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GLOBAL EXISTENCE OF SOLUTIONS TO REACTION DIFFUSION

SYSTEMS WITH MASS TRANSPORT TYPE BOUNDARY CONDITIONS

VANDANA SHARMA† AND JEFF MORGAN∗

Abstract. We consider a reaction-diffusion system where some components react and diffuse on the bound-
ary of a region, while other components diffuse in the interior and react with those on the boundary through
mass transport. We establish local well-posedness and global existence of solutions for these systems using
classical potential theory and linear estimates for initial boundary value problems.

Key words. reaction-diffusion equations, mass transport, conservation of mass, Laplace Beltrami operator,
global existence, a priori estimates.

AMS subject classifications. 35K57, 35B45

1. Introduction. The idea that reaction-diffusion phenomena is essential to the growth
of living organisms seems quite intuitive. Indeed, it would be rather hard to envision how any
organism could grow and operate without moving its constituents around and using them in
various bio-chemical reactions [16]. For example, bacterial cytokinesis is one process which
can be modeled by reaction-diffusion systems. During the bacterial cytokinesis process, a
proteinaceous contractile ring assembles in the middle of the cell. The ring tethers to the
membrane and contracts to form daughter cells; that is, the “cell divides”. One mechanism
that centers the ring involves the pole-to-pole oscillation of proteins Min C, Min D and Min E.
Oscillations cause the average concentration of Min C, an inhibitor of the ring assembly, to be
lowest at the midcell and highest near the poles [35], [27]. This centering mechanism, relating
molecular-level interactions to supra-molecular ring positioning can be modelled as a system
of semilinear parabolic equations. The multi-dimensional version of the evolution of the Min
concentrations can be described as a special case of the reaction-diffusion system

ut = D∆u +H(u) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (u, v) x ∈M, 0 < t < T

D
∂u

∂η
= G(u, v) x ∈M, 0 < t < T(1.1)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

where Ω is a bounded domain in R
n, n ≥ 2, with smooth boundary M, ∆ and ∆M denote the

Laplace and Laplace Beltrami operators, η is the unit outward normal vector to Ω at points
on M , and D and D̃ are k × k and m × m diagonal matrices with positive diagonal entries
{dj}1≤j≤k and {d̃i}1≤i≤m respectively. F : Rk ×R

m → R
m, G : Rk ×R

m → R
k, H : Rk → R

k,
and u0 and v0 are componentwise nonnegative smooth functions that satisfy the compatibility
condition

D
∂u0

∂η
= G(u0, v0) on M.
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2 V. SHARMA AND J. MORGAN

For this model, Ω may represent the cell cytoplasm and M may represent its membrane. There
are some components that are bound to the membrane, and other components that move freely
in the cytoplasm. Also, the components on the membrane and cytoplasm react together on
the membrane through mass action and boundary transport. In Section 7, we present two
applications associated with (1.1), with one modeling the chemical reaction involving Min
protiens for positioning of the ring, explained in [27]. We point out the study in [35] that also
modeled these reactions.

In general, system (1.1) is somewhat reminiscent of two component systems where both of
the unknowns react and diffuse inside Ω, with various homogeneous boundary conditions and
nonnegative initial data. In that setting, global well-possedness and uniform boundedness has
been studied by many researchers, and we refer the interested reader to the excellent survey of
Pierre [23].

In the remainder of the introduction, we assume H = 0 and k = m = 1. A fundamental
mathematical question concerning global existence for (1.1) asks, what conditions on F and
G will guarantee that (1.1) has global solutions, and how are these conditions related to the
results listed in [23]? The focus of this paper is to give a partial answer to this question and to
apply our results to (1.1).

From a physical standpoint, it is natural to ask under what conditions the solutions of (1.1)
are nonnegative, and the total mass is either conserved or reduced. It is also important to ask
whether these conditions arise in problems similar to the above mentioned cell biology system.
Conditions that are similar in spirit to those given in [20], [13] and [23] result in nonnegative
solutions for system (1.1). More precisely, (1.1) has nonnegative solutions for all choices of
nonnegative initial data u0 and v0 if and only if F , G, and H are quasi-positive. That is
F (a, 0), G(0, a) ≥ 0 whenever a ≥ 0 (recall from above that H = 0 in the remainder of this
introduction). Also, some control of total mass can be achieved by assuming there exists α > 0
such that

F (u, v) +G(u, v) ≤ α(u+ v + 1) for all u, v ≥ 0.(1.2)

Assumption (1.2) (discussed later), generalizes mass conservation by implying that total mass,
∫

Ω
u(x, t) dx+

∫

M
v(ζ, t) dσ, grows at most exponentially in time t.

We suspect that the natural conditions, quasipositivity and conservation of mass, are not
sufficient to obtain global existence in (1.1), and that it is possible to construct an example
along the same lines as constructed in [24]. To this end, we impose a condition similar to
Morgan’s intermediate sums [21] and [22]. Namely, there exists a constant Kg > 0 such that

G(ζ, ν) ≤ Kg(ζ + ν + 1) for all ν, ζ ≥ 0.

In addition, we adopt a natural assumption of polynomial growth, which has been considered
in the context of chemical and biological modeling (see Horn and Jackson [14]). That is, there
exists l ∈ N and Kf > 0 such that

F (u, v) ≤ Kf (u+ v + 1)l for all v ≥ 0, u ≥ 0.

In our analysis, we extend recent results of Huisken and Polden [25], Polden [15], and Sharples
[31] associated with W

2,1
2 (M × (0, T )) results for solutions to linear Cauchy problems on a

membrane. We also verify and make use of a remark of Brown [4] which states that if d > 0
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and the Neumann data γ lies in Lp(M × (0, T )) for p > n+ 1, then the solution to

ϕt = d∆ϕ x ∈ Ω, 0 < t < T

d
∂ϕ

∂η
= γ x ∈M, 0 < t < T(1.3)

ϕ = 0 x ∈ Ω, t = 0

is Hölder continuous on Ω × (0, T ). We provide the proof of this result in section 5 for com-
pleteness of our arguments.

Note that the results of Amann [3] can be used to guarantee the local well posedness of
(1.1) subject to appropriate conditions on initial data and on the functions F and G. However,
those results do not provide the explicit estimates that are needed in our setting. Our approach
keeps the analysis on comparatively simpler Lp spaces.

It is worth mentioning that some of the results in section 5 are valid for domains that are
only C1. Handling cases with weak smoothness conditions on curves or domain boundaries was
one of the motivations for the results obtained in [4], [5], [9] and [10] , and these results may be
of independent interest.

2. Notations, Definitions and Preliminary Estimates. Throughout this paper, n ≥
2 and Ω is a bounded domain in R

n with smooth boundary M (∂Ω) belonging to the class
C2+µ with µ > 0 such that Ω lies locally on one side of its boundary. η is the unit outward
normal (from Ω) to M , and ∆ and ∆M are the Laplace and the Laplace Beltrami operators,
respectively. For more details, see Rosenberg [30] and Taylor [34]. In addition, m, k, n, i and j
are positive integers, D and D̃ are k × k and m×m diagonal matrices with positive diagonal
entries {dj}1≤j≤k and {d̃i}1≤i≤m, respectively.

2.1. Basic Function Spaces. Let B be a bounded domain on R
m with smooth boundary

such that B lies locally on one side of ∂B. We define all function spaces on B and BT = B×(0, T ).
Lq(B) is the Banach space consisting of all measurable functions on B that are qth(q ≥ 1) power
summable on B. The norm is defined as

‖u‖q,B =

(∫

B

|u(x)|qdx
) 1

q

Also,

‖u‖∞,B = ess sup{|u(x)| : x ∈ B}.

Measurability and summability are to be understood everywhere in the sense of Lebesgue.
If p ≥ 1, then W 2

p (B) is the Sobolev space of functions u : B → R with generalized deriva-
tives, ∂sxu (in the sense of distributions) |s| ≤ 2 belonging to Lp(B). Here s = (s1, s2,...,sn), |s| =
s1 + s2 + ..+ sn, |s| ≤ 2, and ∂sx = ∂s11 ∂

s2
2 ...∂snn where ∂i =

∂
∂xi

. The norm in this space is

‖u‖(2)p,B =
2∑

|s|=0

‖∂sxu‖p,B

Similarly, W 2,1
p (BT ) is the Sobolev space of functions u : BT → R with generalized deriva-

tives, ∂sx∂
r
t u (in the sense of distributions) where 2r + |s| ≤ 2 and each derivative belonging to

Lp(BT ). The norm in this space is

‖u‖(2)p,BT
=

2∑

2r+|s|=0

‖∂sx∂rt u‖p,BT
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In addition to W 2,1
p (BT ), we will encounter other spaces with two different ratios of upper

indices, W 1,0
2 (BT ), W

1,1
2 (BT ), V2(BT ), V

1,0
2 (BT ), and V

1, 12
2 (BT ) as defined in [19].

We also introduce W l
p(B), where l > 0 is not an integer, because initial data will be taken

from these spaces. The spaceW l
p(B) with nonintegral l, is a Banach space consisting of elements

of W
[l]
p ([l] is the largest integer less than l) with the finite norm

‖u‖(l)p,B = 〈u〉(l)p,B + ‖u‖([l])p,B

where

‖u‖([l])p,B =

[l]
∑

s=0

‖∂sxu‖p,B

and

〈u〉(l)p,B =
∑

s=[l]

(∫

B

dx

∫

B

|∂sxu(x)− ∂syu(y)|p.
dy

|x− y|n+p(l−[l])

) 1
p

W
l, l

2
p (∂BT ) spaces with non integral l also play an important role in the study of boundary

value problems with nonhomogeneous boundary conditions, especially in the proof of exact
estimates of their solutions. It is a Banach space when p ≥ 1, which is defined by means of
parametrization of the surface ∂B. For a rigorous treatment of these spaces, we refer the reader
to page 81 of Chapter 2 of [19].

The use of the spaces W
l, l

2
p (∂BT ) is connected to the fact that the differential properties

of the boundary values of functions from W 2,1
p (BT ) and of certain of its derivatives, ∂sx∂

r
t , can

be exactly described in terms of the spaces W
l, l

2
p (∂BT ), where l = 2− 2r − s− 1

p
.

For 0 < α, β < 1, Cα,β(BT ) is the Banach space of Hölder continuous functions u with the
finite norm

|u|(α)
BT

= sup
(x,t)∈BT

|u(x, t)|+ [u]
(α)
x,BT

+ [u]
(β)
t,BT

where

[u]
(α)

x,BT
= sup

(x,t),(x′,t)∈BT

x 6=x′

|u(x, t)− u(x′, t)|
|x− x′|α

and

[u]
(β)

t,BT
= sup

(x,t),(x,t′)∈BT

t6=t′

|u(x, t)− u(x, t′)|
|t− t′|β

We shall denote the space C
α
2 ,α2 (BT ) by C

α
2 (BT ). C(BT ,R

n) is the set of all continuous
functions u : BT → R

n, and C1,0(BT ,R
n) is the set of all continuous functions u : BT →

R
n for which uxi

is continuous for all 1 ≤ i ≤ n. C2,1(BT ,R
n) is the set of all continuous

functions u : BT → R
n having continuous derivatives uxi

, uxixj
and ut in BT . Note that similar

definitions can be given on BT . Moreover notations and definitions for Hölder and Sobolev
Spaces on manifolds are similar to the ones used in the Handbook of Global analysis [17]. More
developments on Sobolev spaces, Sobolev inequalities, and the notion of best constants may be
found in [6], [7], [12] and [34].



GLOBAL EXISTENCE OF SOLUTIONS TO REACTION DIFFUSION SYSTEMS 5

2.2. Preliminary Estimates. For completeness of our arguments, we state the following
results, which will help us obtain a priori estimates for the Cauchy problem on the manifold
M , and prove the existence of solutions in W 2,1

p (MT ). Lemmas 2.1, 2.4 and 2.6 can be found
on page 341, Chapter 4 in [19], as (2.24) and (2.25) on page 49 in [18], and [12] respectively.
Lemma 2.2 is stated as Lemma 3.3 in Chapter 2 of [19].

Let B be a bounded domain in R
m with smooth boundary ∂B belonging to the class C2+µ

with µ > 0 such that B lies locally on one side of the boundary ∂B. Let T > 0 and p > 1.

Suppose Θ ∈ Lp(BT ), w0 ∈ W 2
p (B), γ ∈ Wp

2− 1
p
,1− 1

2p (∂BT ). Also, let the coefficient matrix

(ai,j) be symmetric and continuous on BT , and satisfy the uniform ellipticity condition. That
is for some λ > 0

n∑

i,j=1

aij(x, t)ξiξj ≥ λ|ξ|2 for all (x, t) ∈ BT and for all ξ ∈ R
n

Finally, let the coefficients ai be continuous on BT . Consider the problem

∂w

∂t
−

n∑

i,j=1

aij(x, t)
∂2w

∂xi∂xj
+

n∑

i=1

ai(x, t)
∂w

∂xi
= Θ(x, t) (x, t) ∈ BT

w = γ(x, t) (x, t) ∈ ∂BT(2.1)

w
∣
∣
t=0

= w0(x) x ∈ B

Lemma 2.1. Let p > 1 with p 6= 3
2 , and in the case p > 3

2 , assume the compatibility

condition of zero order, w0|∂B = γ|t=0. Then (2.1) has a unique solution w ∈ Wp
2,1(BT ), and

there exists C > 0 depending on T, p and B, and independent of Θ, w0 and γ such that

‖w‖(2)p,BT
≤ C(‖Θ‖p,BT

+ ‖w0‖
(2− 2

p
)

p,B + ‖γ‖(2−
1
p
,1− 1

2p )

p,∂BT
)

Lemma 2.2. Suppose q ≥ p, 2− 2r − s −
(

1
p
− 1

q

)

(m + 2) ≥ 0 and 0 < δ ≤ min{d;
√
T}.

Then there exists c1, c2 > 0 depending on r, s,m, p and B such that

‖Dr
tD

s
xu‖q,BT

≤ c1δ
2−2r−s−( 1

p
− 1

q )(m+2)‖u‖(2)p,BT
+ c2δ

−(2r+s+( 1
p
− 1

q )(m+2))‖u‖p,BT

for all u ∈W 2,1
p (BT ). Moreover, if 2− 2r− s− (m+2)

p
> 0, then for 0 ≤ α < 2− 2r− s− (m+2)

p

there exist constants c3, c4 depending on r, s,m, p and B such that

|Dr
tD

s
xu|

(α)
BT

≤ c3δ
2−2r−s−m+2

p
−α‖u‖(2)p,BT

+ c4δ
−(2r+s+ (m+2)

p
+α)‖u‖p,BT

for all u ∈W 2,1
p (BT ).

Corollary 2.3. Suppose the conditions of Lemma 2.1 are fulfilled and p > m+2
2 . Then

there exists ĉ > 0 depending on m, p and B such that the solution of problem (2.1) is Hölder
continuous, and

|w|(2−
m+2

p
)

BT
≤ ĉ‖w‖(2)p,BT



6 V. SHARMA AND J. MORGAN

Lemma 2.4. Suppose 1 < p < ∞. If p < m then W 1
p (B) embedds continuously into

W
(1− 1

p
)

p (∂B) and Lq(B) for p ≤ q ≤ p∗ = mp
m−p

. Furthermore, if ǫ > 0 there exists Cǫ > 0 such
that

‖v‖pq,B ≤ ǫ‖vx‖pp,B + Cǫ‖v‖p1,B

for all v ∈W 1
p (B), and

‖v‖22,∂B ≤ ǫ‖vx‖22,B + Cǫ‖v‖22,B

for all v ∈W 1
2 (B).

