥u∥2

H2(Q )
.

i.e. the quadratic forms B(u) and C(u) are spectrally equivalent.

Theorem 4.1. The quadratic forms B(u) and C(u) are spectrally equivalent.

We now show that the quadratic form C(u) defined in (4.13) as

C(u) =


Q


u2
λ1λ1

+ u2
λ2λ2

+ u2
λ3λ3

+ u2
λ1

+ u2
λ2

+ u2
λ3

+ u2

dλ1dλ2dλ3

can be diagonalized in the basis {ψi,j,k}i,j,k. Here, u is a polynomial in λ1, λ2 and λ3 as defined in (4.2). LetC(f , g) denote the
bilinear form induced by the quadratic form C(u). Then

C(f , g) =


Q


fλ1λ1gλ1λ1 + fλ2λ2gλ2λ2 + fλ3λ3gλ3λ3 + fλ1gλ1 + fλ2gλ2 + fλ3gλ3 + fg


dλ1dλ2dλ3. (4.15)

Let G(v) and H(v) be the quadratic forms defined in (4.5) and (4.6) and let G(f , g) and H(f , g) denote the bilinear forms
induced by G(v) and H(v) respectively. Then

G(f , g) =


I

(fλ1λ1gλ1λ1 + fλ1gλ1)dλ1 (4.16a)
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Table 2

Condition number κ as a function ofW .

W κ

2 3.69999999999999

4 4.90406593328559

6 5.27448215795748

8 5.48239323328901

10 5.62480021244268

12 5.72673215953223

14 5.80192403338903

16 5.85907843805046

and

H(f , g) =


I

fgdλ1. (4.16b)

Here, I denotes the unit interval and f (λ1), g(λ1) are polynomials of degreeW in λ1.
Finally, let φi(λ1) be the polynomial as defined in (4.11). Then relation (4.10a) may be written as

H(φi, φj) =


I

φi(λ1)φj(λ1)dλ1 = δij . (4.17a)

Moreover, relation (4.10b) may be stated as

G(φi, φj) =


I

((φi)λ1λ1(φj)λ1λ1 + (φi)λ1(φj)λ1)dλ1 = µiδ
i
j . (4.17b)

Recalling that ψi,j,k(λ1, λ2, λ3) = φi(λ1)φj(λ2)φk(λ3) and using (4.17) in (4.15) it is easy to show that

C(ψi,j,k, ψl,m,n) = (µi + µj + µk + 1)δilδ
j
mδ

k
n

= µi,j,kδ
i
lδ

j
mδ

k
n.

Hence, the eigenvectors of the quadratic formC(u) are {ψi,j,k}i,j,k and the eigenvalues are {µi,j,k}i,j,k. Moreover, the quadratic
form C(u) can be diagonalized in the basis {ψi,j,k}i,j,k and consequently the matrix corresponding to C(u) is easy to invert.

Let

u(λ1, λ2, λ3) =
W

i=0

W

j=0

W

k=0

βi,j,kLi(λ1)Lj(λ2)Lk(λ3)

and β denotes the column vector whose components are βi,j,k arranged in lexicographic order. Then there is a (W + 1)3 ×
(W + 1)3 matrix C such that

C(u) = βTCβ.

As in [29] it can be shown that the system of equations

Cβ = ρ

can be solved in O(W 4) operations. Therefore the quadratic form C(u) can be inverted in O(W 4) operations.
Let κ denote the condition number of the preconditioned system obtained by using the quadratic form C(u) as a

preconditioner for the quadratic form B(u). Then the values of κ as a function ofW are shown in Table 2.
In Fig. 4, the condition number κ is plotted against the polynomial orderW .

4.2. Preconditioners on singular regions

A set of spectral element functions has been defined on all elements in the regular region and various singular regions.
We choose our spectral element functions to be fully non-conforming. As earlier, let Fu denote the spectral element
representation of the function u.

