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Abstract

Using a kinematic approach we show that the non-adiabatic, non-
cyclic, geometric phase corresponding to the radiation emitted by a three
level cascade system provides a sensitive diagnostic tool for determining
the entanglement properties of the two modes of radiation. The nonuni-
tary, noncyclic path in the state space may be realized through the same
control parameters which control the purity/mixedness and entanglement.
We show analytically that the geometric phase is related to concurrence
in certain region of the parameter space. We further show that the rate of
change of the geometric phase reveals its resilience to fluctuations only for
pure Bell type states. Lastly, the derivative of the geometric phase carries
information on both purity/mixedness and entanglement/separability.

1 Introduction

Geometric phase [1] and topological phases have provided impetus[2] to
quantum information processing. Of the two geometric phase is easier for
implementation. Both these approaches may be designed to realize fault
tolerance [3] in addition to resilience to decoherence [4, 5]. Simple quan-
tum gates using geometric phase have been demonstrated experimentally
in the nuclear magnetic resonance set up [6]. Geometric phase has been
studied in its entirety encompassing various aspects of evolution including
adiabatic [7], cyclic, unitary and subsequently the generalization to non-
adiabatic [8], non-cyclic [9, 10], and non-unitary [10, 11] evolution using
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either a dynamic or a kinematic or approach [12, 11]. Non-unitary evo-
lution in the context of open systems has also been reported [13]. These
studies have been carried out both for pure and mixed states [14, 15]. On
the other hand an operational definition of the geometric phase has been
given by Sjöqvist et al [16]. There have been further studies on the rela-
tionship of the geometric phase of an entangled system and its sub-system
[17]. Recently, a proposal for studying the Pancharatnam phase and its
relation to non-local quantum correlations has been suggested[18] in the
two-photon interferometric set up.

Holonomic quantum computation and entanglement require the evolu-
tion of qubits in parameter space by the control of parameters which are
physically feasible. Both geometric phase and entanglement are impor-
tant tools in quantum information processing. Atom photon interaction
provides common ground for exploring the relationship between geomet-
ric phase and entanglement with the added advantage of the existence of
control parameters for manipulating the two photon states. In this let-
ter we study the non-adiabatic, non-cyclic, non-unitary evolution of the
geometric phase of the two-photon state corresponding to the two modes
emitted by a three level cascade system interacting with two driving fields
[19]. The two photon state is in general a mixed state, however it may also
be prepared in a pure state by proper control. We consider the evolution
in the state space by varying the control parameters namely, the driving
field strength and detuning.

2 The Model

The scheme considered here corresponds to a three level cascade system
interacting with two coherent fields which address the only two allowed
dipole transitions |i〉 ↔ |i+1〉, i = 1, 2 with energy separation given by ωi.
Two counter propagating ( Doppler free geometry) driving fields of nearly
equal frequencies ωL1 and ωL2 and respective strengths Ω1 and Ω2 are
resonant with these two transitions. The decay constants of the energy
levels |3〉 and |2〉 are indicated by Γ3 and Γ2 respectively. The parameters
∆1, ∆2 refer to the detunings of the driving fields. This scheme may be
realized, for example, in 87Rb vapor with the corresponding energy levels
5S1/2, 5P3/2 and 5D5/2 and has been used by Banacloche et al. [22] for
studying electro-magnetically induced transparency. The parameters used
for the numerical computation correspond to this scheme which we label
as scheme I.

The driven three level atomic system emits radiation corresponding to
the dipole transitions |i+1〉 → |i〉.The resulting field is a two photon state
in the Fock space and its density matrix is of rank three which follows from
Schmidt decomposition. This class of two photon states is in a smaller
sub-space and requires just (N+1)2−1 variables rather than 4N variables
to completely determine the N = 2 state. This reduction simplifies the
analysis enormously.