Lemma 2.5. Let p > m and 0 < α < 1− m
p
. Then W 1

p (B) embedds compactly in Cα(B).

Lemma 2.6. Let M be a compact Riemannian manifold of dimension m ≥ 1 and p > m.
Then the embedding W 1

p (M) ⊂ Cα(M) is compact for all 0 < α < 1− m
p
.

The following result follows from the Gagliardo Nirenberg inequality in [8] on bounded C1

domains, and Young’s inequality on page 40 in [18].

Lemma 2.7. Let ǫ > 0 and 1 < p <∞. Then there exists Cǫ,p > 0 such that

‖vx‖p,B ≤ ǫ‖vxx‖p,B + Cǫ,p‖v‖p,B

for all v ∈ W 2
p (B).

3. Statements of Main Results. The primary concern of this work is the system

ut = D∆u +H(u) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (u, v) x ∈M, 0 < t < T

D
∂u

∂η
= G(u, v) x ∈M, 0 < t < T(3.1)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

where D and D̃ are k×k and m×m diagonal matrices with positive diagonal entries, F = (Fi) :
R

k×R
m → R

m, G = (Gj) : R
k×R

m → R
k and H = (Hj) : R

k → R
k, and u0 = (u0j) ∈W 2

p (Ω),
v0 = (v0i) ∈W 2

p (M) with p > n. Also, u0 and v0 satisfy the compatibility condition

D
∂u0

∂η
= G(u0, v0) on M.

Remark 1. Since p > n, u0 and v0 are Hölder continuous functions on Ω and M respec-
tively (see [1], [8]).

Definition 3.1. A function (u, v) is said to be a solution of (3.1) if and only if

u ∈ C(Ω× [0, T ),Rk) ∩ C1,0(Ω× (0, T ),Rk) ∩ C2,1(Ω× (0, T ),Rk)
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and

v ∈ C(M × [0, T ),Rm) ∩ C2,1(M × (0, T ),Rm)

such that (u, v) satisfies (3.1). If T = ∞, the solution is said to be a global solution. Moreover,
a solution (u, v) defined for 0 ≤ t < b is a maximal solution of (3.1) if and only if (u, v) solves
(3.1) with T = b, and if d > b and (ũ, ṽ) solves (3.1) for T = d then there exists 0 < c < b such
that (u(·, c), v(·, c)) 6= (ũ(·, c), ṽ(·, c)).

We say F , G and H are quasipositive if and only if Fi(ζ, ξ) ≥ 0 whenever ξ ∈ R
m
+ and

ζ ∈ R
k
+ with ξi = 0 for i = 1, ...,m, and Gj(ζ, ξ) ≥ 0, Hj(ζ) ≥ 0 whenever ξ ∈ R

m
+ and ζ ∈ R

k
+

with ζj = 0, for j = 1, ..., k.

The purpose of this study is to give sufficient conditions guaranteeing that (3.1) has a
global solution. The following Theorems comprise local and global existence of the solution.

Theorem 3.2. Suppose F , G and H are locally Lipschitz. Then there exists Tmax > 0
such that (3.1) has a unique, maximal solution (u, v) with T = Tmax. Moreover, if Tmax < ∞
then

lim sup
t→T−

max

‖u(·, t)‖∞,Ω + lim sup
t→T−

max

‖v(·, t)‖∞,M = ∞

In addition to the assumptions stated above, we say condition Vi,j holds for 1 ≤ j ≤ k and
1 ≤ i ≤ m if and only if
(Vi,j1) There exist α, β, σ > 0 such that

σFi(ζ, ν)+Gj(ζ, ν) ≤ α(ζj+νi+1) and Hj(ζ) ≤ β(ζj+1) for all ν ∈ R
m
≥0, ζ ∈ R

k
≥0

(Vi,j2) There exists Kg > 0 such that

Gj(ζ, ν) ≤ Kg(ζj + νi + 1) for all ν ∈ R
m
≥0, ζ ∈ R

k
≥0

(Vi,j3) There exists l ∈ N and Kf > 0 such that

Fi(ζ, ν) ≤ Kf (|ζ|+ |ν|+ 1)l for all ν ∈ R
m
≥0, ζ ∈ R

k
≥0

Remark 2. (Vi,j2) is related to the so - called linear “intermediate sums” condition used by
Morgan in [21], [22] in the special case when the system has only two equations. This condition
in [21], [22], as well as [23] pertains to interactions between the first m-1 equations in an m
component system. Again, see [21], [22] and [23]. (Vi,j1) helps control mass, and allows higher
order nonlinearities in F , but requires cancellation of high-order positive terms by G. (Vi,j3)
implies F is polynomially bounded above.

Remark 3. We will show that (Vi,j1) provides L1 estimates for uj on Ω and M , and vi
on M . (Vi,j2) helps us bootstrap Lp estimates for uj on M × (0, Tmax) and Ω× (0, Tmax), and
vi on M × (0, Tmax). Finally, (Vi,j2) and (Vi,j3) allow us to use Lp estimates to obtain sup
norm estimates on uj and vi.

Theorem 3.3. Suppose F , G and H are locally Lipschitz, quasi positive, and u0, v0 are
componentwise nonnegative functions. Also, assume that for each 1 ≤ j ≤ k and 1 ≤ i ≤ m,
there exists li ∈ {1, ..., k} and kj ∈ {1, ...,m} so that both Vi,li and Vkj ,j are satisfied. Then
(3.1) has a unique component-wise nonegative global solution.

Corollary 3.4. Suppose k = m = 1, F, G and H are locally Lipschitz and quasipositive,
and u0, v0 are nonnegative functions. If V1,1 is satisfied, then (3.1) has a unique nonnegative
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global solution.

In the process of obtaining our results, we will derive W 2,1
p (MT ) estimates of the Cauchy

problem on MT , and Hölder estimates of the solution to the Neumann problem on ΩT . The
Hölder estimates for the solution to the Neumann problem are given as a comment in Brown
[4]. We give the statement as Theorem 3.6 below, and supply a proof in section 5. Let d̃, d > 0.
Consider the systems

Ψt = d̃∆MΨ+ f (ξ, t) ∈M × (0, T )

Ψ
∣
∣
t=0

= Ψ0 ξ ∈M(3.2)

and

ϕt = d∆ϕ + θ x ∈ Ω, 0 < t < T

d
∂ϕ

∂η
= γ x ∈M, 0 < t < T(3.3)

ϕ = ϕ0 x ∈ Ω, t = 0

Theorem 3.5. If 1 < p < ∞ and T > 0, then there exists Ĉp,T > 0 such that whenever

Ψ0 ∈W
2− 2

p
p (M) and f ∈ Lp(MT ), there exists a unique solution Ψ ∈W 2,1

p (MT ) of (3.2), and

‖Ψ‖(2)p,MT
≤ Ĉp,T (‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M )

Theorem 3.6. Suppose p > n+ 1 and T > 0 and θ ∈ Lp(Ω× (0, T )), γ ∈ Lp(M × (0, T ))
and ϕ0 ∈W 2

p (Ω) such that

d
∂ϕ0

∂η
= γ(x, 0) on M .

Then there exists Cp,T > 0 independent of θ, γ and ϕ0 and a unique weak solution ϕ ∈ V
1, 12
2 (ΩT )

of (3.3), such that if 0 < β < 1− n+1
p

then

|ϕ|(β)ΩT̂
≤ Cp,T (‖θ‖p,ΩT

+ ‖γ‖p,MT
+ ‖ϕ0‖(2)p,Ω)

The proofs of Theorems 3.5 and 3.6 are given in sections 4 and 5. The remaining results are
proved in section 6, and examples are given in section 7.

4. W 2,1
p estimates for the Cauchy problem on a manifold. Let n ≥ 2 and M be

a compact n − 1 dimensional Riemannian manifold without boundary. Consider (3.2) where

d̃ > 0, f ∈ Lp(MT ) and Ψ0 ∈ W
2− 2

p
p (M). Searching the literature, we surprisingly could not

find W 2,1
p (MT ) estimates for the solutions to (3.2). Tracing through the work in this direction,

we found that Huisken and Polden [15] and [25], and J.J Sharples [31] give a result in the
setting where p = 2. Using their W 2,1

2 (MT ) estimate, we obtain W 2,1
p (MT ) a priori estimates

for solutions of (3.2) for all p > 1. For a > 0 and smooth functions f, g : M × [0,∞) → R,
Polden considered weighted inner products:

〈f, g〉LLa
=

∫ ∞

0

e−2at〈f(·, t), g(·, t)〉L2(M)dt
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〈f, g〉LW 1
a
=

∫ ∞

0

e−2at〈f(·, t), g(·, t)〉W 1
2 (M)dt

〈f, g〉LW 2
a
=

∫ ∞

0

e−2at〈f(·, t), g(·, t)〉W 2
2 (M)dt

〈f, g〉WWa
= 〈f(·, t), g(·, t)〉LW 1

a
+ 〈Dtf,Dtg〉LLa

Where LLa, LWa andWWa are the Hilbert spaces formed by the completion of C∞(M×[0,∞))
in the corresponding norms, and WW 0

a is the completion of subspace of C∞(M × [0,∞)) with
compact support in WWa. See [31] for the proof of the following result.

Theorem 4.1. Suppose Ψ0 lies in W 1
2 (M) and f ∈ LLa(M× [0,∞)). Then for sufficiently

large a, the system (3.2) has a unique weak solution in WW 0
a .

Furthermore using a priori estimates in [31], they showed that the solution belongs toW 2,1
2 (M×

[0,∞)).

Theorem 4.2. Let Ψ ∈ WWa be the unique solution of (3.2) with Ψ0 ∈ W 1
2 (M) and

f ∈ LLa(MT ). Then Ψ ∈ LW 2
a , and there exists C > 0 independent of Ψ0 and f such that

‖Ψ‖2LW 2
a
≤ C(‖Ψ0‖2W 1

2 (M) + ‖f‖2LLa
)

Proof. See Lemma 4.3 in [31].

The result below is an immediate consequence.

Corollary 4.3. Let 0 < T < ∞. Suppose Ψ0 ∈ W 1
2 (M) and f ∈ L2(MT ). Then there

exists a unique weak solution to (3.2) in W 2,1
2 (MT ), and there exists C > 0 independent of Ψ0

and f such that

‖Ψ‖2
W

2,1
2 (MT )

≤ C(‖Ψ0‖2W 1
2 (M) + ‖f‖2L2(MT ))

We will use the W 2,1
2 (MT ) result to derive W 2,1

p (MT ) a priori estimates for solutions to
(3.2) for all p > 1. To obtain these estimates, we transform the Cauchy problem defined locally
on M to a bounded domain on R

n−1 and obtain the estimates over this bounded domain.
Then we pull the resulting estimates back to the manifold. Repeating this process over every
neighborhood on the manifold, and using compactness of the manifold, we get estimates over
the entire manifold.

Let F be a subset of R+ with following property:

p > 1 belongs to F if and only if there exists Cp,T > 0 such that whenever Ψ0 ∈ W
2− 2

p
p (M)

and f ∈ Lp(MT ), then there exists a unique Ψ ∈W 2,1
p (MT ), such that Ψ solves (3.2) and

‖Ψ‖(2)p,MT
≤ Cp,T (‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M )

Note: From Corollary 4.3, 2 ∈ F . Also note that we can prove Theorem 3.5 by showing
F = (1,∞).
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Lemma 4.4. [2,∞) ⊂ F .

Proof. We will show that if p ∈ F then [p, p + 1
n−1 ] ⊂ F . To this end, let p ∈ F

and q ∈ [p, p + 1
n−1 ] such that Ψ0 ∈ W

2− 2
q

q (M) and f ∈ Lq(MT ). Then f ∈ Lp(MT ) and

Ψ0 ∈ W
2− 2

p
p (M). Since p ∈ F , there exists Cp,T > 0 independent of Ψ0 and f , and a unique

Ψ ∈W 2,1
p (MT ) solving (3.2) such that

‖Ψ‖(2)p,MT
≤ Cp,T (‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M )(4.1)

Let B(0, 1) be the open ball in R
n−1 of radius 1 centered at the origin. Now, M is a C2

manifold. Therefore, for each point ξ ∈ M there exists an open set Vξ of M containing ξ and

a C2 diffeomorphism φξ : B(0, 1)
onto−→ Vξ. Let Φ = Ψ ◦ φξ, f̃ = f ◦ φξ and Φ0 = Ψ0 ◦ φξ. Using

the Laplace Beltrami operator (defined in [30]), (3.2) takes the form

Φt =
d̃√
det g

∂j(g
ij
√

det g ∂iΦ) + f̃(x, t) x ∈ B(0, 1), 0 < t < T

Φ = Φ0 x ∈ B(0, 1), t = 0(4.2)

where g is the metric on M and gij is the i, jth entry of the inverse of the matrix corresponding
to metric g. That is, in the bounded region B(0, 1)× (0, T ), we have

L(Φ) = Φt −
n−1∑

i,j=1

aijΦxixj
+

n−1∑

i=1

aiΦxi
= f̃(4.3)

Φ
∣
∣
t=0

= Φ0(4.4)

where,

aij = d̃ gij

ai =
−d̃√
det g

∂j(g
ij
√

det g)

Note Ψ ∈ W 2,1
p (MT ) implies Φ ∈ W 2,1

p (B(0, 1) × (0, T )). Take 0 < 2r < 1 and define a cut off
function ψ ∈ C∞

0 (Rn−1, [0, 1]) such that,

ψ(x) =

{

1 ∀x ∈ B(0, r)

0 ∀x ∈ R
n−1\B(0, 2r)

(4.5)

In Q = B(0, 2r), QT = B(0, 2r) × (0, T ) and ST = ∂B(0, r) × (0, T ), w = ψΦ satisfies the
equation

∂w

∂t
−

n−1∑

i,j=1

aij
∂2w

∂xi∂xj
+

n−1∑

i=1

ai
∂w

∂xi
= θ (x, t) ∈ QT

w = 0 (x, t) ∈ ST

w
∣
∣
t=0

= ψΦ0 t = 0, x ∈ Q
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where,

θ = f̃ψ − 2

n−1∑

i=1

aij
∂Φ

∂xi

∂ψ

∂xj
− Φ

n−1∑

i,j=1

aij
∂2ψ

∂xi∂xj
+Φ

n−1∑

i=1

ai
∂ψ

∂xi

Since ψ ∈ C∞
0 (Rn−1, [0, 1]) and Φ ∈W 2,1

p (B(0, 1)× (0, T )), therefore θ − f̃ψ ∈W 1,1
p (QT ).