We define the quadratic form

WN,W ({Fu}) = W
N,W
regular({Fu})+ W

N,W
vertices({Fu})+ W

N,W
vertex−edges({Fu})+ W

N,W
edges({Fu}). (4.18)

Here, W
N,W
regular({Fu}),WN,W

vertices({Fu}),WN,W
vertex−edges({Fu}) and W

N,W
edges({Fu}) are defined similar to the quadratic forms

U
N,W
regular({Fu}),UN,W

vertices({Fu}),UN,W
vertex−edges({Fu}) andU

N,W
edges({Fu}) respectively as in (2.10). Thenusing Theorem2.1 it follows

that for problems with Dirichlet boundary conditions the estimate

WN,W ({Fu}) ≤ C(lnW )2VN,W ({Fu}) (4.19)

holds, providedW = O(eN
α
) for α < 1/2.
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Fig. 4. Condition number κ vs. W .

At the same time using trace theorems for Sobolev spaces there exists a constant k such that

1

k
VN,W ({Fu}) ≤ WN,W ({Fu}). (4.20)

Hence, using (4.19) and (4.20) we conclude that the two quadratic forms WN,W ({Fu}) and VN,W ({Fu}) are spectrally
equivalent and there exists a constant K such that

1

K
VN,W ({Fu}) ≤ WN,W ({Fu}) ≤ K(lnW )2VN,W ({Fu}) (4.21)

providedW = O(eN
α
) for α < 1/2.

We can now use the quadratic form WN,W ({Fu}) which consists of a decoupled set of quadratic forms on each element
as a preconditioner. It follows that the condition number of the preconditioned system is O(lnW )2.

The other case is when the boundary conditions are of mixed Neumann and Dirichlet type. In this case, as above, using
Theorem 2.2 and trace theorems for Sobolev spaces it follows that forW and N large enough the following estimate holds

1

K
VN,W ({Fu}) ≤ WN,W ({Fu}) ≤ KN4VN,W ({Fu}).

Here, K is a constant. It is clear that the quadratic form WN,W ({Fu}) can be used as a preconditioner and the condition
number of the preconditioned system is O(N4).

We will now construct preconditioners on each of the elements in the neighbourhoods of vertices, edges, vertex-edges
and the regular region. Here, u denotes the spectral element function which is a polynomial of degree W in each of its
variables separately defined in various regions of the polyhedron.

The quadratic forms which need to be examined are

Bregular(u) = ∥ u ∥2

H2(Q )
=


Q



|α|≤2

|Dαλ1,λ2,λ3u|
2dλ1dλ2dλ3, (4.22)

Bvertices(u) = ∥ eχ/2u ∥2

H2(Ω̃v
l
) =



Ω̃v
l

eχ


|α|≤2

|Dαφ,θ,χu|2dφdθdχ, (4.23)

Bvertex−edges(u) =


Ω̃
v−e
l

eζ (u2
ψψ + u2

θθ + u2
ψθ + sin2 φu2

φζ + sin2 φu2
θζ

+ sin4 φu2
ζ ζ + u2

ψ + u2
θ + sin2 φu2

ζ + u2)dψdθdζ , (4.24)

Bedges(u) =


Ω̃e
l

(u2
ττ + u2

θθ + u2
τθ + e2τu2

τx3
+ e2τu2

θx3
+ e4τu2

x3x3
+ u2

τ + u2
θ + e2τu2

x3
+ u2)dτdθdx3. (4.25)

Here, (φ, θ, χ), (ψ, θ, ζ ) and (τ , θ, x3) denote the modified systems of coordinates introduced in Table 1 in vertex

neighbourhoods, vertex-edge neighbourhoods and edge neighbourhoods respectively. Moreover Ω̃v
l , Ω̃

v−e
l and Ω̃e

l denote
elements in the vertex neighbourhood, vertex-edge neighbourhood and edge neighbourhood respectively.

The construction of preconditioners corresponding to the quadratic formsBregular(u) andBvertices(u) is similar to the case
of a smooth domain already discussed so we omit the details. It follows that there exist quadratic forms Cregular(u) and
Cvertices(u) which are spectrally equivalent to Bregular(u) and Bvertices(u) respectively and which can be diagonalized using
separation of variables technique.

We will now obtain preconditioners for elements in edge and vertex-edge neighbourhood. For this purpose we observe
that for quadratic forms in edge and vertex-edge neighbourhoods it is enough to examine the quadratic form

B⋆(u) =
 1

−1

 1

−1

 1

−1

(u2
xx + u2

yy + η2u2
xz + η2u2

yz + η4u2
zz + u2

x + u2
y + η2u2

z + u2)dxdydz. (4.26)
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Here, η = sinφ and η = eτ for vertex-edge and edge neighbourhood elements respectively. We remark that the factor η
becomes smaller towards the vertices and edges of the domainΩ .