The available control parameters for tailoring the two photon state are
the driving field strengths Ωi, i = 1, 2 and the detunings ∆i, i = 1, 2.
corresponding to the two transitions. Let us denote the two photon de-
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Figure 1: (Color online) Three level cascade system corresponding to the 87Rb
atoms driven by two fields ω1 and ω2.

tuning by ∆ = ∆1 +∆2. At two photon resonance ∆ = 0. Some of the
non-classical properties of this two photon field have been reported in the
literature [20, 19]. In particular, a detailed numerical study of the entan-
glement distribution as a function of the these control parameters has been
reported in [19]. In order to establish the dependence of entanglement and
purity on these control parameters we make a small change in the scheme
used above, namely, we replace the metastable state (Γ3 = 1MHz) by an
infinitely long lived state i.e, Γ3 = 0 which we call scheme II. In this case,
the two photon decoherence given by (Γ3 +Γ1)/2 is zero which results in
a two photon system with no decoherence. This simplifies the analysis
and (i) the dependence of the entanglement on the control parameters
and (ii) the relation between geometric phase and entanglement are more
transparent. The effect of decoherence is included in the real system.

The two photon density matrix for scheme I (Fig.1) may be determined
using the quantum tomographic method described in [19]. We briefly
recapitulate the procedure here. The atom+field pure state, at a time t,
is written as

|Ψ(t)〉 =
∑

i,n

αn
i (t)|i;n〉; i = 1, 3;n = 0, 1, 2, 3; (1)

where i denotes the atomic index while n denotes the photon mode index.
To be more specific, in the binary notation n = n2 n1, where ni = 0, 1.
The two photon state may now be obtained by taking the partial trace
over the atomic indices. It has been further shown [19], that the two
photon density matrix at a time t is equivalent to the atomic density
matrix at a retarded time t− r/c [21]. Utillizing this equivalence we write
the two-photon normalized density matrix in the basis {|0〉, |1〉, |3〉} ≡
{|00〉, |01〉, |11〉} as

ρn(t) =
1

N
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Figure 2: (Color online) Variation of the eigenvalues with ∆. The solid lines cor-
respond to scheme II while the dashed lines correspond to scheme I. Parameter
values are a) and b) Ω1 = 6, Ω2 = 6 and c) and d) Ω1 = 3,Ω2 = 6.

≡ ρA(t− r/c) (2)

Where N is the normalization factor. The solution for the complex coef-
ficient, αn

i (t) may be obtained by solving the Liouville equation.,

ih̄ρ̇A = [H, ρA]− ih̄

2
{Γ, ρA} (3)

where Γ is the relaxation matrix and H is the Hamiltonian given by

H =
h̄

2
(ω1σ

z
1 + ω2σ

z
2) + h̄Ω1(e

−iω1tσ+
1 + h.c.) +

h̄Ω2(e
−iω2tσ+

2 + h.c.) (4)

in the interaction picture and in the rotating wave approximation. The
Rabi frequency is given by Ωi = − 1

h̄
~µii+1 · ~Ei; i = 1, 2, corresponding to

the two driving field strengths. σ+
i = |i+ 1〉 〈i|; σ−

i = |i〉 〈i+ 1|; i = 1, 2
and σz

i = |i+ 1〉 〈i+ 1| − |i〉 〈i| are the atomic transition operators.

3 Geometric phase

The Pancharatnam relative phase for a pure state is defined as

α(t) = Arg(〈Ψ(0)|Ψ(t)〉). (5)

The two photon state under consideration, on the other hand is in gen-
eral a mixed state. We follow here the kinematic approach of Tong et

al. [11] for determining the geometric phase for non-cyclic, non-unitary,
non-adiabatic evolution of mixed states. We briefly recapitulate their
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Figure 3: (Color online) Variation of concurrence in the parameter space (∆, X).
(a) Ideal system (scheme II) and (b) Real system (scheme I) with Ω2 = 6.
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procedure here: A general mixed state density matrix ρ(t) is subject to
purification by the introduction of an ancilla as

|Ψ(t)〉 =
∑

k

√

λ(k)|φk(t)〉 ⊗ |ak〉; t ∈ [0, τ ]. (6)

The Pancharatnam relative phase given in Eq. (5) reduces to the geo-
metric phase when the parallel transport condition is satisfied. Tong et

al. [11] impose the parallel transport condition for the mixed state to be
〈φk(t)|d/dt|φk(t)〉 = 0, k = 1...N corresponding to the N eigenstates. In
the scheme under consideration N = 1, 2, 3. The geometric phase for the
mixed state, ρn(t), satisfying the parallel transport conditions assumes
the form

γg(τ ) = Arg
[

∑

k

√

λk(τ )λk(0)〈φk(0)|φk(τ 〉 ×

e
−
∫

τ

0

〈φk(t
′)|φ̇k(t

′)〉dt′]

(7)

where λk(τ ) are the eigenvalues and φk(τ ) are the corresponding eigenvec-
tors. Here the evolution is considered over the parameter space consisting
of {∆, X} defined in the next section.