Case 1. Suppose p < n. From Lemma 2.4, θ − f̃ψ ∈ L
min{q, p+ p2

n−p
}
(QT ). In particular

since p+ 1
n−1 < p+ p2

n−p
, and f̃ψ ∈ Lq(QT ), we have θ ∈ Lq(QT ). As a result

‖θ‖q,QT
≤ ‖f̃ψ‖q,QT

+ C1‖Φ‖q,QT
+ C2‖Φx‖q,QT

≤ ‖f̃ψ‖q,QT
+ C1‖Φ‖q,QT

+ C2‖Φx‖(1)p,QT

where C1, C2 > 0 are independent of f . Now in order to estimate ‖Φx‖(1)p,QT
, apply the change

of variable

‖Φx‖(1)p,QT
= ‖Ψx| det((φ−1

ξ )
′

)|‖(1)
p,(φξ(Q))

T

and using (4.1), we get

‖θ‖q,QT
≤ ‖f̃ψ‖q,QT

+ C1‖Φ‖q,QT
+ C2p,T (‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M )

where C2p,T > 0 is independent of f and Ψ0. At this point, we need an estimate on ‖Φ‖q,QT
.

Again ‖Φ‖q,QT
= ‖Ψ| det((φξ−1)

′

)|‖q,(φξ(Q))
T
and from Lemma 2.4,

‖Ψ| det((φξ−1)
′

)|‖q,(φξ(Q))
T
≤ C̃‖Ψ| det((φξ−1)

′

)|‖(1)
p,(φξ(Q))

T

Thus

‖θ‖q,QT
≤ Kp,T (‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M )(4.6)

where Kp,T > 0 is independent of f and Ψ0.
Since gi,j are C1 functions on the compact manifold M , ai,j and ai satisfy the hypothesis

(bounded continuous function in QT ) of Lemma 2.1. Therefore using Lemma 2.1,

‖w‖(2)q,QT
≤ Cq,T (‖θ‖q,QT

+ ‖ψΦ0‖
(2− 2

q
)

q,Q )(4.7)

where Cq,T > 0 is independent of θ and ψΦ0. Combining (4.6) and (4.7) we get,

‖w‖(2)q,QT
≤ Cq,T (‖θ‖q,QT

+ ‖ψΦ0‖
(2− 2

q
)

q,Q )

≤ K̃p,T (‖f‖p,MT
+ ‖Ψ0‖

(2− 2
p
)

p,M + ‖ψΦ0‖
(2− 2

q
)

q,Q )

where K̃p,T > 0 is independent of f , θ and ψΦ0. Note that w = Φ on WT = B(0, r) × (0, T ).
Thus

‖Φ‖(2)q,WT
≤ K̃p,T (‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M + ‖ψΦ0‖
(2− 2

q
)

q,Q )(4.8)



12 V. SHARMA AND J. MORGAN

Observe (4.8) is over B(0, r)× (0, T ) ⊂ R
n−1 ×R+. To get the estimate back on the manifold,

apply the change of variable, ‖Φ‖(2)q,WT
= ‖Ψ| det((φ−1)

′

)|‖(2)
q,φ(WT ) and using first mean value

theorem of integration there exist ξ̂ ∈ φ(WT ), and K̃p,T,ξ̂
such that

‖Ψ‖(2)
q,φ(WT ) ≤ K̃p,T,ξ̂(‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M + ‖Ψ0‖
(2− 2

q
)

q,φ(Q))(4.9)

So far, an estimate in one open neighborhood of some point ξ ∈ M is obtained. As
one varies the point ξ on M , there exist corresponding open neighborhoods Vξ and a smooth

diffemorphisms φξ : B(0, r)−→Vξ, which results in different K̃p,T,ξ̂ for every Vξ. Consider an

open cover ofM such thatM =
⋃

ξ∈M Vξ. SinceM is compact, there exists {ξ1, ξ2, ..., ξN} such

thatM ⊂ ⋃ ξj∈M
1≤j≤N

Vξj and K̃p,T,ξ̂j
corrresponding to each Vξj . Let, Cp,M,T =

∑

1≤j≤N K̃p,T,ξ̂j
.

Inequality (4.9) implies

‖Ψ‖(2)q,MT
≤ Cp,M,T (‖f‖q,MT

+ ‖Ψ0‖
(2− 2

q
)

q,M )

Thus [p, p+ 1
n−1 ] ⊂ F .

Case 2. Suppose p ≥ n.

By Lemma 2.4 and Theorem 4.12 in [1], if q ∈ [p,∞), Ψ0 ∈ W
2− 2

q
q (M), and f ∈ Lq(MT )

then θ ∈ Lq(QT ), and proceeding similarly to Case 1, we get

‖Ψ‖(2)q,MT
≤ Cq,M,T (‖f‖q,MT

+ ‖Ψ0‖
(2− 2

q
)

q,M )

where Cq,M,T > 0 is independent of f , θ and ψΦ0. Hence [2,∞) ⊂ F .

Proof of Theorem 3.5: From Lemma 4.4, we have [2,∞) ⊂ F . It remains to show that

(1, 2) ⊂ F . Let 1 < p < 2 , f ∈ Lp(MT ) and Ψ0 ∈ W 2− 2
p (M). Since C∞(MT ) is

dense in Lp(MT ) and C∞(M) is dense in W
2− 2

p
p (M), there exist a sequences of functions

{fk} ⊆ C∞(MT ) and {Ψ0k} ⊆ C∞(M) such that fk converges to f in Lp(MT ) and Ψ0k

converges to Ψ0 in W
2− 2

p
p (M). Define a sequence {Ψk} such that,

Ψkt
= d̃∆MΨk + fk ξ ∈M, 0 < t < T

Ψk = Ψ0k ξ ∈M, t = 0(4.10)

Now, transform system (4.10) over a bounded region in R
n−1. Similar to the proof of Lemma

4.4, for each point ξ ∈M there exists an open set Vξ ofM containing ξ and a C2 diffeomorphism

φξ : B(0, 1)
onto−→ Vξ. Corresponding to each k, let f̃k = fk ◦ φξ, Φ0k = Ψ0k ◦ φξ and using the

Laplace Beltrami operator, (4.10) on B(0, 1) ⊂ U takes the form

Φkt =
d̃√
det g

∂j(g
ij
√

det g ∂iΦk) + f̃k x ∈ B(0, 1), 0 < t < T(4.11)

Φk = Φ0k x ∈ B(0, 1), t = 0

Consequently, in a bounded region B(0, 1) × (0, T ) of the Euclidean space, we consider
(4.11) in the nondivergence form defined in (4.3) for each Φk, with f̃ replaced by f̃k and Φ0 by
Φ0k.
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Taking 0 < 2r < 1, using a cut off function ψ ∈ C∞
0 (Rn−1, [0, 1]) defined in (4.5), and

defining Q = B(0, 2r), QT = B(0, 2r) × (0, T ), ST = ∂B(0, r) × (0, T ), and wk = ψΦk, we see
that

∂wk

∂t
−

n−1∑

i,j=1

aij
∂2wk

∂xi∂xj
+

n−1∑

i=1

ai
∂wk

∂xi
= θk (x, t) ∈ QT

wk = 0 (x, t) ∈ ST

wk

∣
∣
t=0

= ψΦ0k t = 0, x ∈ Q

where,

θk = f̃kψ − 2

n−1∑

i=1

aij
∂Φk

∂xi

∂ψ

∂xj
− Φk

n−1∑

i,j=1

aij
∂2ψ

∂xi∂xj
+Φk

n−1∑

i=1

ai
∂ψ

∂xi

Note that fk and Ψ0k are smooth functions. Therefore Lemma 4.4 guarantees Φk ∈W 2,1
q (QT )

for all q ≥ 2. Thus θk ∈ Lq(QT ) for all q ≥ 2. Recall ψ ∈ C∞
0 (Rn−1, [0, 1]). Using Lemma 2.7

for ǫ > 0, there exists cǫ > 0 such that

‖θk‖p,QT
≤ ‖f̃kψ‖p,QT

+M1‖Φk‖p,QT
+M2‖Φkx‖p,QT

≤ ‖f̃k‖p,QT
+M1‖Φk‖p,QT

+M2(ǫ‖Φkxx‖p,QT
+ cǫ‖Φk‖p,QT

)(4.12)

HereM1,M2 > 0 are independent of f and Ψ0. At this point we need an estimate for ‖Φk‖p,QT
.

From Lemma 2.4 for 1 < p ≤ n < q there exists Cǫ > 0 such that

‖Φk‖pL pq
q−p

(QT ) ≤ ǫ(‖Φkx‖pp,QT
+ ‖Φkt‖pp,QT

) + Cǫ‖Φk‖p1,QT

Since p < pq
q−p

, from Hölder’s inequality, ǫ and Cǫ get scaled to ǫ̃ > 0 and Cǫ̃ > 0 (with ǫ̃→ 0+

as ǫ→ 0+), and

‖Φk‖p,QT
≤ ǫ̃(‖Φkt‖p,QT

+ ‖Φkx‖p,QT
)(4.13)

+ Cǫ̃‖Φk‖1,QT

From (4.12) and (4.13),

‖θk‖p,QT
≤ (M1 +M2cǫ)(ǫ̃(‖Φkt‖p,QT

+ ‖Φkx‖p,QT
) + Cǫ̃‖Φk‖1,QT

)

+ ‖f̃k‖p,QT
+M2ǫ‖Φkxx‖p,QT

Recall gi,j are C1 functions on the compact manifold M . Therefore ai,j and ai satisfy the
hypothesis (bounded continuous function in QT ) of Lemma 2.1. Using Lemma 2.1 for p 6= 3

2 ,

‖wk‖(2)p,QT
≤ Cp,T (‖θk‖p,QT

+ ‖ψΦ0k‖
(2− 2

p
)

p,Q )(4.14)

where Cp,T is independent of θ and ψΦ0. Combining (4.12) and (4.14), we get

‖wk‖(2)p,QT
≤ Cp,T (‖θk‖p,QT

+ ‖ψΦ0k‖
(2− 2

p
)

p,Q )

≤ Cp,T {‖f̃k‖p,QT
+M2ǫ‖Φkxx‖p,QT

+ (M1 +M2cǫ)(ǫ̃(‖Φkt‖p,QT
+ ‖Φkx‖p,QT

) + Cǫ̃‖Φk‖1,QT
)

+ ‖ψΦ0k‖
(2− 2

p
)

p,Q }
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Note that wk = Φk on WT = B(0, r)× (0, T ). Thus

‖Φk‖(2)p,WT
≤ Cp,T {‖f̃k‖p,QT

+M2ǫ‖Φkxx‖p,QT

+ (M1 +M2cǫ)(ǫ̃(‖Φkt‖p,QT
+ ‖Φkx‖p,QT

) + Cǫ̃‖Φk‖1,QT
)

+ ‖ψΦ0k‖
(2− 2

p
)

p,Q }(4.15)

Observe (4.15) is over B(0, r) × (0, T ) ⊂ R
n−1 × R+. To get an estimate on the manifold,

apply the change of variable, ‖Φk‖(2)p,WT
= ‖Ψk| det((φ−1)

′

)|‖(2)
p,φ(WT ) and using first mean value

theorem of integration there exist ξ̂ ∈ φ(WT ), and C̃p,T,ξ̂ such that

‖Ψk‖(2)p,φ(WT ) ≤ C̃p,ξ,T {‖fk‖p,φ(QT ) +M2ǫ‖Ψkxx‖p,φ(QT )

+ (M1 +M2cǫ)(ǫ̃(‖Ψkt‖p,φ(QT ) + ‖Ψkx‖p,φ(QT )) + Cǫ̃‖Ψk‖1,(φ(QT )))

+ ‖Ψ0k‖
(2− 2

p
)

p,φ(Q)}(4.16)

So, an estimate in an open neighborhood of a point ξ ∈M can be obtained. As one varies the
point ξ on M , there exist corresponding open neighborhoods Vξ and a smooth diffemorphisms

φξ : B(0, r) −→ Vξ, which result in different C̃p,ξ̂,T for every Vξ. Consider an open cover of

M such that M =
⋃

ξ∈M Vξ. Since M is compact, there exists {ξ1, ξ2, ..., ξN} such that M ⊂
⋃

ξj∈M
1≤j≤N

Vξj and C̃p,ξ̂j ,T
corrresponding to each Vξj . Let Ĉp,T =

∑

1≤j≤N C̃p,ξ̂j ,T
. Inequality

(4.16) implies

‖Ψk‖(2)p,MT
≤ Ĉp,T {‖fk‖p,MT

+M2ǫ‖Ψkxx‖p,MT

+ (M1 +M2cǫ)(ǫ̃(‖Ψkt‖p,MT
+ ‖Ψkx‖p,MT

) + Cǫ̃‖Ψk‖1,MT
)

+ ‖Ψ0k‖
(2− 2

p
)

p,M }(4.17)

Also, a simple calculation gives

‖Ψk‖1,MT
≤ ‖fk‖1,MT

+ ‖Ψ0k‖1,M
Now, choose ǫ > 0 such that,

max{Ĉp,TM2ǫ, Ĉp,T ǫ̃(M1 +M2cǫ)} <
1

2

For this choice of ǫ, (4.17) gives the W 2,1
p estimates

‖Ψk‖(2)p,MT
≤ Ĉp,T (‖fk‖p,MT

+ Cǫ(‖fk‖1,MT
+ ‖Ψ0k‖1,M ) + ‖Ψ0k‖

(2− 2
p
)

p,M )

‖Ψk‖(2)p,MT
≤ K̂p,T (‖fk‖p,MT

+ ‖Ψ0k‖
(2− 2

p
)

p,M )(4.18)

where K̂p,T > 0 is independent of fk and Ψ0k. It remains to show that the sequence {Ψk}
converges to a function Ψ in W 2,1

p (MT ), and Ψ solves (3.2). From linearity and (4.18), if
m, l ∈ N then Ψm − Ψl satisfies

(Ψm −Ψl)t = d̃∆M (Ψm −Ψl) + fm − fl ξ ∈M, 0 < t < T

Ψm −Ψl = Ψ0m −Ψ0l ξ ∈M, t = 0
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and

‖Ψm −Ψl‖(2)p,MT
≤ K̂p,T (‖fm − fl‖p,MT

+ ‖Ψ0m −Ψ0l‖
(2− 2

q
)

p,M )

This implies {Ψk} is a Cauchy sequence in W 2,1
p (MT ), so there is a function ψ ∈ W 2,1

p (MT )

such that Ψk → Ψ. Then fk converges to f in Lp(MT ), Ψ0k converges to Ψ0 in W
2− 2

p
p (M),

and Ψk converges to Ψ ∈W 2,1
p (MT ). Therefore Ψ solves (3.2), and (4.18) implies

‖Ψ‖(2)p,MT
≤ K̂p,T (‖f‖p,MT

+ ‖Ψ0‖
(2− 2

p
)

p,M )

Hence F = (1,∞), and the proof of Theorem 3.5 is complete.

5. Hölder Estimates for the Neumann problem. The following result is a version of
Theorem 9.1 with Neumann boundary conditions, referred to in chapter 4 of [19] on page 351.