Making the transformation z̃ = z

η
, so that d

dz
= 1

η
d

dz̃
, the quadratic form B⋆(u) assumes the form

B⋆(u) =
 1

η

− 1
η

 1

−1

 1

−1

(u2
xx + u2

yy + u2
xy + u2

xz̃ + u2
yz̃ + u2

z̃z̃ + u2
x + u2

y + u2
z̃ + u2)dxdydz̃.

Let us define the quadratic form

C⋆(u) =
 1

−1

 1

−1

 1

−1

(u2
xx + u2

yy + η4u2
zz + u2

x + u2
y + η2u2

z + u2)dxdydz. (4.27)

We now show that the quadratic form C⋆(u) is spectrally equivalent to the quadratic form B⋆(u), defined in (4.26).
Moreover, C⋆(u) can be diagonalized using separation of variables technique.

Let

v(x) =
W

i=0

βiLi(x), and v(z) =
W

i=0

γiLi(z).

Moreover b = (β0, β1, . . . , βW )
T and d = (γ0, γ1, . . . , γW )

T .
We now define the quadratic forms

G(v) =


I

(v2xx + v2x )dx, H(v) =


I

v2dx, (4.28)

and

M(v) =


I

(η4v2zz + η2v2z )dz, N (v) =


I

v2dz. (4.29)

Here, I denotes the unit interval (−1, 1). Clearly, there exist (W + 1)× (W + 1)matrices G,M and H,N such that

G(v) = bTGb, M(v) = dTMd, (4.30)

and

H(v) = bTHb, N (v) = dTNd. (4.31)

Here, the matrices G,M and H,N are symmetric and H,N are positive definite.
Hence, there existW +1 eigenvalues 0 ≤ µ0 ≤ µ1 ≤ · · · ≤ µW andW +1 eigenvectors b0, b1, . . . , bW of the symmetric

eigenvalue problem

(G − µH)b = 0. (4.32)

Here,

(G − µiH)bi = 0.

Similarly, there existW + 1 eigenvalues 0 ≤ ν0 ≤ ν1 ≤ · · · ≤ νW andW + 1 eigenvectors d0, d1, . . . , dW of the symmetric
eigenvalue problem

(M − νN)d = 0. (4.33)

Here,

(M − νiN)di = 0.

The eigenvectors bi and ci are normalized so that

bTi Hbj = δij, and dTi Ndj = δij . (4.34a)

Moreover, the relations

bTi Gbj = µiδ
i
j and dTi Mdj = νiδ

i
j (4.34b)

hold. Let bi = (bi,0, bi,1, . . . , bi,W ) and di = (di,0, di,1, . . . , di,W ). We now define the polynomials

φi(x) =
W

m=0

bi,mLm(x), φj(y) =
W

m=0

bj,mLm(y), θk(z) =
W

m=0

dk,mLm(z) for 0 ≤ i, j, k ≤ W .
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Next, let χi,j,k denote the polynomial

χi,j,k(x, y, z) = φi(x)φj(y)θk(z) (4.35)

for 0 ≤ i ≤ W , 0 ≤ j ≤ W , 0 ≤ k ≤ W .
Note that {χi,j,k(x, y, z)}i,j,k is the tensor product of the polynomials φi(x), φj(y) and θk(z). The eigenvalue σi,j,k

corresponding to the eigenvector χi,j,k is given by the relation

σi,j,k = µi + µj + νk + 1. (4.36)

Let C⋆(f , g) be the bilinear form induced by the quadratic form C⋆(u). Then

C⋆(f , g) =
 1

−1

 1

−1

 1

−1

(fxxfxx + fyygyy + η4fzzgzz + fxgx + fygy + η2fzgz + fg)dxdydz.

It is easy to show that

C⋆(χi,j,k, χl,m,n) = (µi + µj + νk + 1)δilδ
j
mδ

k
n

= σi,j,kδ
i
lδ

j
mδ

k
n.

Hence, the eigenvectors of the quadratic form C⋆(u) are {χi,j,k}i,j,k and the eigenvalues are {σi,j,k}i,j,k. Thus, the quadratic
form C⋆(u) can be diagonalized in the basis {χi,j,k}i,j,k. Therefore, the matrix corresponding to the quadratic form C⋆(u) is
easy to invert.