4 Relation between Geometric phase and

Entanglement

In order to get a physical understanding of the dependence of the two
photon state on the free parameters, we consider first, the density matrix
of the ideal system (scheme II) near two photon resonance which has the
simple form

ρ =

(

S2 ∆̄CS2 −SC(1− iγ21∆̄)
... 0 −∆̄C2S
... ... C2

)

(8)

where S = Sin(X) and C = Cos(X). We have defined the dimension-

less parameters as X = Tan−1(Ω1/Ω2), ∆̄ = ∆/
√

Ω2
1 + Ω2

2 and γ21 =

Γ2/2
√

Ω2
1 + Ω2

2. The density matrix is first order in the parameter ∆̄.
The reason for choosing the state around this point will become clear
shortly. Consider the spectral resolution of the density matrix

ρ =
∑

i

λi|ψi〉〈ψi|; i = 1, 3 (9)

where λi are the eigenvalues and |ψi〉 are the corresponding eigenstates
of the density matrix. The steady state eigenvalues at ∆̄ = 0 is given
by {0, 0, 1}, which means it is a pure state. While in the real system
(scheme I) the largest eigenvalue is always < 1. However, for any given
Ω1,Ω2, purity is still maximum for ∆̄ = 0 with the largest eigenvalue
being maximum at this point. A comparison of the eigenvalues for the
ideal and real system is illustrated in Fig.2. The role of the metastable
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state thus, is to introduce a admixture, due to decoherence, to an oth-
erwise pure state. Since the atomic decay constants are fixed in a real
system, the only remaining free parameter for controlling purity is the
two photon detuning ∆̄. The state around the point (∆̄ = 0, X) may
be approximated to a pure state when there is no decoherence. This
is the reason for choosing to study the evolution near two photon reso-
nance. In the ideal case ( scheme II) the pure state at ∆̄ = 0 is given

by |Ψpure〉 = −Sin(X)|00〉 + Cos(X)|11〉; Sin(X) = Ω1/
√

Ω2
1 +Ω2

2. The
concurrence for this pure state is C = 2Sin(X)Cos(X) and is maximum
for X = π/4 or Ω1 = Ω2 which we call the bell state regime since this
corresponds to the Bell state (−|00〉+ |11〉)/

√
2. On the other hand con-

currence is very small when Ω1 << Ω2. The state is separable in this
region and we call this the separable state regime. A non-perturbative
evaluation of the distribution of concurrence in the parameter space for
the system without decoherence is illustrated in Fig.3a. It is clear that C
is maximum in the region where the ratio of the field strengths is approx-
imately one while the state becomes less entangled as the ratio between
Ω1 and Ω2 differs from one. Thus the parameter X which is a function
of Ω1,Ω2 is the control parameter for entanglement. Having established
that ∆̄ and X are the control parameters for purity and entanglement we
now show that the geometric phase is related to entanglement.

We evaluate the geometric phase in the space spanned by the pa-
rameters {∆̄, X} in the neighborhood of χ0 = (0, X) where λi(0, X) =
0, ∀X, i = 1, 2 and λ3(0, X) = 1, ∀X. In other words we need to eval-
uate the geometric phase of the pure state at χ = (δ,X + dX) which is
essentially the Pancharatnam’s phase given by

γg(χ) = Arg[〈ψ3(χ0)|ψ3(χ)〉] (10)

here ψ3 corresponds to the pure eigenstate and χ = χ0+dχ = (δ,X+dX)
is any point chosen infinitesimally close to χ0. Taylor expanding γg near
χ0 and retaining up to second order in δ and dX we obtain

γg(χ) = Arg[1− dX2

2
+ β δ2 − iγ21Cos(X)2δ −

iγ21Cos(X)Sin(X) δ dX

2
]

= Arctan[
−iγ21Cos(X)2δ − iγ21C δ dX/4

1− dX2

2
+ β δ2

]

(11)

where

β = (−(1/8)Cos(X)4(4 + 16γ2
21 − (5 + 8γ2

21)Cos(2X) +

Cos(4X)) + C2((1 + 8γ2
21)Cos(2X) + Cos(4X))/16

and C is the concurrence at (0, X). We have thus, shown that the geo-
metric phase γg(χ) at χ near χ0 depends on the concurrence C at χ0 for
the ideal system (scheme II).