Lemma 5.1. Let p > 1. Suppose θ ∈ Lp(Ω× (0, T )), ϕ0 ∈W
(2− 2

p
)

p (Ω) and γ ∈ W
1− 1

p
, 12−

1
2p

p (M×
(0, T )) with p 6= 3 . In addition, when p > 3 assume

d
∂ϕ0

∂η
= γ on M × {0}

Then (3.3) has a unique solution ϕ ∈ W 2,1
p (Ω× (0, T )) and there exists C dependent upon

Ω, p, T , and independent of θ, ϕ0 and γ such that

‖ϕ‖(2)
p,(Ω×(0,T )) ≤ C(‖θ‖p,(Ω×(0,T )) + ‖ϕ0‖

(2− 2
p
)

p,Ω + ‖γ‖(1−
1
p
, 12−

1
2p )

p,(∂Ω×(0,T )))

Definition 5.2. ϕ is said to be a weak solution of system (3.3) from V
1, 12
2 (ΩT ) if and only

if

−
∫ T

0

∫

Ω

ϕνt −
∫ T

0

∫

∂Ω

d ν
∂ϕ

∂η
+

∫ T

0

∫

Ω

d ∇ν.∇ϕ−
∫ T

0

∫

Ω

θν

=

∫

Ω

ν(x, 0)ϕ(x, 0)

for any ν ∈W
1,1
2 (ΩT ) that is equal to zero for t = T .

We also need a notion of solution of (1.3) which was first introduced in the study of Dirichlet
and Neumann problems for the Laplace operator in a bounded C1 domain by Fabes, Jodeit
and Rivier [9]. They used Calderon’s result in [5] on Lp continuity of Cauchy integral operators
for C1 curves. Further in [10], Fabes and Riviere constructed solutions to the initial Neumann
problem for the heat equation satisfying the zero initial condition in the form of a single layer
heat potential, when densities belong to Lp(M × (0, T )), 1 < p < ∞. We will consider the
solution to (1.3) in the sense of one which is constructed in [10].

The following result plays a crucial role for that construction of solution to make sense,
and is proved in [10].

Proposition 5.3. Assume Ω is a C1 domain and for Q ∈ M , ηQ being the unit outward
normal to M at Q. For 0 < ǫ < t set

Jǫ(f)(Q, t) =

∫ t−ǫ

0

∫

M

〈y −Q, ηQ〉
(t− s)

n
2 +1

exp

(

−|Q− y|2
4(t− s)

)

f(s, y) dσ ds

Then
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1. For every 1 < p <∞ there exists Cp > 0 such that sup0<ǫ<t |Jǫ(f)(Q, t)| = J(f)(Q, t)
satisfies

‖J(f)‖Lp(M×(0,T )) ≤ Cp‖f‖Lp(M×(0,T )) for all f ∈ Lp(M × (0, T ))

2. limǫ→0+ Jǫ(f) = J(f) exists in Lp(M × (0, T )) and pointwise for almost every (Q, t) ∈
(M × (0, T )) provided f ∈ Lp(M × (0, T )), 1 < p <∞.

3. cnI + J is invertible on Lp(M × (0, T )) for each 1 < p <∞ and cn 6= 0.
We consider the case d = 1 below. The extension to arbitrary d > 0 is straightforward. For

Q ∈M , (x, t) ∈ ΩT and t > s, consider

W (t− s, x,Q) =
exp

(
−|x−Q|2

4(t−s)

)

(t− s)
n
2

and g(Q, t) = −2[−cnI + J ]−1γ(Q, t)

where cn is given in [10].
Definition 5.4. ϕ is said to be a classical solution of system (1.3) with d = 1 and,

γ ∈ Lp(M × (0, T )) for p > 1 if and only if

ϕ(x, t) =

∫ t

0

∫

M

W (t− s, x,Q)g(Q, s) dσ ds for all (x, t) ∈ ΩT

Remark 4. When θ = 0 and ϕ(x, 0) = 0, the weak solution of (3.3) is the same as the
classical solution of (1.3).

In order to prove the classical solution ϕ to (1.3) is Hölder continuous, let (x, T ), (y, τ) ∈ ΩT

such that

ϕ(x, T ) =

∫ T

0

∫

M

W (T − s, x,Q)g(Q, s) dσ ds

and

ϕ(y, τ) =

∫ τ

0

∫

M

W (τ − s, y,Q)g(Q, s) dσ ds

Without loss of generality we assume 0 < τ < T . Consider the difference

ϕ(x, T )− ϕ(y, τ) =

∫ τ

0

∫

M

(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s) dσ ds

+

∫ T

τ

∫

M

W (T − s, x,Q)g(Q, s) dσ ds

Lemmas 5.5, 5.6 and 5.7 provide estimates needed to prove ϕ is Hölder continuous. Throughout
the proofs we assume p′ = p

p−1 .

Lemma 5.5. Let p > n+1. Suppose (x, T ), (y, τ) ∈ ΩT with 0 < τ < T and Rc = {(Q, s) ∈
M × (0, τ) : |x−Q|+ |T − s| 12 < 2(|x− y|+ |T − τ | 12 )}. Then for 0 < a < 1− n+1

p
there exists

K1 > 0 depending on p, n,Ω, T and independent of g ∈ Lp(M × (0, T )) such that
∫

Rc

|(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s)| dσ ds

≤ K1

(

|x− y|+ |T − τ | 12
)a

‖ g ‖p,M×[0,τ ]
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Proof.

∫

Rc

|(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s)| dσ ds

=

∫

Rc

∣
∣
∣
∣
∣
∣

exp
(

−|x−Q|2

4(T−s)

)

(T − s)
n
2

−
exp

(
−|y−Q|2

4(τ−s)

)

(τ − s)
n
2

∣
∣
∣
∣
∣
∣

|g(Q, s)| dσ ds

≤












∫

Rc




exp

(
−|x−Q|2

4(T−s)

)

(T − s)
n
2





p′




1
p′

+






∫

Rc




exp

(
−|y−Q|2

4(τ−s)

)

(τ − s)
n
2





p′




1
p′





‖g‖p,Rc

By hypothesis p > n+ 1. Pick 0 < ǫ <
p−(n+1)

p−1 , set N = n−1−ǫ
2 . Then there exists c > 0 such

that wN · exp(−w) ≤ c ·N for all w ≥ 0. Consequently,










∫

Rc

exp
(

−p′|x−Q|2

4(T−s)

)

(T − s)
np′

2





1
p′

+





∫

Rc

exp
(

−p′|y−Q|2

4(τ−s)

)

(τ − s)
np′

2





1
p′



 ‖g‖p,Rc

≤












∫

Rc

c ·N

(T − s)
np′

2

(
p′|x−Q|2

4(T−s)

)N






1
p′

+






∫

Rc

c ·N

(τ − s)
np′

2

(
p′|y−Q|2

4(τ−s)

)N






1
p′






‖g‖p,Rc

≤
[

C1

(∫ τ

0

(T − s)
n−1−ǫ−np′

2 ds

∫

A

1

|x−Q|n−1−ǫ
dσ

) 1
p′

+C2

(∫ τ

0

(τ − s)
n−1−ǫ−np′

2 ds

∫

A

1

|y −Q|n−1−ǫ
dσ

) 1
p′

]

‖ g ‖p,Rc

where A = {Q ∈M : |x −Q| < 2|x− y|+ |T − τ | 12 }. Since |T − τ | < |T − s|,Rc ⊂ A× (0, τ).

Let ρy = |y − Q|, ρx = |x − Q|. Notice that in A, 0 < ρx < 2|x − y| + |T − τ | 12 and

0 < ρy < |x− y|+ ρx < 3|x− y|+ |T − τ | 12 . Therefore,
[

C1

(∫ τ

0

(τ − s)
n−1−ǫ−np′

2 ds

∫

A

1

|y −Q|n−1−ǫ
dσ

) 1
p′

+C2

(∫ τ

0

(T − s)
n−1−ǫ−np′

2 ds

∫

A

1

|x−Q|n−1−ǫ
dσ

) 1
p′

]

‖ g ‖p,Rc

≤




C̃1





∫ τ

0

(τ − s)
n−1−ǫ−np′

2 ds

∫ 3|x−y|+|T−τ |
1
2

0

rǫ−1dr





1
p′

+C̃2





∫ τ

0

(T − s)
n−1−ǫ−np′

2 ds

∫ 2|x−y|+|T−τ |
1
2

0

rǫ−1dr





1
p′




 ‖g‖p,Rc
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≤
[

C̃1

ǫ
1
p′

(τ)
n+1−ǫ−np′

2p′

(

3|x− y|+ |T − τ | 12
) ǫ

p′

+
C̃2

ǫ
1
p′

(

T
n+1−ǫ−np′

2 − (T − τ)
n+1−ǫ−np′

2

) 1
p′
(

2|x− y|+ |T − τ | 12
) ǫ

p′

]

‖g‖p,Rc

By hypothesis, p′ < n+1−ǫ
n

. Therefore, there exists K1 > 0 depends on p, n and T such that

∫

Rc

|(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s)| dσ ds

≤ K1

(

|x− y|+ |T − τ | 12
) ǫ(p−1)

p ‖ g ‖p,M×[0,τ ].

The result follows since 0 < ǫ < ap
p−1 is arbitrary.

The proof of the following Lemma makes use of Brown’s corollary to Theorem 3.1 in [4]. This
also provides a proof for the remark made in [4] after Lemma 3.4.

Lemma 5.6. Let p > n + 1. Suppose (x, T ),(y, τ) ∈ ΩT and R = {(Q, s) ∈ M × (0, τ) :

2(|x − y| + |T − τ | 12 ) < |x − Q| + |T − s| 12 }. Then for 0 < a < 1 − n+1
p

there exists K2 > 0

depending on p, n,Ω, T and independent of g ∈ Lp(M × (0, T )) such that,

∫

R

|(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s)| dσ ds

≤ K2

(

|x− y|+ |T − τ | 12
)a

‖ g ‖p,M×[0,τ ] .

Proof. Using the Theorem 3.1 in [4], we have

∫

R

|(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s)| dσ ds

≤
∫

R

C

(

|T − τ | 12 + |x− y|
|T − s| 12 + |x−Q|

)

(1 + (T − s)
−n
2 ) exp

(−|x−Q|2
4(T − s)

)

|g(Q, s)| dσ ds

≤ D1

(
1

2

)1−a ∫

R

(

|T − τ | 12 + |x− y|
|T − s| 12 + |x−Q|

)a exp
(

−|x−Q|2

4(T−s)

)

(T − s)
n
2

|g(Q, s)| dσ ds

≤ D̃1

∫

R

1

|x−Q|a
exp

(
−|x−Q|2

4(T−s)

)

(T − s)
n
2

|g(Q, s)| dσ ds

where D1 = C(T
n
2 + 1) and D̃1 = D1

(
1
2

)1−a
(

|T − τ | 12 + |x− y|
)a

. By hypothesis, n + 1 −
(n+ a)p′ > 0. Pick 0 < ǫ < (n+1)− (n+ a)p′ and set N = n−1−ǫ−ap′

2 . Then there exists c > 0
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such that wN · exp(−w) ≤ c ·N for all w ≥ 0. Consequently,

D̃1





∫

R

1

|x−Q|ap′

exp
(

−p′|x−Q|2

4(T−s)

)

(T − s)
np′

2

dσ ds





1
p′

‖ g ‖p,R

≤ D̃1






∫

R

1

|x−Q|ap′

c ·N

(T − s)
np′

2

(
p′|x−Q|2

4(T−s)

)N






1
p′

‖ g ‖p,R

≤ c̃D̃1

(
∫ τ

0

∫

M

(T − s)
n−1−ǫ−ap′

2

(T − s)
np′

2

1

|x−Q|n−1−ǫ
dσ ds

) 1
p′

‖ g(s,Q) ‖p,M×[0,τ ]

≤ c̃D̃1

(∫ τ

0

(T − s)
n−1−ǫ−ap′−np′

2 ds ·
∫

M

1

|x−Q|n−1−ǫ
dσ

) 1
p′

‖ g ‖p,M×[0,τ ]

Then by change of variable, there exists C,α > 0 such that

D̃1

(∫ τ

0

(T − s)
n−1−ǫ−ap′−np′

2 ds ·
∫

M

1

|x−Q|n−1−ǫ
dσ

) 1
p′

‖ g ‖p,M×[0,τ ]

≤ CD̃1

(

(T )
n−1−ǫ−ap′−np′

2 +1 ·
∫ α

0

1

r1−ǫ
dr

) 1
p′

‖ g ‖p,M×[0,τ ]

The result follows.

Lemma 5.7. Let p > n + 1, and suppose (x, T ),(y, τ) ∈ ΩT . Then for 0 < a < 1
2 − n+1

2p

there exists K3 > 0, depending on p, n,Ω and T , and independent of g ∈ Lp(M × (0, T )) such
that,

∫ T

τ

∫

M

|W (T − s, x,Q)g(Q, s)| dσ ds ≤ K3(T − τ)a ‖ g ‖p,M×[τ,T ]

Proof. By hypothesis p > n+ 1. Pick 0 < ǫ < n+ 1− np′ and set N = n−1−ǫ
2 . Then there

exists c > 0 such that wN · exp(−w) ≤ c ·N for all w ≥ 0. Consequently,

∫ T

τ

∫

M

|W (T − s, x,Q)g(Q, s)| dσ ds

≤
∫ T

τ

∫

M

exp
(

−|x−Q|2

4(T−s)

)

(T − s)
n
2

|g(Q, s)| dσ ds

≤ C3

∫ T

τ

∫

M

C̃(T − s)
n−1−ǫ

2

(T − s)
n
2

· 1

|x−Q|n−1−ǫ
|g(Q, s)| dσ ds

≤ C3

(
∫ T

τ

(T − s)
n−1−ǫ−np′

2 ds ·
∫

M

1

|x−Q|n−1−ǫ
dσ

) 1
p′

‖ g ‖p,M×[τ,T ]
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Similarly, by change of variable there exist C̃3, α > 0 such that

C3

(
∫ T

τ

(T − s)
n−1−ǫ−np′

2 ds ·
∫

M

1

|x−Q|n−1−ǫ
dσ

) 1
p′

‖ g ‖p,M×[τ,T ]

≤ C̃3

(

|(T − τ)
n−1−ǫ−np′

2 +1| ·
∫ α

0

1

r1−ǫ
dr

) 1
p′

‖ g ‖p,M×[τ,T ]

≤ K3(T − τ)
n+1−ǫ−np′

2p′ ‖ g ‖p,M×[τ,T ]

where K3 > 0, depends on p, n,Ω and T , and independent of g ∈ Lp(M × (0, T )). The result

follows since 0 < ǫ < n+ 1− np′ is arbitrary, and n+1−np′

2p′ = 1
2 − n+1

2p .

Proposition 5.8. Suppose γ ∈ Lp(M × (0, T )) for p > n+ 1. Then the classical solution

of (1.3) is Hölder continuous on Ω × (0, T̂ ) with Hölder exponent 0 < a < 1 − n+1
p

, and there

exists K̃p > 0, depending on p, n,Ω and T , and independent of γ such that

|ϕ(x, T )− ϕ(y, τ)| ≤ K̃p

(

|T − τ | 12 + |x− y|
)a

‖ γ ‖p,M×(0,T )

for all (x, T ), (y, τ) ∈ ΩT .

Proof. We prove this proposition for d = 1. The extension to arbitrary d > 0 follows from
a simple change of variables. Let Ω̃ be an open subset of Ω with smooth boundary such that
the closure of Ω̃ is contained in Ω. It is straightforward matter to apply cut-off functions and
Theorem 9.1 in [19] to obtain an estimate for ϕ in W 2,1

p (Ω̃ × (0, T )). Moreover, there exists
Lp,Ω̃,T independent of γ such that

‖ϕ‖(2)
p,Ω̃T

≤ Lp,Ω̃,T ‖γ‖p,MT

Since p > n + 1, W 2,1
p (Ω̃ × (0, T )) embeds continuously into the space of Hölder continuous

functions (see [19]). As a result we have Hölder continuity of the solution to (1.3) away from
MT . We want to extend this behavior to points near MT .