Nowproceeding as earlier, it can be shown that the quadratic formsB⋆(u) andC⋆(u) are spectrally equivalent.Moreover,
the quadratic formC⋆(u) can be inverted inO(W 4) operations. Thus, it follows that there exist quadratic formsCvertex−edges(u)
and Cedges(u) which are spectrally equivalent to Bvertex−edges(u) and Bedges(u) respectively and which can be diagonalized
using separation of variables technique.

5. Computational techniques

Inminimizing the functionalRN,W ({Fv})we seek a solutionwhichminimizes the sumofweighted norms of the residuals
in the partial differential equation and a fractional Sobolev norm of the residuals in the boundary conditions and enforce
continuity by adding a term which measures the sum of squares of the jumps in the function and its derivatives at inter-
element boundaries in appropriate anisotropic Sobolev norm, suitably weighted in various regions of the polyhedron.

In this section, we show how to compute the residuals in the normal equations without having to compute and store
mass and stiffness matrices and we discuss computational complexity of our method in brief.

In order to obtain a solution using PCGM we must we able to compute residuals in the normal equations inexpensively,
since we are minimizing RN,W ({Fv}) over all {Fv} ∈ SN,W (space of spectral element functions) we have

RN,W (U + ϵV ) = RN,W (U)+ 2ϵV t(XU − YG)+ O(ϵ2)

for all V , where U is a vector assembles from the values of


ur
l (λ)

Nr

l=1
,

uvl (x

v)
Nv
l=1
,

uv−e
l (xv−e)

Nv−e

l=1
,

ue
l (x

e)
Ne

l=1


.

V is a vector similarly assembled and G is assembled from the data. Here, X and Y denote matrices. Thus we have to solve
XU −YG = 0 and so wemust be able to compute XU −YG economically during the iterative process. The idea is very similar
to the case of two dimensional problems so we refer the reader to [20] for details.

The above minimization amounts to an overdetermined system of equations consisting of collocating the residuals in
the partial differential equation, the residuals in the boundary conditions and jumps in the function and its derivatives at
inter-element boundaries at an over determined set of collocation points, weighted suitably. In fact we collocate the partial
differential equation on a finer grid of Gauss–Lobatto–Legendre (GLL) points and then we apply the adjoint differential
operator to these residuals and project these values back to the original grid. Such a treatment obviously involves integration
by parts and hence leads to evaluation of terms at the boundaries. These boundary terms can be evaluated by a collocation
procedure and the other boundary terms corresponding to jump terms at the inter-element boundaries can be easily
calculated (see [18]).

Since the majority of elements i.e. O(N2) is concentrated in the neighbourhoods of vertices and edges and each element
is mapped onto a separate processor therefore, we employ a parallel computer with O(N2) processors. For problems with
Dirichlet boundary conditions the condition number of the preconditioned system is O((lnW )2), providedW = O(eN

α
) for

α < 1/2. Hence, the method requires O(N lnN) iterations of the PCGM to obtain solution to an accuracy of O(e−bN) and it
requiresO(N5 ln(N)) operations on a parallel computer withO(N2) processors to compute the solution. Formixed problems
with Neumann and Dirichlet boundary conditions the condition number of the preconditioned system is O(N4), provided
W = O(eN

α
) for α < 1/2. Hence, it requires O(N3) iterations of the PCGM to obtain solution to an accuracy of O(e−bN) and

requires O(N7) operations on a parallel computer with O(N2) processors to compute the solution.
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Fig. 5. Mesh imposed onΩ = (0, 1)3 with mesh size h = 0.5.

Table 3

Performance of the p-version for Laplace equationwithDirichlet boundary conditions.

p = W Ndof Iterations ∥E∥rel(%)

2 64 51 0.380275E+02

4 512 213 0.204875E+01

6 1,728 303 0.269917E−01

8 4,096 380 0.221613E−03

10 8,000 456 0.106885E−05

12 13,824 523 0.452056E−08

6. Numerical results

We now present results of simulations that have been performed to validate the theory on polyhedral domains.
Throughout this section N denote the number of refinements in each direction and W the degree of the polynomials used
for approximation. In all our computationswe have employed a parallel computer and each element ismapped onto a single
processor.