We next evaluate the derivative γ′
g of the geometric phase with respect

to the two photon detuning ∆̄ which is shown in Fig.4. To be more

7
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Figure 4: (Color online) Variation of d γg/d ∆̄ in the neighborhood of (a) ∆̄ = 0
and X = 0, (separable state) and (b) ∆̄ = 0 and X = π/4 (Bell state).

specific, we evaluate γ′
g in the neighborhood of (∆̄ = 0, X). We have

already mentioned that when X = 0, concurrence C = 0 and we have a
separable state. Let us examine the behavior of geometric phase around
this point. The rate of change of the geometric phase in the neighborhood
of (∆̄ = 0, X = 0) varies rapidly for small variations (Fig.4 (a)) δ along
the y axis and seems to be unchanged for small variations dX along the x
axis. On the other hand when X = π/4 concurrence C = 1, which is a Bell
state. Here, the rate of variation of the geometric phase is relatively very
slow for small perturbation in both δ and dX. This is illustrated in Fig.4b.
While in the case of C = 1, the total change of the slope, γ′

g, is from -1.4
to -2.7 (Fig.4b), in the case of C = 0 it changes from -3.0 to -14.0 (Fig.4a)
for the same range of values of δ and dX. Thus the geometric phase seems
to change very slowly in the vicinity of maximum entanglement. Faster
the sweep of the geometric phase or larger the rate of change of geometric
phase implies weaker the entanglement. In other words, stability of the
geometric phase in any region of the parameter space seems to indicate
the state has maximum entanglement in this region. In the general mixed
case, however, it is difficult to show analytically the relation between
entanglement and geometric phase. We therefore illustrate the relation
through numerical simulations.

5 Numerical Results:

We present below the numerical results for the real (scheme I) system
shown in Fig.1.

We evaluate the three eigenvalues and eigenvectors numerically up to
all orders in the two photon detuning ∆ and determine the geometric
phase as a weighted sum of the individual phase corresponding to each
eigenstate. Since we are addressing hyperfine transitions the eigenvalues
are always non-degenerate in the parameter regimes of interest, in other
words the hyperfine separations are larger compared to the Rabi frequency
of the applied fields.

All the system parameters are rendered dimensionless by scaling with

8
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Figure 6: Stability of γg with respect to fluctuations in ∆ and Ω1 − Ω2.

the atomic lifetime γ ≈ 1MHz. We restrict our study to the parameter
regime ∆,Ω ≤ 6.0 which is the lifetime of the first excited state. We
would like to mention here that in the numerical program, γg has been
initialized to zero for minimum values of the parameter ∆1.

In the previous section, for the scheme I, we have seen that the state
is dominantly entangled when Ω1 ≈ Ω2 and separable otherwise. Even
in the case of the real system (scheme I), we may identify three regions
in the parameter space: (i) when Ω1 << Ω2,∆1,2 = 0 the two photon
state is dominantly in a pure state with very weak entanglement , (ii)
when Ω1 ≈ Ω2,∆1,2 = 0 the state is almost pure Bell state of the type
[|00〉 − |11〉]/

√
2 and (iii) when Ω1 >> Ω2,∆1,2 = 0 the state is mixed

with weak entanglement. Non-zero detuning (∆ 6= 0) further affects both
purity and entanglement. A distribution of concurrence as a function
of the two photon detuning ∆ and Ω1 − Ω2 is shown in Fig.3b for the
real system with decoherence. The state seems to be show maximum
entanglement near Ω1 ≈ Ω2 and shows weaker entanglement for Ω1 << Ω2

and Ω1 >> Ω2. It is clear that even in the presence of decoherence the
qualitative features of entanglement distribution is similar even though
there are quantitative changes. This is not very surprising given the fact
that there is no unique entanglement measure for mixed states.