Pick points (x, T ), (y, τ) ∈ ΩT . We know from Fabes and Riviere [10] that the solution of
(1.3) is given by

ϕ(x, T ) =

∫ T

0

∫

M

W (T − s, x,Q)g(Q, s) dσ ds

where W (T − s, x,Q) =
exp

(

−|x−Q|2

4(T−s)

)

(T−s)
n
2

, g(Q, t) = [I + J ]−1γ(Q, t) and

J(g)(Q, t) = lim
ǫ→0+

∫ t−ǫ

0

∫

M

〈y −Q, ηQ〉
(t− s)

n
2 +1

exp

(

−|Q− y|2
4(t− s)

)

g(s, y) dσ ds

for almost every Q ∈ M (for smooth manifold it is true for all Q), ηQ being the unit outward
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normal to M at Q.

|ϕ(x, T )− ϕ(y, τ)| = |
∫ τ

0

∫

M

(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s) dσ ds

+

∫ T

τ

∫

M

W (T − s, x,Q)g(Q, s) dσ ds|

≤ |
∫

Rc

(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s) dσ ds|

+ |
∫

R

(W (T − s, x,Q)−W (τ − s, y,Q))g(Q, s) dσ ds|

+

∫ T

τ

∫

M

C(1 + (T − s)
−n
2 ) exp

(−|x−Q|2
4(T − s)

)

|g(Q, s)| dσ ds

Where R and Rc are given in Lemmas 5.6 and 5.7. Now using Lemma 5.5, Lemmas 5.6 and
5.7 for 0 < a < 1 − n+1

p
, there exists K1,K2,K3 > 0 depending on p, n,Ω, T and independent

of g ∈ Lp(M × (0, T )), such that

|ϕ(x, T )− ϕ(y, τ)| ≤ K1

(

|x− y|+ |T − τ | 12
)a

‖ g ‖p,M×(0,τ)

+K2

(

|T − τ | 12 + |x− y|
)a

‖ g ‖p,M×(0,τ)

+K3(T − τ)
n+1−ǫ−np′

2p′ ‖ g ‖p,M×(τ,T )

So,

|ϕ(x, T )− ϕ(y, τ)| ≤ K̃p

(

|T − τ | 12 + |x− y|
)a

‖ g ‖p,M×(0,T )

Now we combine Hölder estimates and Theorem 9.1 in chapter 4 of [19] to get the existence
of a Hölder continuous solution to system (3.3) for any finite time T > 0.

Proof of Theorem 3.6: Chapter 4, Theorem 5.1 in [19] implies (3.3) has the unique weak
solution. In order to get Hölder estimates, we break (3.3) into two sub systems. To this end,
consider

ϕ2t = d∆ϕ2 + θ x ∈ Ω, 0 < t < T

d
∂ϕ2

∂η
= d

∂ϕ0

∂η
x ∈M, 0 < t < T(5.1)

ϕ2 = ϕ0 x ∈ Ω, t = 0

ϕ1t = d∆ϕ1 x ∈ Ω, 0 < t < T

d
∂ϕ1

∂η
= γ − d

∂ϕ0

∂η
x ∈M, 0 < t < T(5.2)

ϕ1 = 0 x ∈ Ω, t = 0
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From Lemma 5.1 there exists a unique solution of (5.1) in W 2,1
p (Ω × (0, T )), and a constant

C1(T, p) > 0 independent of θ and ϕ0 such that

‖ϕ2‖(2)p,Ω×(0,T ) ≤ C1(T, p)(‖θ‖p,Ω×(0,T ) + ‖∂ϕ0

∂η
‖
(1− 1

p
, 12−

1
2p )

p,(∂Ω×(0,T ))

) + ‖ϕ0‖(2)p,Ω

Using proposition 5.8, there exists C2(T, 0) > 0 independent of γ and ϕ0 so that the unique
weak solution to (5.2) satisfies,

|ϕ1|(β)Ω×(0,T ) ≤ C2(T, p)

[

‖γ‖p,M×(0,T ) + ‖∂ϕ0

∂η
‖p,M×(0,T )

]

where 0 < β < 1 − n+1
p

. By linearity, ϕ = ϕ1 + ϕ2 solves (3.3). Moreover, for p > n + 1,

W 2,1
p (Ω× (0, T )) embeds continuously into Cβ, β2 (ΩT ). So, there exists C(T, p) > 0 independent

of θ, γ and ϕ0 such that

|ϕ|(β)Ω×(0,T ) ≤ C(T, p)(‖θ‖p,Ω×(0,T ) + ‖γ‖p,M×(0,T ) + ‖ϕ0‖(2)p,Ω)(5.3)

Remark 5. We will use these Hölder estimates to obtain sup norm estimates, and local
existence results for (3.1).

6. Proof of Theorems 3.2 and 3.3.

6.1. Local Existence.

Theorem 6.1. Suppose F,G and H are Lipschitz. Then (3.1) has a unique global solution.

Proof. Let T > 0, Fix (u0, v0) ∈ W 2
p (Ω)×W 2

p (Ω) such that they satisfy the compatibility
condition

D
∂u0

∂η
= G(u0, v0) on M.(6.1)

Set

X = {(u, v) ∈ C(Ω× [0, T ])× C(M × [0, T ]) : u(x, 0) = 0, ∀ x ∈ Ω, v(x, 0) = 0, ∀ x ∈M}

Note (X, ‖ · ‖∞) is a Banach space. Let (u, v) ∈ X . Now consider

Ut = D∆U +H(u+ u0) x ∈ Ω, 0 < t < T

Vt = D̃∆MV + F (u+ u0, v + v0) x ∈M, 0 < t < T

D
∂U

∂η
= G(u+ u0, v + v0) x ∈M, 0 < t < T(6.2)

U = u0 x ∈ Ω, t = 0

V = v0 x ∈M, t = 0

From Theorems 3.5 and 3.6, (6.2) possesses a unique weak solution (U, V ) ∈ V
1, 12
2 (ΩT ) ×

W 2,1
p (MT ). Furthermore, from embeddings, (U, V ) ∈ C(Ω× [0, T ])× C(M × [0, T ]). Define

S : X → X via S(u, v) = (U − u0, V − v0),
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where (U, V ) solves (6.2). We will see that S is continuous and compact. Let (u, v), (ũ, ṽ) ∈ X .
Then

S(u, v)− S(ũ, ṽ) = (U − Ũ , V − Ṽ )

Using linearity, (U − Ũ , V − Ṽ ) solves

Ut − Ũt = D∆(U − Ũ) +H(u+ u0)−H(ũ+ u0) x ∈ Ω, 0 < t < T

Vt − Ṽt = D̃∆M (V − Ṽ ) + F (u + u0, v + v0)− F (ũ+ u0, ṽ + v0) x ∈M, 0 < t < T

D
∂(U − Ũ)

∂η
= G(u + u0, v + v0)−G(ũ + u0, ṽ + v0) x ∈M, 0 < t < T

U − Ũ = 0 x ∈ Ω, t = 0

V − Ṽ = 0 x ∈M, t = 0

From Theorem 3.6, if p > n+ 1 there exists K independent of H,G, F, u, v, ũ, ṽ such that

‖U − Ũ‖∞,ΩT
+ ‖V − Ṽ ‖∞,MT

≤ K (‖F (u+ u0, v + v0)− F (ũ + u0, ṽ + v0)‖p,MT

+‖G(u+ u0, v + v0)−G(ũ + u0, ṽ + v0)‖p,MT

+‖H(u+ u0)−H(ũ+ u0)‖p,ΩT
)

Using the boundedness of Ω and M , there exists K̃ > 0 such that

‖U − Ũ‖∞,ΩT
+ ‖V − Ṽ ‖∞,MT

≤ K̃ (‖F (u+ u0, v + v0)− F (ũ + u0, ṽ + v0)‖∞,MT

+‖G(u+ u0, v + v0)−G(ũ + u0, ṽ + v0)‖∞,MT

+‖H(u+ u0)−H(ũ+ u0)‖∞,ΩT
)

Since, F,G,H are Lipschitz functions there exists M̃ > 0 such that

‖U − Ũ‖∞,ΩT
+ ‖V − Ṽ ‖∞,MT

≤ M̃(‖u− ũ‖∞,ΩT
+ ‖v − ṽ)‖∞,MT

)

Therefore S is continuous with respect to the sup norm. Moreover, for p > n+1, from Theorem
3.5, 3.6, and Lemma 2.6, there exists Ĉ(T, p) > 0, independent of F (u+u0, v+v0), G(u+u0, v+
v0), H(u + u0), u0 and v0 such that for all 0 < α < 1− n

p
, 0 < β < 1− n+1

p
,

|U |(β)ΩT
+ |V |(α)MT

≤ Ĉ(T, p)(‖H(u+ u0)‖p,ΩT
+ ‖G(u+ u0, v + v0)‖p,MT

(6.3)

+ ‖F (u+ u0, v + v0)‖p,MT
+ ‖v0‖(2)p,M + ‖u0‖(2)p,Ω)

Using (6.3), S maps bounded sets in X to precompact sets, and hence S is compact with
respect to the sup norm. Now we show S has a fixed point. To this end, we show that the set
A={(u, v) ∈ X : (u, v) = λS(u, v) for some 0 < λ ≤ 1} is bounded in X with respect to the
sup norm. Let (u, v) ∈ A. Then there exists 0 < λ ≤ 1 such that (u

λ
, v
λ
) = S(u, v). Therefore if

(û, v̂) = (u+ λu0, v + λv0) then

ût = D∆û + λH(u+ u0) x ∈ Ω, 0 < t < T

v̂t = D̃∆M v̂ + λF (u + u0, v + v0) x ∈M, 0 < t < T

D
∂û

∂η
= λG(u + u0, v + v0) x ∈M, 0 < t < T

û = λu0 x ∈ Ω, t = 0

v̂ = λv0 x ∈M, t = 0
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From Theorem 3.6 andH,F andG being Lipschitz, there existsN > 0 such that ‖(û, v̂)‖∞ ≤ N ,
with N independent of λ, u and v. Since ‖(u, v)‖∞ ≤ ‖(û, v̂)‖∞ ≤ N , hence boundedness of
the set is accomplished. Thus, applying Schaefer’s theorem (see [8]), we conclude S has a fixed
point (U, V ). Further, (U + u0, V + v0) is a solution of (3.1). Moreover, bootstrapping the
regularity of this solution using well known estimates, we obtained a solution to (3.1) according
to Definition 3.1.

Finally, we show the solution of (3.1) is unique. Suppose (u, v), (û, v̂) solve (3.1). Then,
(u− û, v − v̂) satisfies

ut − ût = D∆(u − û) +H(u)−H(û) x ∈ Ω, t > 0

vt − v̂t = D̃∆M (v − v̂) + F (u, v)− F (û, v̂) x ∈M, t > 0

D
∂(u− û)

∂η
= G(u, v)−G(û, v̂) x ∈M, t > 0

u− û = 0 x ∈ Ω, t = 0

v − v̂ = 0 x ∈M, t = 0

Taking the dot product of the vt − v̂t equation with (v − v̂), and the ut − ût equation with
(u− û), and integrating over M and Ω respectively, yields

1

2

d

dt
(‖v − v̂‖22,M + ‖u− û‖22,Ω) +D‖∇(u− û)‖22,Ω

≤ ‖v − v̂‖2,M‖F (u, v)− F (û, v̂)‖2,M + ‖u− û‖2,Ω‖H(u)−H(û)‖2,Ω
+ ‖u− û‖2,M‖G(u, v)−G(û, v̂)‖2,M

≤ K‖v − v̂‖2,M (‖u− û‖2,M + ‖v − v̂‖2,M )

+K‖u− û‖2,M (‖u− û‖2,M + ‖v − v̂‖2,M ) + +K‖u− û‖22,Ω
≤ K(‖v − v̂‖22,M + ‖u− û‖22,M )

+ 2K‖u− û‖2,M‖v − v̂‖2,M +K‖u− û‖22,Ω
≤ 2K(‖v − v̂‖22,M + ‖u− û‖22,M ) +K‖u− û‖22,Ω

From Lemma 2.4, for p = 2 and ǫ = dmin

2K =
min{dj:1≤j≤k}

2K , we have

‖u− û‖22,M ≤ dmin

2K
‖∇(u− û)‖22,Ω + C̃ǫ‖u− û‖22,Ω(6.4)

Using (6.4)

1

2

d

dt

(
‖v − v̂‖22,M + ‖u− û‖22,Ω

)
≤ 2K‖v − v̂‖22,M +K(1 + 2C̃ǫ)‖u− û‖22,Ω
≤ Cǫ,k

(
‖v − v̂‖22,M + ‖u− û‖22,Ω

)

Observe, (u− û) = (v − v̂) = 0 at t = 0 and
(
‖u− û‖22,Ω + ‖v − v̂‖22,M

)
≥ 0. Therefore, apply-

ing Gronwall’s inequality, v = v̂ and u = û. Hence system (3.1) has the unique global solution.

Proof of Theorem 3.2: Recall that u0 ∈W 2
p (Ω) and v0 ∈W 2

p (M) with p > n, and u0, v0
satisfies the compatibility condition for p > 3. From Sobolev imbedding (see [11], [19]), u0, v0
are bounded functions. Therefore there exists r̃ > 0 such that ‖u0(·)‖∞,Ω ≤ r̃, ‖v0(·)‖∞,M ≤ r̃.

For each r > r̃, we define cut off functions φr ∈ C∞
0 (Rk, [0, 1]) and ψr ∈ C∞

0 ((Rk ×
R

m), [0, 1]) such that φr(z) = 1 for all |z| ≤ r, and φr(z) = 0 for all |z| > 2r. Similarly
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ψr(z, w) = 1 when |z| ≤ r and |w| ≤ r, and ψr(z, w) = 0 when |z| > 2r, or |w| > 2r.
In addition, we define Hr = Hφr, Fr = Fψr and Gr = Gψr. From construction, Hr(z) =
H(z), Fr(z, w) = F (z, w) and Gr(z, w) = G(z, w) when |z| ≤ r and |w| ≤ r. Also, there exists
Mr > 0 such that Hr, Gr and Fr are Lipschitz functions with Lipschitz coefficientMr. Consider
the “restricted” system

ut = D∆u+Hr(u) x ∈ Ω, t > 0

vt = D̃∆Mv + Fr(u, v) x ∈M, t > 0

D
∂u

∂η
= Gr(u, v) x ∈M, t > 0(6.5)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

From Theorem 6.1, (6.5) has a unique global solution (ur, vr). If ‖u(·, t)‖∞,Ω, ‖v(·, t)‖∞,M ≤
r for all t ≥ 0, then (ur, vr) is a global solution to (3.1). If not, there exists Tr > 0 such that

‖ur(·, t)‖∞,Ω + ‖vr(·, t)‖∞,M ≤ r ∀t ∈ [0, Tr]

and for all τ > Tr there exists t such that Tr < t < τ , and x ∈ Ω and z ∈M , such that

|ur(x, t)| + |vr(z, t)| > r

Note that Tr is increasing with respect to r. Let Tmax = limr→∞ Tr. Now we define (u, v) as
follows. Given 0 < t < Tmax, there exists r > 0 such that t < Tr ≤ Tmax. For all x ∈ Ω,
u(x, t) = ur(x, t), and for all x ∈ M , v(x, t) = vr(x, t). Furthermore (u, v) solves (3.1) with
T = Tmax. Also, uniqueness of (ur, vr) implies uniqueness of (u, v). It remains to show that
the solution of (3.1) is maximal and if Tmax <∞ then

lim sup
t→T−

max

‖u(·, t)‖∞,Ω + lim sup
t→T−

max

‖v(·, t)‖∞,M = ∞.