In what follows, by iterations, we always mean the total number of iterations required to compute the solution up to de-
sired accuracy by PCGM. In all our examples the relative error is plotted on a log-scale. LetuSE be the spectral element solution
obtained from the minimization problem andw be the exact solution. Then the relative error (in H1-norm) is defined as

∥E∥rel =
∥uSE − w∥H1

∥w∥H1

.

6.1. Test problems with smooth solutions

We first analyse performance of our method for various test problems on polyhedral domains on which the solution is
smooth. From Section 3, it is clear that the error in the regular (smooth) region obeys

∥uSE − w∥H1 ≤ Ce
−bN

1/3
dof . (6.1)

Here, Ndof denotes the number of degrees of freedom (DOF).

Thus, in case the solution is analytic on Ω̄ , exponential convergence can be achieved by increasing the polynomial order
and keeping the number of elements fixed. Hence, for practical implementation it is enough to compute the error for p-
version of the method.

Example 6.1 (Laplace Equationwith Dirichlet Boundary Conditions).Our first example is the Laplace equation in the unit cube
Ω = (0, 1)3 shown in Fig. 5, with Dirichlet boundary conditions:

△w = 0 inΩ,

w = g on ∂Ω

where the data g is chosen so that the exact solution is

w(x, y, z) =
1

π2 sinh
√
2π

sin(πx) sin(πy) sinh(
√
2πz).

The results are given in Table 3. The relative error (in %) against polynomial orderW and iterations againstW are plotted
in Fig. 6(a) and (b) respectively. In Fig. 6(c) a graph is drawn for ∥E∥rel against degrees of freedom on a log scale. The error
curve is a straight line and this shows the exponential rate of convergence in agreement with (6.1).



1766 P. Dutt et al. / Computers and Mathematics with Applications 71 (2016) 1745–1771

Fig. 6. (a) ln ∥E∥rel vs. p, (b) Iterations vs. N , (c) ln ∥E∥rel vs. N
1/3

dof and (d) ln ∥E∥rel vs. Iterations for Laplace equation with Dirichlet boundary conditions.

Fig. 7. The domainΩ = (−1, 1)3 with uniform mesh refinements (a) Mesh 1, (b) Mesh 2 and (c) Mesh 3.

The example presented above deals with a constant coefficient differential operator. However, the method works for a
general non self-adjoint elliptic problem too. LetΩ = (−1, 1)3 denote the standard cube in R

3 with boundary ∂Ω . In our
next examplewe impose three differentmeshes onΩ with uniformmesh size h = 2.0, 1.0 and 0.67 in each directionwhich
corresponds to N = 1, 2 and 3 respectively (Fig. 7).

Example 6.2 (General Elliptic Equation with Variable Coefficients: A Non Self-adjoint Problem). Let us consider the non self-
adjoint general elliptic problem with mixed boundary conditions.

a(x, y, z)wxx + b(x, y, z)wyy + c(x, y, z)wzz + d(x, y, z)(wxy + wyz + wzx)+ e(x, y, z)w = f inΩ,

w = g on D,

∂w

∂ν
= h on N .

Here, D and N denote the Dirichlet and Neumann boundary part of ∂Ω respectively such that D = Γ1 ∪ Γ2 ∪ Γ3, where
Γ1,Γ2 and Γ3 are the faces corresponding to x = −1, x = 1 and y = −1 respectively. N = Γ4 ∪ Γ5 ∪ Γ6, where Γ4,Γ5 and
Γ6 are the faces corresponding to y = 1, z = −1 and z = 1 respectively. Moreover, ν denotes the outer unit normal to the
faces where Neumann boundary conditions are imposed. Further, we choose the coefficients of the problem as follows:

a(x, y, z) = −(0.50 + 0.05 exp(xyz)), b(x, y, z) = −(1.00 + 0.015 cos(x + y)),

c(x, y, z) = −(2.50 + 0.02 exp(y + z)), d(x, y, z) = −0.001 sin(π(x + y + z))

and e(x, y, z) = 4.05 + 0.045 cos


π(x + y + z)

2


.

Moreover, the right hand side function f and the data g and h are chosen such that the true solution is

w(x, y, z) =

sin(πx)+ sin

πy
2


cos(πz).