We illustrate in detail the variation of the geometric phase in the
neighborhood of ∆1 = 0 with ∆2 = 0. This is effectively varying the two
photon detuning ∆. Figs. 5. a, b show the variation of γg and the rate
of change of γg, respectively with ∆1 near ∆1 = 0 for Ω1 = Ω2 = 6. The
main feature we observe is that the geometric phase varies slowly near
the region of entanglement which we showed to be true in the case of the
ideal system earlier (Fig.3b). Observe that γg is constant in the region
−0.25 < ∆1 < 0.25 (Fig.5 a,b). This is substantiated by the vanishing
of the derivative in this region thus indicating that the geometric phase
in this case is stable under small perturbations in the neighborhood of
∆1 = 0. The numerical values reveal[19] that the population is almost
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equal in the states |00〉 and |11〉 with non-zero correlation which is typical
of a Bell like state. Again in Figs. 5 g, h which corresponds to the
parameter values Ω1 = Ω2 = 6 and ∆2 = 3, the geometric phase γg
does not change much and the derivative is nearly zero in the region
−0.5 < ∆1 < 0. The entanglement distribution in these two cases is nearly
the same with the two photon state being an almost pure Bell state. We
have verified that the variation of the density matrix elements in these two
cases is less than 2%. In the case of Figs. 5 (c), (d), the parameter values
are Ω1 = 3,Ω2 = 6,∆2 = 0. Observe that rate of variation of γg is more
rapid compared to (b) and (h) indicating an overall weaker entanglement.
The slope decreases to a minimum at ∆1 = 0, implying that the state is
maximally entangled here. However, γg is never constant in this regime
which means it is not stable under perturbation in the parameter ∆. A
look at the density matrix elements reveals [19] that the state is an almost
pure state but with weak entanglement.

Lastly, we address the question whether geometric phase can distin-
guish between pure separable state and mixed state. As shown if Fig.3b,
the distribution of concurrence for the real system does not seem to dis-
tinguish between the pure separable state and the mixed state. In fact
this is true of other measures like negativity and fidelity. However, the
variation of geometric phase seems to show this distinction. For the pa-
rameter values Ω1 = 6,Ω2 = 3 the state is a mixed state [19] and the
variation is illustrated in Fig.5 e,f. Here γg is never a constant and the
slope which corresponds to the rate of change of γg shows sharp fluctu-
ations in the neighborhood of ∆1 = 0. While for a pure separable state
Ω1 = 1.5,Ω2 = 6, the derivative shows a smooth variation as illustrated
in Fig.5 i, j. Thus geometric phase is unique in the sense that it carries
information on both purity/mixedness and entanglement.

In Fig. 6 we present the details of this plateau where γg is stable. The
plateau in the center marked zero corresponds to the region where γg does
not change. This is sorrounded by region where γg changes by 1%. The
negative sign indicates the decrease in γg. The figure illustrates a total
decrease of γg by 10%. Thus, in a given interval of the control parameter,
faster the sweep of γg (with respect to the control parameter), weaker the
entanglement and vice versa. This is consistent with the distribution of
concurrence shown in Fig.3b.

6 Summary and Conclusions

We have studied the evolution of the geometric phase in the general set
up namely non-adiabatic, non-cyclic and non-unitary evolution of mixed
states. The scheme corresponds to a Hamiltonian system consisting of in-
teracting atom-photon system. We have identified the control parameters
for manipulating the purity/mixedness and entanglement of the emitted
two-photon states. We have been able to show the relation between the
geometric phase and entanglement in terms of the control parameters an-
alytically for an ideal system without decoherence. For the real system,
we show that the variation of the geometric phase is correlated to the vari-
ation of the concurrence on the control parameters Ωi and ∆i, i = 1, 2.
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We have shown that γg is robust under fluctuations of these control pa-
rameters only for pure Bell like states. We further show that the variation
of the geometric phase is able to distinguish between pure separable and
mixed states. These features provide a diagnostic tool for determining
the entanglement of the two-photon state. It is interesting to note that
such a connection, between entanglement and geometric phase, has also
been found, recently [23], in another system, viz. Heisenberg spin chains
undergoing unitary evolution.
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