Suppose Tmax <∞ and set,

lim sup
t→T−

max

‖u(·, t)‖∞,Ω + lim sup
t→T−

max

‖v(·, t)‖∞,M = R.

If R = ∞ then (u, v) is a maximal solution. If R <∞ there exists L > 0 such that

‖u‖∞,Ω×(0,Tmax) + ‖v‖∞,M×(0,Tmax) ≤ L.

As a result, T2L > Tmax, contradicting the construction of T2L. �

Now we prove that under some extra assumptions that the solution to (3.1) is component-
wise nonnegative. Consider the system

ut = D∆u+H(u+) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (u+, v+) x ∈M, 0 < t < T

D
∂u

∂η
= G(u+, v+) x ∈M, 0 < t < T(6.6)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0
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where u+ = max(u, 0) and u− = −min(u, 0).

Proposition 6.2. Suppose F,G and H are locally Lipschitz, quasi positive functions, and
u0, v0 are componentwise nonnegative functions. Then (6.6) has a unique componentwise non-
negative solution.

Proof. Note that F (u+, v+), G(u+, v+) and H(u+) are locally Lipschitz functions of u and
v. Therefore from Theorem 3.2 there exists a unique maximal solution to (6.6) on (0, Tmax).
Consider (6.6) componentwise. Multiply the vit equation by v−i and the ujt equation by u−j ,

v−i
∂vi

∂t
= d̃iv

−
i ∆Mvi + v−i Fi(u

+, v+)(6.7)

u−j
∂uj

∂t
= dju

−
j ∆uj + u−j Hj(u

+)(6.8)

Since w− dw
dt

= −1
2

d
dt
(w−)2,

1

2

∂

∂t
(v−i )

2 +
1

2

∂

∂t
(u−j )

2 = −d̃iv−i ∆Mvi − v−i Fi(u
+, v+)

− dju
−
j ∆uj − u−j Hj(u

+)

Integrating (6.7) and (6.8) over M and Ω respectively, gives

1

2

d

dt
‖v−i (·, t)‖22,M +

1

2

d

dt
‖u−j (·, t)‖22,Ω + d̃i

∫

M

|∇v−i |2 dσ + dj

∫

Ω

|∇u−j |2 dx

= −
∫

Ω

u−j Hj(u
+) dx−

∫

M

u−j Gj(u
+, v+) dσ −

∫

M

v−i Fi(u
+, v+) dσ

Since F,G and H are quasi-positive and d̃i, dj > 0,

1

2

d

dt
‖v−i (·, t)‖22,M +

1

2

d

dt
‖ u−j (·, t) ‖22,Ω≤ 0

Therefore, the solution (u, v) is componentwise nonnegative.

Corollary 6.3. Suppose F,G and H are locally Lipschitz, quasi positive functions, and
u0, v0 are componentwise nonnegative functions. Then the unique solution (u, v) of (3.1) is
componentwise nonnegative.

Proof. From Theorem 3.2 and Proposition 6.2, there exists a unique, componentwise non-
negative and maximal solution (u, v) to (6.6). In fact (u, v) also solves (3.1). The result follows.

6.2. Bootstrapping Strategy. The following system will play a central role in duality
arguments.

Ψt = −d̃∆MΨ− ϑ̃ (x, t) ∈M × (τ, T )

Ψ = 0 x ∈M, t = T(6.9a)

ϕt = −d∆ϕ− ϑ (x, t) ∈ Ω× (τ, T )

κ1d
∂ϕ

∂η
+ κ2ϕ = Ψ (x, t) ∈M × (τ, T )(6.9b)

ϕ = 0 x ∈ Ω, t = T
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Here, p > 1, 0 < τ < T , ϑ̃ ∈ Lp(M × (τ, T )) and ϑ̃ ≥ 0, and ϑ ∈ Lp(Ω× (τ, T )) and ϑ ≥ 0.

Also d > 0, d̃ > 0, and κ1, κ2 ∈ R such that κ1 ≥ 0 and κ1κ2 6= 0. Lemmas 6.4 to 6.8 provide
helpful estimates.

Lemma 6.4. (6.9a) has a unique nonnegative solution Ψ ∈ Wp
2,1(M × (τ, T )) and there

exists Cp,T > 0 independent of ϑ̃ such that

‖Ψ‖(2)
p,M×(τ,T ) ≤ Cp,T ‖θ̃‖p,M×(τ,T )

Proof. The result follows from Theorem 3.5 and the comparison principle.

Lemma 6.5. Let p > 1, κ1 ≥ 0 and if κ1 = 0 then κ2 > 0. Suppose Ψ is the unique nonneg-
ative solution of (6.9a). Then (6.9b) has a unique nonnegative solution ϕ ∈ W 2,1

p (Ω× (τ, T )).

Moreover, there exists Cp,T > 0 independent of ϑ and ϑ̃ and dependent on d, d̃, κ1 and κ2 such
that

‖ϕ‖(2)
p,(Ω×(τ,T )) ≤ Cp,T (‖θ̃‖p,M×(τ,T ) + ‖θ‖p,Ω×(τ,T ))

Proof. The result follows from Lemma 6.4, Sobolev embedding and similar arguments of
proof on page 342, section 9 of chapter 4 in [19], and the comparison principle.

Remark 6. If p > n + 2 and κ1 > 0, then ∇ϕ is Hölder continuous in x and t. See the
Corollary after Theorem 9.1, (page 342) chapter 4 of [19].

Lemma 6.6. Suppose l > 0 is a non integral number, κ1 > 0, d > 0, ϑ ∈ Cl, l
2 (Ω× [τ, T ]),

ϑ̃ ∈ Cl, l
2 (M × [τ, T ]), ϕ(x, T ) ∈ C2+l(Ω) and Ψ ∈ Cl+1,

(l+1)
2 (M × [τ, T ]). Then (6.9b) has a

unique solution in Cl+2, l
2+1(Ω × [τ, T ]). Moreover there exists c > 0 independent of Ψ and ϑ

such that

|ϕ|(l+2)
Ω×[τ,T ] ≤ c

(

|ϑ|(l)Ω×[τ,T ] + |Ψ|(l+1)
M×(τ,T )

)

Proof. See Theorem 5.3 in chapter 4 of [19].

Lemma 6.7. Suppose 1 < p < ∞, κ1 > 0, and r, s are positive integers. If q ≥ p and

2− 2r − s−
(

1
p
− 1

q

)

(n+ 2) ≥ 0 then there exists K̃ > 0 depending on Ω, r, s, n, p such that

‖Dr
tD

s
xϕ‖q,Ω×(τ,T ) ≤ K̃‖ϕ‖(2)

p,Ω×(τ,T )

for all ϕ ∈W 2,1
p (Ω× (τ, T )).

Proof. See Lemma 3.3 in chapter 2 of [19].

Lemma 6.8. Suppose 1 < p < ∞, κ1 > 0, and r, s,m are positive integers satisfying
2r + s < 2m− 2

p
. There exists c > 0 independent of ϕ ∈ Wp

2m,m(Ω× (τ, T )) such that

Dr
tD

s
xϕ|t=τ ∈ Wp

2m−2r−s− 2
p (Ω) and ‖ϕ ‖(2m−2r−s− 2

p
)

p,Ω ≤ c‖ϕ ‖(2m)
p,Ω×(τ,T )



28 V. SHARMA AND J. MORGAN

In addition, when 2r + s < 2m− 1
p
,

Dr
tD

s
xϕ|M×(τ,T ) ∈Wp

2m−2r−s− 1
p
, m−r− s

2−
1
2p (M × (τ, T ))

and ‖ϕ ‖(2m−2r−s− 1
p
)

p,M×(τ,T ) ≤ c‖ϕ ‖(2m)
p,Ω×(τ,T )

Proof. See Lemma 3.4 in chapter 2 of [19].

Lemma 6.9. Let p > 1, κ1 = 0 and suppose 0 ≤ ϑ ∈ Lp(Ω× (τ, T )), and Ψ is a unique

solution of (6.9a). Then Ψ ∈ W
2− 1

p
,1− 1

2p
p (M × (τ, T )), and (6.9b) has a unique solution ϕ ∈

W 2,1
p (Ω× (τ, T )). Moreover, there exists Cp,T > 0 independent of ϑ and dependent on d, and

κ2 such that

‖ϕ‖(2)
p,Ω×(τ,T ) ≤ Cp,T (‖ϑ‖p,Ω×(τ,T ) + ‖ϑ̃‖p,M×(τ,T ))

Proof. The result follows from Theorem 9.1 in chapter 4 of [19], Lemma 6.4, and Sobolev
embedding.

Remark 7. If p > n+2
2 , κ1 = 0 and ϕ satisfies system (6.9b), then ϕ is a Hölder continuous

function in x and t. See the Corollary after Theorem 9.1, chapter 4 of [19].

Remark 8. By Lemma 6.4, Lemma 6.5, Lemma 6.8, and Sobolev embedding, we have

ϕ(·, τ) ∈W
2− 2

p
p (Ω), Ψ(·, τ) ∈ W

2− 2
p

p (M), and there exists c > 0 independent of ϕ, Ψ such that

‖ϕ(·, τ) ‖(2−
2
p
)

p,Ω ≤ c(‖ϑ‖p,Ω×(τ,T ) + ‖ϑ̃‖p,M×(τ,T ))

‖Ψ(·, τ) ‖(2−
2
p
)

p,M ≤ c‖ϑ‖p,Ω×(τ,T )

respectively. Moreover, if p > n there exists c > 0 independent of ϕ, Ψ such that

‖ϕ‖∞,Ω×(τ,T ) ≤ c‖ϕ(·, τ)‖(2−
2
p
)

p,Ω

‖Ψ‖∞,M×(τ,T ) ≤ c‖Ψ(·, τ)‖(2−
2
p
)

p,M

respectively.

Lemma 6.10. Let 1 < p < n + 2 and 1 < q ≤ (n+1)p
n+2−p

. There exists a constant Ĉ > 0

depending on p, T − τ,M and n such that if ϕ ∈W 2,1
p (Ω× (τ, T )), then

∥
∥
∥
∥

∂ϕ

∂η

∥
∥
∥
∥
q,M×(τ,T )

≤ Ĉ‖ϕ‖(2)
p,Ω×(τ,T )

Proof. It suffices to consider the case when ϕ is smooth in Ω× [τ, T ], as such functions are
dense in W 2,1

p (Ω × (τ, T )). M is a C2+µ, n − 1 dimensional manifold (µ > 0). Therefore, for

every ξ̂ ∈M there exists ǫ
ξ̂
> 0, an open set V ⊂ R

n containing 0, and a C2+µ diffeomorphism

ψ : V → B(ξ̂, ǫξ̂) such that ψ(0) = ξ̂, ψ({x ∈ V : xn > 0}) = B(ξ̂, ǫξ̂) ∩Ω and ψ({x ∈ V : xn =

0}) = B(ξ̂, ǫξ̂) ∩M . Since ψ is a C2 diffeomorphism, (ψ−1)n, the nth component of ψ−1, is
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differentiable in B(ξ̂, ǫξ̂), and by definition of ψ, (ψ−1)n(ξ) = 0 if and only if ξ ∈ B(ξ̂, ǫξ̂) ∩M .

Further, ∇(ψ−1)n(ξ) is nonzero and orthogonal to B(ξ̂, ǫξ̂) ∩ M at each ξ ∈ B(ξ̂, ǫξ̂) ∩ M .
Without loss of generality, we assume the outward unit normal is given by

η(ξ) =
∇(ψ−1)n(ξ)

|(∇ψ−1)n(ξ)|
∀ ξ ∈ B(ξ̂, ǫξ̂) ∩M

We know,

∂ϕ

∂η
(ξ, t) = ∇ξϕ(ξ, t) · η(ξ) ∀ (ξ, t) ∈ B(ξ̂, ǫξ̂) ∩M × (τ, T ).

Now in order to transform ∂ϕ(ξ,t)
∂η

back to R
n, pick L > 0, such that

E = [−L,L]× [−L,L]× ...× [−L,L]
︸ ︷︷ ︸

(n− 1) times

×[0, L] ⊂ V , and define ϕ̃ such that

ϕ̃(x, t) = −
∫ xn

0

∇xϕ(ψ(x
′, z), t)TD(ψ(x′, z))η(ψ(x′, z)) dz ∀ x = (x′, z) ∈ E

where x′ ∈ [−L,L]× [−L,L]× ...× [−L,L]
︸ ︷︷ ︸

(n− 1) times

. We know ϕ ∈ W 2,1
p (Ω × (τ, T )). Therefore from

Lemma 6.7, there exists 0 < α < L and Kξ̂ > 0, depending on Ω, n, p such that

∫

Sα

∣
∣
∣
∣

∂ϕ̃((x′, α), t)

∂xn

∣
∣
∣
∣

r

dσdt < Kξ̂‖ϕ‖
(2)
p,Ω×(τ,T ) ∀ 1 < r ≤ (n+ 2)p

n+ 2− p
(6.9)

where Sα = E|xn=α × (τ, T ) and Sxn
= E|0≤xn≤α × (τ, T ). Using the fundamental theorem of

calculus,

∫

E×(τ,T )

∣
∣
∣
∣

∂ϕ̃((x′, 0), t)

∂xn

∣
∣
∣
∣

q

dσ dt ≤
∫

Sα

∣
∣
∣
∣

∂ϕ̃((x′, α), t)

∂xn

∣
∣
∣
∣

q

dσ dt

+ q

∫

Sxn

∣
∣
∣
∣

∂ϕ̃((x′, s), t)

∂xn

∣
∣
∣
∣

q−1

.

∣
∣
∣
∣

∂2ϕ̃((x′, s), t)

∂x2n

∣
∣
∣
∣
dσ dt

Using (6.9),

∫

E×(τ,T )

∣
∣
∣
∣

∂ϕ̃((x′, 0), t)

∂xn

∣
∣
∣
∣

q

dσ dt ≤ Kξ̂(‖ϕ‖
(2)
p,Ω×(τ,T ))

q

+ q

∫

Sxn

∣
∣
∣
∣

∂ϕ̃((x′, s), t)

∂xn

∣
∣
∣
∣

q−1

.