We examine the p-version of the method on different meshes in Table 4 for polynomial degree W = 2, . . . , 10. It is
clear that the method performs best on Mesh 3 and the error reduces to approximately 10−6%. However, on Mesh 1 the
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Table 4

Error as a function ofW for different values of h for general elliptic (non self-

adjoint) problem.

p = W Mesh 1 Mesh 2 Mesh 3

2 0.498666E+02 0.485737E+02 0.291328E+02

3 0.507328E+02 0.107829E+02 0.586317E+01

4 0.227058E+02 0.517751E+01 0.149092E+01

5 0.143968E+02 0.814482E+00 0.237686E+00

6 0.408230E+01 0.234810E+00 0.292025E−01

7 0.184822E+01 0.279261E−01 0.289156E−02

8 0.311612E+00 0.430208E−02 0.236661E−03

9 0.104765E+00 0.377498E−03 0.168223E−04

10 0.136308E−01 0.431639E−04 0.352480E−05

Table 5

Performance of the p-version for non self-adjoint problem.

p = W Ndof Iterations Relative error(%)

2 64 207 0.670184E+02

3 216 364 0.741499E+01

4 512 464 0.536971E+01

5 1000 519 0.725120E+00

6 1728 547 0.228276E+00

7 2744 605 0.267290E−01

8 4096 642 0.420000E−02

9 5832 671 0.364194E−03

10 8000 694 0.424524E−04

relative error decays slowly (see Table 5). Fig. 8 shows log ∥E∥rel plotted againstW for different meshes. In Fig. 9(a) we plot
error against polynomial order W . Error as a function of degrees of freedom is plotted in Fig. 9(c) on a log-scale showing
exponential convergence.

6.2. Test problems containing singularities

To show the effectiveness of the proposed method for problems containing singularities we now consider test problems
having singularities of various types discussed in Section 2.

As earlier, N will denote the number of layers in the geometric mesh and W , the polynomial order used. In case of
examples with vertex and edge singularities all our calculations are based on a parallel computer with O(N) processors and
in case of vertex-edge singularities we employ a parallel computer with O(N2) processors (since there are N2 elements in
the geometric mesh in this case) with each element being mapped onto a single processor. The geometric mesh factors in
the neighbourhoods of singularities are chosen as µv = 0.15 and µe = 0.15 which give optimal results.

Our first example is the Poisson equation containing only a vertex singularity with mixed boundary conditions. For
computational simplicity we shall assume that the singularity arises only at one vertex of the domain under consideration.
Our example is similar to that of Guo and Oh reported in [28].

Example 6.3 (Mixed Problem Containing Vertex Singularity). Consider the axisymmetric Poisson equation with mixed
boundary conditions:

−△u = f inΩ(v),

u = g on D ⊂ ∂Ω(v),

∂u

∂ν
= h on N = ∂Ω(v) \ D, (6.2)

where the domainΩ(v) is shown in Fig. 10 and

D = Γ1 ∪ Γ2 ∪ Γ3 ∪ Γ4 = Γ 1
D ∪ Γ 2

D ,

Γ 1
D = {(φ, θ, ρ) : φ = π/6, π/3, 0 ≤ θ ≤ 3π/2, 0 ≤ ρ ≤ 1},
Γ 2

D = {(φ, θ, ρ) : π/6 ≤ φ ≤ π/3, θ = 0, 3π/2, 0 ≤ ρ ≤ 1},
N = Γ5 = {(φ, θ, ρ) : π/6 ≤ φ ≤ π/3, 0 ≤ θ ≤ 3π/2, ρ = 1}.

We choose data f , g and h such that the function w = ρ0.1(1 − ρ) sin 2φ is the true solution of (6.2) satisfying prescribed
boundary conditions. Here, ν denotes the exterior unit normal to the part of the boundary where we impose Neumann
boundary conditions.
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Fig. 8. Error as a function ofW for different values of h for general elliptic (non self-adjoint) problem.

Fig. 9. (a) ln ∥E∥rel vs. p, (b) Iterations vs. N , (c) ln ∥E∥rel vs. N
1/3

dof and (d) ln ∥E∥rel vs. Iterations for general elliptic (non self-adjoint) equation with variable

coefficients.

Fig. 10. The domainΩ(v) containing a vertex singularity.