∣
∣
∣
∣

∂2ϕ̃((x′, s), t)

∂x2n

∣
∣
∣
∣
dσ dt

Applying Hölder inequality,

∫

E×(τ,T )

∣
∣
∣
∣

∂ϕ̃((x′, 0), t)

∂xn

∣
∣
∣
∣

q

dσ dt ≤ Kξ̂(‖ϕ‖
(2)
p,Ω×(τ,T ))

q

+ q





∫

Sxn

∣
∣
∣
∣

∂ϕ̃((x′, s), t)

∂xn

∣
∣
∣
∣

(q−1)p
p−1

dσ dt





p−1
p (

∫

Sxn

∣
∣
∣
∣

∂2ϕ̃((x′, s), t)

∂x2n

∣
∣
∣
∣

p

dσ dt

) 1
p



30 V. SHARMA AND J. MORGAN

Recall ∂2ϕ̃
∂x2

n
∈ Lp(Sxn

). So using Lemma 6.7 we have

∫

E×(τ,T )

∣
∣
∣
∣

∂ϕ̃((x′, 0), t)

∂xn

∣
∣
∣
∣

q

dσ dt ≤ K̂(‖ϕ‖(2)
p,Ω×(τ,T ))

q(6.10)

Now, M is a compact manifold. Therefore there exists set A = {P1, ..., PN} ⊂ M such
that M ⊂ ∪1≤i≤NB(Pi, ǫPi

). Let Vi, K̂i and αi be the open sets and constants respectively

obtained above when ξ̂ = Pi. Then,

(
∫ T

τ

∫

M

∣
∣
∣
∣

∂ϕ

∂η

∣
∣
∣
∣

q

dσ dt

) 1
q

≤
(
∑

Pi∈A

∫ T

τ

∫

B(Pi,ǫ)

∣
∣
∣
∣

∂ϕ

∂η

∣
∣
∣
∣

q

dσ dt

) 1
q

≤ C

(
∑

Pi∈A

∫ T

τ

∫

Vi|xn=0

∣
∣
∣
∣

∂ϕ̃

∂xn

∣
∣
∣
∣

q

dσ dt

) 1
q

≤ C
∑

Pi∈A

K̃i‖ϕ‖(2)p,Ω×(τ,T )

Therefore, for some Ĉ > 0, depending only upon p, τ, T,M and n, we get
∥
∥
∥
∥

∂ϕ

∂η

∥
∥
∥
∥
q,M×(τ,T )

≤ Ĉ‖ϕ‖(2)
p,Ω×(τ,T ) for all 1 < q ≤ (n+ 1)p

n+ 2− p

The following Lemma plays a key role in bootstrapping Lp estimates of solutions to (3.1).

Lemma 6.11. Assume the hypothesis of Corollary 6.3, and suppose (u, v) is the unique,
maximal nonnegative solution to (3.1) and Tmax < ∞. If 1 ≤ j ≤ k and 1 ≤ i ≤ m, such that
(Vi,j1) holds, then there exists KTmax > 0 such that

‖uj(·, t)‖1,Ω + ‖vi(·, t)‖1,M + ‖uj‖1,M×(0,Tmax) ≤ KTmax for all 0 ≤ t < Tmax.

Proof. For simplicity, take σ = 1 in (Vi,j1). Let 0 < T < Tmax, and consider the system

ϕt = −d∆ϕ (x, t) ∈ Ω× (0, T )

d
∂ϕ

∂η
= αϕ+ 1 (x, t) ∈M × (0, T )(6.11)

ϕ = ϕT x ∈ Ω, t = T

where α is given in (Vi,j1), d > 0, and ϕT ∈ C2+Υ (Ω) for some Υ > 0, is nonnegative and
satisfies the compatibility condition

d
∂ϕT

∂η
= αϕT + 1 on M × {T }

From Lemma 6.6, ϕ ∈ C2+Υ,1+Υ
2 (Ω × [0, T ]) and therefore by standard sequential argument

ϕ ∈ C2+Υ,1+Υ
2 (M × [0, T ]). Also, note that g(s) = αs + 1 satisfies g(0) ≥ 0. Therefore,

Proposition 6.2 implies ϕ ≥ 0. Now having enough regularity for ϕ on M × [0, T ], consider

∆Mϕ = − 1√
det g

∂j(g
ij
√

det g ∂iϕ)
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where g is the metric on M and gi,j is ith row and jth column entry of the inverse of matrix
associated to metric g. Further let ϑ̃ = −ϕt − d̃∆Mϕ. Then,
∫ T

0

∫

M

viϑ̃ =

∫ T

0

∫

Ω

uj(−ϕt − d∆ϕ) +

∫ T

0

∫

M

vi(−ϕt − d̃∆Mϕ)

=

∫ T

0

∫

Ω

ϕ(ujt − d∆uj) +

∫ T

0

∫

M

ϕ(vit − d̃∆Mvi)− d

∫ T

0

∫

M

uj
∂ϕ

∂η
+ d

∫ T

0

∫

M

∂uj

∂η
ϕ

+

∫

Ω

uj(x, 0)ϕ(x, 0) +

∫

M

vi(ζ, 0)ϕ(x, 0) −
∫

Ω

uj(x, T )ϕT −
∫

M

vi(ζ, T )ϕT

Using d∂ϕ
∂η

= αϕ+ 1

∫ T

0

∫

M

uj ≤
∫ T

0

∫

Ω

ϕHj(u) +

∫ T

0

∫

M

(Fi(u, v) +Gj(u, v))ϕ

+

∫

Ω

uj(x, 0)ϕ(x, 0) +

∫

M

vi(ζ, 0)ϕ(x, 0)−
∫ T

0

∫

M

viϑ̃

Using (Vi,j1),

∫ T

0

∫

M

uj ≤
∫ T

0

∫

Ω

βϕ(uj + 1) +

∫ T

0

∫

M

α(vi + 1)ϕ(6.12)

+

∫

Ω

uj(x, 0)ϕ(x, 0) +

∫

M

vi(ζ, 0)ϕ(x, 0)) −
∫ T

0

∫

M

viϑ̃

Now, integrating the uj equation over Ω and the vi equation over M ,

d

dt

(∫

Ω

uj +

∫

M

vi

)

= d

∫

Ω

∆uj +

∫

Ω

Hj(u) + d̃

∫

M

∆vi +

∫

M

Fj(u, v)

≤ β

∫

Ω

(uj + 1) +

∫

M

(Gj(u, v) + Fi(u, v))

≤ β

∫

Ω

(uj + 1) + α

∫

M

(uj + vi + 1)(6.13)

Integrating (6.13) over (0, t) with 0 < t ≤ T < Tmax, and using (6.12), gives

∫

Ω

uj(x, t) +

∫

M

vi(ζ, t) ≤ β̃

∫ t

0

∫

Ω

uj + α̃

∫ t

0

∫

M

vi + L̃(t)(6.14)

where

L̃(t) = α|M |t+ β|Ω|t+ αβ‖ϕ‖1,Ω×(0,t) + α2‖ϕ‖1,M×(0,t) + α‖uj(x, 0)‖1,Ω · ‖ϕ(x, 0)‖∞,Ω

+ ‖vi(ζ, 0)‖1,M + α‖vi(ζ, 0)‖1,M · ‖ϕ(x, 0)‖∞,M + ‖uj(x, 0)‖1,Ω

α̃(t) = α2‖ϕ‖∞,M×(0,t) + α+ α‖θ̃‖∞,M×(0,t) and β̃(t) = β + αβ‖ϕ‖∞,Ω×(0,t)

Applying Generalized Gronwall’s inequality to (6.14) gives the bound for the first two integrals
on the RHS of (6.14), and then substituting this bound gives

∫

Ω

uj(x, t) +

∫

M

vi(ζ, t) ≤ L̃(t) +

∫ t

0

(α̃(s) + β̃(s))L̃(s) exp

(∫ t

s

α̃(r) + β̃(r)dr

)

ds

≤ CTmax
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for all 0 ≤ t < T < Tmax. Substituting this estimate of uj on Ω and vi on M in (6.12) yields

∫ T

0

∫

M

uj ≤ β
(
‖ϕ‖∞,Ω×(0,T )‖uj‖1,Ω×(0,T ) + |Ω|T ‖ϕ‖∞,Ω×(0,T )

)

+ α
(
‖ϕ‖∞,M×(0,T )‖vi‖1,M×(0,T ) + |M |T ‖ϕ‖∞,M×(0,T )

)

+ ‖uj(·, 0)‖1,Ω‖ϕ(·, 0)‖∞,Ω + ‖vi(·, 0)‖1,M‖ϕ(·, 0)‖∞,M + ‖vi‖1,M‖θ̃‖∞,M

Since T < Tmax is arbitrary, the conclusion of the theorem holds.

Lemma 6.12. Assume the hypothesis of Corollary 6.3 holds. Suppose (u, v) is the unique,
maximal nonnegative solution to (3.1) and Tmax < ∞. If 1 ≤ j ≤ k and 1 ≤ i ≤ m, such that
(Vi,j1) and (Vi,j2) holds, and for q > 1, vi ∈ Lq(M × (0, Tmax)), then uj ∈ Lq(M × (0, Tmax))
and uj ∈ Lq(Ω× (0, Tmax)).

Proof. Let 0 < t < T ≤ Tmax. Multiplying the ujt equation by uq−1
j , we get

∫ t

0

∫

Ω

u
q−1
j ujt = d

∫ t

0

∫

Ω

u
q−1
j ∆uj +

∫ t

0

∫

Ω

u
q−1
j Hj(u)

= d

∫ t

0

∫

M

u
q−1
j

∂uj

∂η
− d

∫ t

0

∫

Ω

(q − 1)uq−2
j |∇uj |2 +

∫ t

0

∫

Ω

u
q−1
j Hj(u)

Using (Vi,j2)

∫

Ω

u
q
j

q
+ d

∫ t

0

∫

Ω

4(q − 1)

q2
|∇u

q
2

j |2 ≤ Kg

∫ t

0

∫

M

u
q−1
j (uj + vi + 1) + β

∫ t

0

∫

Ω

(uj + 1)uq−1
j

+

∫

Ω

uj
q
0

q

≤ Kg

(∫ t

0

∫

M

u
q
j + viu

q−1
j + u

q−1
j

)

+ β

(∫ t

0

∫

Ω

u
q
j + u

q−1
j

)

+

∫

Ω

uj
q
0

q
(6.15)

Applying Young’s inequality in (6.15)

∫

Ω

u
q
j

q
+ d

∫ t

0

∫

Ω

4(q − 1)

q2
|∇u

q
2

j |2 ≤ Kg

(
3q − 2

q

)∫ t

0

∫

M

u
q
j +

(

β + t|Ω|β
q

)∫ t

0

∫

Ω

u
q
j

+

∫

Ω

uj
q
0

q
+Kg

(
1

q

)∫ t

0

∫

M

v
q
i +

t|M |
q

(6.16)

Also, for 1 < q ≤ ∞, for all ǫ > 0 and t ≤ T ≤ Tmax, from Lemma 2.4, for v = u
q
2 there exists

Cǫ > 0 such that,

∫ t

0

∫

M

u
q
j ≤ Cǫ

∫ t

0

∫

Ω

u
q
j + ǫ

∫ t

0

∫

Ω

|∇u
q
2

j |2(6.17)

Using (6.17) and (6.16) for appropriate ǫ > 0, gives

1

q

d

dt

∫ t

0

∫

Ω

u
q
j ≤ K̃1

∫ t

0

∫

Ω

u
q
j + K̃2(T )(6.18)
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for

K̃2(T ) = Kg

(
1

q

)∫ T

0

∫

M

v
q
i +

T |M |
q

and K̃1 > 0 depending on t, where t ≤ T ≤ Tmax. Therefore from Gronwall’s Inequailty

∫

Ω

uj
q(x, t) ≤ K̃2(T ) +

∫ T

0

K̃1(s)K̃2(s) exp

(
∫ T

s

K̃1(r)dr

)

ds(6.19)

To obtain estimates on boundary, we use (6.16) to obtain

ǫ

∫ T

0

∫

Ω

|∇u
q
2

j |2 ≤
(

q2

4d(q − 1)

)

3Kgǫ

∫ T

0

∫

M

u
q
j + ǫ

(
q2

4d(q − 1)

)(

β + T |Ω|β
q

)∫ T

0

∫

Ω

u
q
j

+

(
q2

4d(q − 1)

)(

ǫ

∫

Ω

uj
q
0

q
+ ǫKg

(
1

q

)∫ T

0

∫

M

v
q
i + ǫ

T |M |
q

)

(6.20)

Using (6.17), (6.20) and (6.19) we have,

∫ T

0

∫

M

u
q
j ≤ Cǫ

∫ T

0

∫

Ω

u
q
j + 3Kg

(
q2

4d(q − 1)

)

ǫ

∫ T

0

∫

M

u
q
j + ǫ

(
q2

4d(q − 1)

)(

β + T |Ω|β
q

)∫ T

0

∫

Ω

u
q
j

+

(
q2

4d(q − 1)

)(

ǫ

∫

Ω

uj
q
0

q
+ ǫKg

(
1

q

)∫ T

0

∫

M

v
q
i + ǫ

T |M |
q

)

Now choosing ǫ such that

1− 3Kg

(
q2

4d(q − 1)

)

ǫ > 0

and using the estimate above for uj on (Ω × (0, T )), we have uj ∈ Lq(M × (0, T )). Since T is
arbitrary, uj ∈ Lq(M × (0, Tmax))

Lemma 6.13. Assume the hypothesis of Corollary 6.3, and suppose (u, v) is the unique,
maximal nonnegative solution to (3.1) and Tmax < ∞. If 1 ≤ j ≤ k and 1 ≤ i ≤ m so that
(Vi,j1) and (Vi,j2) hold, then for all p > 1 and 0 < T < Tmax, there exists Cp,T > 0, such that

‖uj‖p,Ω×(0,Tmax) + ‖vi‖p,M×(0,Tmax)

≤ Cp,Tmax

(
‖uj‖1,M×(0,Tmax) + ‖uj‖1,Ω×(0,Tmax) + ‖vi‖1,M×(0,Tmax)

)

Proof. First we show there exists r > 1 such that if q ≥ 1 such that uj ∈ Lq(Ω× (0, Tmax))
and vi ∈ Lq(M × (0, Tmax)) then uj ∈ Lrq(Ω × (0, Tmax)) and vi ∈ Lrq(M × (0, Tmax)).

Consider the system (6.9a) and (6.9b) with κ1 = 0, κ2 = 1, ϑ̃ ≥ 0, ϑ̃ ∈ Lp(M × (0, Tmax))

with ‖ϑ̃ ‖p,(M×(0,Tmax))
= 1, ϑ ≥ 0, and ϑ ∈ Lp(Ω× (0, Tmax)) with ‖ϑ ‖p,(Ω×(0,Tmax))

= 1.