We know that the error in the neighbourhoods of vertices satisfies

∥uSE − w∥H1 ≤ Ce
−bN

1/4
dof . (6.3)

Table 6 contains the relative error obtained by applying the method on geometrically refined mesh in ρ. Fig. 11 contains

plots for various parameters. The relative error vs. N
1/4

dof (on a log-scale) is depicted in Fig. 11(c). The error profile is almost
a straight line. This confirms our theoretical estimate (6.3) on the exponential convergence. Iterations against number of
layers are plotted in Fig. 11(b). The relative error against polynomial order and iterations is plotted in Fig. 11(a) and (d)
respectively. It is evident from the plots that the method is very effective in dealing with vertex singularities.
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Table 6

Performance of the h-p version formixed problemonΩ(v) containing a vertex

singularity.

p = W Ndof Iterations Relative error(%)

2 9 16 0.962637E+01

3 55 39 0.252012E+01

4 193 128 0.191490E+00

5 501 176 0.212320E−01

6 1081 314 0.192391E−02

7 2059 409 0.884830E−03

8 3585 743 0.412629E−03

9 5833 814 0.470681E−04

Fig. 11. (a) Error vs. p, (b) Iterations vs. N , (c) Error vs. Ndof and (d) Error vs. Iterations for mixed problem containing a vertex singularity.

Next, we apply our method to Laplace equation containing an edge singularity.

Example 6.4 (Laplace Equation Containing Edge Singularity). Consider the boundary value problem:

−△w = 0 inΩ(e),

w = g on ∂Ω(e), (6.4)

where the domainΩ(e) (see Fig. 12) is given by

Ω(e) = {(r, θ, x3) : 0 ≤ r ≤ 1, 0 ≤ θ ≤ π/2, 0 ≤ x3 ≤ 1}.
We impose Dirichlet boundary conditions on all the faces marked as Γi, i = 1, . . . , 5.

Letw(r, θ, x3) = r
1
3 sin( θ

3
)x3. Thenw is the exact solution of (6.4) satisfying the Dirichlet boundary conditions u|

∂Ω
(e)
1

=
w. Note thatw has an edge singularity.

Table 7 contains the numerical results and it shows that ≈ 10−5(%) of relative error in the H1-norm is achieved with
W = 10 and Ndof ≈ 9000. The relative error against polynomial degree for W = 2, . . . , 10 is drawn in Fig. 13(a). In
Fig. 13(c) and (d) error as a function of degrees of freedom and iterations is plotted on a log scale. It follows that the error
decays exponentially and obeys the theoretical estimate (6.3).

7. Summary and conclusions

We have established error estimates of our method for elliptic problems on three dimensional non-smooth domains,
based on the non-conforming hp-version of the spectral element method. The error between the exact and the approximate
solution is shown to be exponentially small in N , the number of layers in the geometrical mesh. The method is essentially a
least-squares method and we use PCGM to solve normal equations using a block diagonal preconditioner. Moreover, there
exists a new preconditioner which can be diagonalized in a new set of basis functions, and hence it is easily inverted on each
element. The residuals in the normal equations can be obtained without computing and storingmass and stiffness matrices.
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Table 7

Performance of the h-p version for Laplace equation onΩ(e) .

p = W Ndof Iterations Relative error(%)

2 10 24 0.464542E+00

3 57 34 0.131359E+00

4 196 38 0.402204E−01

5 504 49 0.123974E−01

6 1085 58 0.364617E−02

7 2064 68 0.107525E−02

8 3592 75 0.315249E−03

9 5840 85 0.920349E−04

10 9001 98 0.279848E−04

Fig. 12. (a) The domainΩ(e) containing an edge singularity, (b) Geometrical mesh imposed onΩ(e) .

Fig. 13. (a) Error vs. p, (b) Iterations vs. N , (c) Error vs. Ndof and (d) Error vs. Iterations for Laplace equation containing an edge singularity.

Numerical experiments on non-smooth domains with analytic and singular solutions confirm our estimates of the error and
computational complexity.

The method presented in this series of papers can be applied to the elliptic problems arising from mechanics and
engineering such as elasticity problems on polyhedral domains andmagnetic–electric problems on smooth and non-smooth
domains in three dimensions. We intend to do more rigorous computations on some of these problems in the future work.
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