Multiplying uj with ϑ and vi with ϑ̃ and for 0 < T ≤ Tmax, integrating over Ω × (0, T ) and
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M × (0, T ) respectively, gives

∫ T

0

∫

Ω

ujϑ+

∫ T

0

∫

M

viϑ̃ =

∫ T

0

∫

Ω

uj(−ϕt − d∆ϕ) +

∫ T

0

∫

M

vi(−Ψt − d̃∆MΨ)

=

∫ T

0

∫

Ω

ϕ(ujt − d∆uj) +

∫ T

0

∫

M

Ψ(vit − d̃∆Mvi)

− d

∫ T

0

∫

M

uj
∂ϕ

∂η
+ d

∫ T

0

∫

M

∂uj

∂η
ϕ+

∫

Ω

uj(x, 0)ϕ(x, 0)

+

∫

M

vi(x, 0)Ψ(x, 0)−
∫

M

vi(x, T )Ψ(x, T )−
∫

Ω

uj(x, T )ϕ(x, T )

Since Ψ(x, T ) = 0 and ϕ(x, T ) = 0,

∫ T

0

∫

Ω

ujϑ+

∫ T

0

∫

M

viϑ̃ ≤
∫ T

0

∫

Ω

ϕHj(u) +

∫ T

0

∫

M

(Fj(u, v) +Gi(u, v))Ψ

− d

∫ T

0

∫

M

uj
∂ϕ

∂η
+

∫

Ω

uj(x, 0)ϕ(x, 0)

+

∫

M

vi(x, 0)Ψ(x, 0)

Using (Vi,j1),

∫ T

0

∫

Ω

ujϑ+

∫ T

0

∫

M

viϑ̃ ≤
∫ T

0

∫

Ω

βϕ(uj + 1) +

∫ T

0

∫

M

α(uj + vi + 1)Ψ

− d

∫ T

0

∫

M

uj
∂ϕ

∂η
+

∫

Ω

uj(x, 0)ϕ(x, 0)

+

∫

M

vi(x, 0)Ψ(x, 0)(6.21)

Now we break the argument in two cases.
Case 1: Suppose q = 1. Then uj ∈ L1(Ω× (0, Tmax)) and uj, vi ∈ L1(M × (0, Tmax)). Let

ǫ > 0 and set p = n + 2 + ǫ. Set p′ = n+2+ǫ
n+1+ǫ

(conjugate of p). Remarks 6 and 8, and Lemma
6.11 imply all of the integrals on the right hand side of (6.21) are finite. Application of Hölder’s
inequality in (6.21), yields vi ∈ Lp′(M × (0, T )), and there exists Cp,T > 0 such that

‖uj‖p′,Ω×(0,T ) + ‖vi‖p′,M×(0,T ) ≤ Cp,T (‖uj‖1,Ω×(0,Tmax) + ‖vi‖1,M×(0,Tmax) + ‖uj‖1,M×(0,Tmax))

Since T ≤ Tmax is arbitrary, therefore, Lemma 6.12 implies uj ∈ Lp′(M × (0, Tmax)). So for
this case, r = n+2+ǫ

n+1+ǫ
.

Case 2: Suppose q > 1 such that uj ∈ Lq(Ω× (0, Tmax)) and uj , vi ∈ Lq(M × (0, Tmax)).

Recall p > 1, 0 ≤ ϑ̃ ∈ Lp(M × (0, Tmax)) with ‖ϑ̃ ‖p,(M×(0,Tmax))
= 1 and 0 ≤ ϑ ∈ Lp(Ω× (0, Tmax))

with ‖ϑ ‖p,(Ω×(0,Tmax))
= 1. Also p′ = p

p−1 , q
′ = q

q−1 . Note T ≤ Tmax is arbitrary. Applying

Hölder’s inequality in (6.21) and using Lemma 6.10, yields

‖uj‖p′,Ω×(0,Tmax) + ‖vi‖p′,M×(0,Tmax)

≤ Cp,Tmax
(‖uj‖q,Ω×(0,Tmax) + ‖vi‖q,M×(0,Tmax) + ‖uj‖q,M×(0,Tmax))

provided p′ ≤ (n+2)q
n+1 . So, in this case, r = (n+2)

n+1 .
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Now, by repeating the above argument for rq instead of q, we get vi ∈ Lrmq(M×(0, Tmax)),
uj ∈ Lrmq(Ω × (0, Tmax)), for all m > 1. As r > 1, lim

m→∞
rmq → ∞, and as a result, vi ∈

Lp(M × (0, Tmax)) for all p > 1. Hence from Lemma 6.12, uj ∈ Lp(M × (0, Tmax)) and
uj ∈ Lp(Ω× (0, Tmax)) for all p > 1, and there exists Cp,T > 0 such that

‖uj‖p,Ω×(0,T ) + ‖vi‖p,M×(0,T ) ≤ Cp,T

(
‖uj‖q,M×(0,Tmax) + ‖uj‖q,Ω×(0,Tmax) + ‖vi‖q,M×(0,Tmax)

)

Again as T ≤ Tmax is arbitrary, we get

‖uj‖p,Ω×(0,Tmax) + ‖vi‖p,M×(0,Tmax)

≤ Cp,Tmax

(
‖uj‖1,M×(0,Tmax) + ‖uj‖1,Ω×(0,Tmax) + ‖vi‖1,M×(0,Tmax)

)

6.3. Global Existence.

Proof of Theorem 3.3: From Theorem 3.2 and Corollary 6.3, we already have a compo-
nentwise nonnegative, unique, maximal solution of (3.1). If Tmax = ∞, then we are done. So,
by way of contradiction assume Tmax < ∞. From Lemma 6.13, we have Lp estimates for our
solution for all p ≥ 1, on Ω × (0, Tmax) and M × (0, Tmax). We know from (Vi,j2) and (Vi,j3)
that Fj and Gi are polynomially bounded above for each i and j. Let U and V solve

Ut = dj∆U + β(uj + 1) (x, t) ∈ Ω× (0, Tmax)

Vt = d̃i∆MV +Kf (uj + vi + 1)l (x, t) ∈M × (0, Tmax)

dj
∂U

∂η
= Kg(uj + vi + 1) (x, t) ∈M × (0, Tmax)(6.22)

U = U0 x ∈ Ω, t = 0

V = V0 x ∈M, t = 0

Here, dj and d̃i are the jth and ith column entry of diagonal matrix D and D̃ respectively.
Also, U0 and V0 satisfy the compatibility condition, are component-wise nonnegative functions,
and (u0)j ≤ U0 and (v0)i ≤ V0. For all q ≥ 1, Kf (uj + vi + 1)l and Kg(uj + vi + 1) lie in
Lq(M × (0, Tmax)). Using Theorem 3.6, the solution of (6.22) is sup norm bounded. Therefore,
by the Maximum Principle [26], the solution of (3.1) is bounded for finite time. Therefore
Theorem 3.2 implies Tmax = ∞. �

7. Examples and an Open Question. In this section we give some examples to support
our theory.

Example 1. As described in [35], during bacterial cytokinesis, a proteinaceous contractile,
called the Z ring assembles in the cell middle. The Z ring moves to the membrane and contracts,
when triggered, to form two identical daughter cells. Positiong the Z ring in the middle of the
cell involves two independent processes, referred to as Min system inhibition and nucleoid
occlusion ([32], [33] Sun and Margolin 2001). In this example, we only discuss the Min system
inhibits process. The Min system involves proteins MinC, MinD and MinE ([28] Raskin and de
Boer 1999). MinC inhibits Z ring assembly while the action of MinD and MinE serve to exclude
MinC from the middle of cell region. This promotes the assembly of the Z ring at the middle of
the cell. In [35] the authors considered the Min subsystem involving 6 chemical reactions and
5 components, under specific rates and parameters and performed a numerical investigation
using a finite volume method on a one dimensional mathematical model. Table 7.1 shows the
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assumed chemical reactions. The model was developed in [35] within the context of a cylindrical
cell consisting of 2 subsystems; one involving Min oscillations and the other involving FtsZ
reactions. The Min subsystem consists of ATP-bound cytosolic MinD, ADP-bound cytosolic
MinD, membrane-bound MinD, cytosolic MinE, and membrane bound MinD:MinE complex.
Those are denoted DATP

cyt , DADP
cyt , DATP

mem , Ecyt, and E : DATP
mem , respectively. This essentially

constitutes the one dimensional version of the problem. These Min proteins react with certain
reaction rates that are illustrated in Table 7.1. These reactions lead to five component model

Table 1: Reactions and Reaction Rates

Chemicals Reactions Reaction Rates

Min D DADP
cyt

k1−→ DATP
cyt Rexc = k1[D

ADP
cyt ]

Min D DATP
cyt

k2−→ DATP
mem RDcyt = k2[D

ATP
cyt ]

DATP
cyt

k3[D
ATP
mem]−−−−−−→ DATP

mem RDmem = k3[D
ATP
mem ][DATP

cyt ]

Min E Ecyt +DATP
mem

k4−→ E : DATP
mem REcyt = k4[Ecyt][D

ATP
mem ]

Ecyt +DATP
mem

k5[E:DATP
mem]2−−−−−−−−→ E : DATP

mem REmem = k5[D
ATP
mem ][Ecyt][E : DATP

mem ]2

Min E E : DATP
mem

k6−→ E +DADP
cyt Rexp = k6[E : DATP

mem ]

with (u, v) = (u1, u2, u3, v1, v2), where

u =





u1
u2
u3



 =





[
DATP

cyt

]

[
DADP

cyt

]

[Ecyt]



 , v =

(
v1
v2

)

=

( [
DATP

mem

]

[
E : DATP

mem

]

)

D̃ =

(
σDmem 0

0 σE:Dmem

)

, D =





σDcyt 0 0
0 σADyct 0
0 0 σEcyt





G(u, v) =





G1(u, v)
G2(u, v)
G3(u, v)



 =





−RDcyt −RDmem

Rexp

Rexp −REcyt −REmem



 =





−k2u1 − k3v1u1
k6v2

k6v2 − k4u3v1 − k5v1u3v2
2



 ,

F (u, v) =

(
F1(u, v)
F2(u, v)

)

=

(
RDcyt +RDmem −REcyt −REmem

−Rexp +REcyt +REmem

)

=

(
k2u1 + k3v1u1 − k4u3v1 − k5v1u3v2

2

−k6v2 + k4u3v1 + k5v1u3v2
2

)

,

H(u) =





H1(u)
H2(u)
H3(u)



 =





Rexc

−Rexc

0



 =





k1u2
−k1u2

0



 ,

and u0 = (u0j) ∈ W 2
p (Ω), v0 = (v0i) ∈ W 2

p (M) are componentwise nonnegative functions with
p > n. Also, u0 and v0 satisfy the compatibility condition

D
∂u0

∂η
= G(u0, v0) on M.
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Here expressions of the form kα and σβ are positive constants. Note F,G and H are quasi
positive functions. In the multidimensional setting, the concentration densities satisfy the
reaction-diffusion system given by

ut = D∆u +H(u) x ∈ Ω, 0 < t < T

vt = D̃∆Mv + F (u, v) x ∈M, 0 < t < T

D
∂u

∂η
= G(u, v) x ∈M, 0 < t < T

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

Our local existence result holds for any number of finite components. Therefore, from Theorem
3.2, this system has a unique maximal componentwise nonnegative solution. In this example,
if we take two specific components at a time, we are able to obtain Lp estimates for each of
the components. For that purpose we apply our results to (u3, v2), u2 and (u1, v1). In order to
prove global existence, we assume Tmax <∞. Otherwise, we are done.

Consider (u3, v2). It is easy to see that for j = 3 and i = 2, the hypothesis of Lemma 6.13 is
satisfied, since G3 + F2 ≤ 0, G3 is linearly bounded, and H3 = 0. As a result, u3 ∈ Lp(ΩTmax

)
and v2 ∈ Lp(MTmax

) for all p > 1. Using Theorem 3.6 and the comparison principle, u2 is
Hölder continuous on ΩTmax for p > n + 1. Finally, consider (u1, v1). Clearly for j = 1 and
i = 1, the hypothesis of Lemma 6.13 is satisfied, since G1 + F1 ≤ 0, G1 is linearly bounded,
and H1 is bounded. Therefore, u1 ∈ Lp(ΩTmax

) and v1 ∈ Lp(MTmax
) for all p > 1.

We already have for all 1 ≤ i ≤ 2 and 1 ≤ j ≤ 3, (uj, vi) ∈ Lp(ΩTmax
) × Lp(MTmax

)
for all p ≥ 1. Therefore there exists p̃ > 1 such that Gj ∈ Lp̃(ΩTmax

) for all p ≥ p̃, and
Fi ∈ Lp̃(MTmax

) for all p ≥ p̃. Consequently from Theorem 3.6, the solution is bounded, which
contradicts the conclusion of Theorem 3.2. As a result, the system has a global solution.
Example 2. Consider the model considered by Rätz and Röger[29] for signaling networks.
They formulated a mathematical model that couples reaction-diffusion in the inner volume to
a reaction-diffusion system on the membrane via a flux condition. More specifically, consider
the system (3.1) with k = 1,m = 2, where

G(u, v) = −q = −b6
|B|
|M |u(cmax − v1 − v2)+ + b−6v2, H(u) = 0

F (u, v) =

(
F1(u, v)
F2(u, v)

)

=




k1v2g0

(

1− K5v1g0
1+K5v1

)

+ k2v2
K5v1g0
1+K5v1

− k3
v1

v1+k4

−k1v2g0
(

1− K5v1g0
1+K5v1

)

− k2v2
K5v1g0
1+K5v1

+ k3
v1

v1+k4
+ q





and u0 = (u0j) ∈ W
(2)
p (Ω), v0 = (v0i) ∈ W

(2)
p (M) with p > n are componentwise nonnegative.

Also, u0 and v0 satisfy the compatibility condition

D
∂u0

∂η
= G(u0, v0) on M.

Here kα,Kα, g0, cmax, b−6 are same positive constants as described in [29]. We note F,G and
H are quasi positive functions. From Theorem 3.2, this system has a unique componentwise
nonnegative maximal solution. In order to get global existence, we assume Tmax < ∞. In
order to obtain Lp estimates for each of the components, consider (u, v2). It is easy to see that
G + F2 ≤ k3, H = 0, and G is linearly bounded above. So the hypothesis of Lemma 6.13 is
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satisfied. As a result, u ∈ Lp(ΩTmax
) and v2 ∈ Lp(MTmax

) for all p > 1. Now v1, satisfies the
hypothesis of Theorem 3.5. Therefore v1 ∈ W 2,1

p (MTmax
) for all p > 1.

We already have for all 1 ≤ i ≤ 2, (u, vi) ∈ Lp(ΩTmax
)×Lp(MTmax

) for all p ≥ 1. Therefore
G ∈ Lp(ΩTmax

) for all p ≥ 1, and Fi ∈ Lp(MTmax
) for all p ≥ 1. Consequently, from Theorem

3.6, the solution is bounded, which contradicts the conclusion of Theorem 3.2. As a result the
system has a global solution.

Example 3. We look at a simple model to illustrate an interesting open question. Consider
the system

ut = ∆u x ∈ Ω, 0 < t < T

vt = ∆Mv + u2v2 x ∈M, 0 < t < T

∂u

∂η
= −u2v2 x ∈M, 0 < t < T(7.1)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

where u0 and v0 are nonnegative and smooth, and satisfy the compatibility condition. Clearly
H(u) = 0, G(u, v) = u2v2 and F (u, v) = −u2v2 satisfy the hypothesis of Theorem 3.3 with
F + G ≤ 0 and G(u, v) ≤ 0. Therefore (7.1) has a unique global componentwise nonnegative
global solution. However, suppose we make a small change, and consider the system

ut = ∆u x ∈ Ω, 0 < t < T

vt = ∆Mv − u2v2 x ∈M, 0 < t < T

∂u

∂η
= u2v2 x ∈M, 0 < t < T(7.2)

u = u0 x ∈ Ω, t = 0

v = v0 x ∈M, t = 0

Then we can show there exists a unique maximal componentwise nonnegative solution. We
can also obtain L1 estimates for u and v. Furthermore, it is easy to see that v is uniformly
bounded. But our theory cannot be used to determine whether (7.2) has a global solution,
and this remains an open question. More generally, it is not known whether replacing Gj in
condition (Vi,j2) with Fi will result in a theorem similar to Theorem 3.3.
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