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A B S T R A C T

Image fusion is capable of processing multiple heterogeneous images acquired by single or multi-sensor imaging
systems for an improved interpretation of the targeted object or scene. A diversity of applications have benefited
from the fusion of multi-sensor images through a more reliable and comprehensive fused result. Likewise, nu-
merous approaches to fuse multi-sensor images have been proposed and published in literature. However, due to
a lack of benchmark resources and commonly accepted assessment measures, it is hard to identify the sig-
nificance of new image fusion algorithms and implementations. This paper reviews and categorizes recent al-
gorithms for image fusion and performance assessment based on reported comparative results. We recommend
using non-parametric statistical tests to verify the performance of the pixel-level fusion algorithms. Furthermore,
a comprehensive evaluation of 40 fusion algorithms from recently published results is conducted to demonstrate
the significance of these algorithms in terms of statistical analyses within their respective applications. Although
the results of these performance tests are limited by available data sets, baseline algorithms, and selected as-
sessment metrics; it is a critical step for comparative image fusion research. This paper aims to advance image
fusion development by creating a complete inventory of state-of-the-art image fusion techniques and advocating
statistical comparison tests to avoid unnecessary duplication of development efforts. Establishing a benchmark
study for image fusion is critical for performance comparisons of contemporary methods.

1. Introduction

Image fusion has benefited a diversity of applications, including
medical diagnosis, security and surveillance, remote sensing, weather
forecasting, industrial inspection, and biometrics, etc [1]. A fused
image is characterized to provide more reliable information for un-
derstanding and perception of the scene or targeted object. Given the
varied objectives of specific applications; image fusion, according to
[2], is defined as “the process of combining information from two or
more images of a scene into a single composite image that is more in-
formative and is more suitable for visual perception or computer pro-
cessing”. Image fusion algorithms can operate on a single frame or on a
video sequence, as illustrated in Fig. 1. In terms of the types of image
data, image fusion can be categorized into: 1) temporal image fusion,
which fuses images in video time sequences into one meaningful image;

2) spatial image fusion, which stitches images together for a wider field
of view; 3) volumetric fusion, which creates a 3D object from image
slices; or 4) connotative image fusion, which fuses multi-sensor (e.g.,
multi-spectral or multi-modal) images to integrate complementary in-
formation from inputs into the fused result.

The inputs for temporal image fusion are a sequence of images from
video or still photographs of different exposure lengths. Temporal
image fusion manipulates the temporal dynamic range of the fused
images through integrating the details and structures available in the
inputs [3]. Pixel-level fusion of images over time was applied to moving
object tracking [4]. A temporal series of images can also be used to
generate a “clean” scene image of high quality [5,6]. Spatial image fu-

sion stitches images into a sharpened panoramic image of the scene
even with the blurry inputs [7]. The fused image can give a large field
of view or combine the salient results of the input images. The purpose
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of temporospatial fusion is to achieve a high spatial and temporal re-
solution simultaneously. In the application of remote sensing, a high-
quality temporospatial image analysis is useful for natural resource
management and monitoring of land-use and land-cover changes as
well as ecosystem dynamics [8]. Examples include sharp panoramas
generated from motion-blurred videos through joint global motion es-
timation and multi-frame deblurring [9]. A closely related topic is
image super-resolution, which is beyond the scope of this paper. An
excellent summary of the image super-resolution techniques is available
in a book [10]. Volumetric fusion targets the reconstruction of the 3D
object from 2D image slices [11]. All methods require image registra-
tion for the success of reconstruction, where registration of a nonrigid
body within an image remains a challenge [12].

Complementary fusion aims at integrating harmonious features or
information from the input image. The focus of this paper is to review
the methods for fusing images collected by multiple types of imaging
sensors. Recording the space shuttle STS-135 launch by NASA provides
an example of a highly successful application of image fusion [13]. The
camera setup for STS-135 included seven cameras: five visible spectrum
black-and-white, a high speed, a high resolution, and two thermal

infrared cameras to capture temperature data (bottom left cameras) as
shown in Fig. 2(a). One infrared camera did not function during the
launch, so only six images in Fig. 2(b) are used to obtain the final fused
image. According to [13], with the fused image, NASA researchers can
better understand the structure of the plume when rockets fire, the
motion of the flames flowing out of the rocket motor, and how to design
optimal future motors.

A second example of fusing visual and thermal images is shown in
Fig. 3 for context enhancement. The fused image can present both a
clear foreground (human being) and background for easy scene inter-
pretation. Other applications include medical imaging, remote sensing,
and high dynamic range (HDR) image acquisition, which is achieved by
multiple exposure fusion[14]. The most recent review of the state-of-
the-art in medical image fusion can be found in [15]. Two reviews for
remote sensing are published in literature [16] and [17] respectively.
Readers are referred to these references for the details of the specific
topics.

This paper focuses on general multi-sensor image fusion algorithms
and performance assessment. Currently, the advantages of a fusion al-
gorithm are judged by the improved values of selected fusion

Fig. 1. Types of image fusion: (let) temporal,

(middle top) spatial, (middle bottom) volumetric,

and (right) complementary fusion.

Fig. 2. Image fusion for STS-135 space shuttle launch (image credit: NASA/Louise Walker/J.T. Heineck). (a) Left: NASA camera array “Walle”; Middle: STS-135 view without fusion;

Right: fused image. (b) Six images taken for STS-135 space shuttle (The first one is taken by a thermal infrared camera).
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performance metrics. There are numerous algorithms as well as fusion
metrics that have been proposed and published. However, the com-
parative analysis of any reported performance improvements needs to
be validated with statistical methods, such as significance tests.
Otherwise, it is difficult to characterize better performance without
understanding the statistical significance of the measured performance.

This paper creates an inventory of state-of-the-art fusion algorithms
as well as fusion metrics, and conducts statistical comparisons between
40 algorithms. Both the data and codes for statistical comparison are
available through GitHub. We demonstrate the need of significance
tests for image fusion research in this paper. Section 2 presents the
concept of multi-sensor image fusion while Section 3 categorizes the
state-of-the-art in image fusion techniques at three levels, i.e. pixel-,
feature-, and decision -level fusion. The currently available computa-
tional models or fusion metrics for pixel-level fusion performance as-
sessment are summarized in Section 4. Statistical comparisons are
performed and corresponding results are presented in Section 5. This
paper provides a discussion in Section 6 and conclusions in Section 7,
respectively.

2. Multi-sensor image fusion

Complementary image fusion can be categorized into combinative

and discriminative fusion by its purposes. The combinative fusion in-
tegrates the complementary information from multiple input images
into a composite image, which is more informative and better suited for
further processing by a computer or exploitation by an end user.
Typical applications of combinative fusion are listed in Tab. 1. In the
discriminative fusion, the feature space constructed by the input images
is expanded with multi-sensor inputs to enhance distinguishability from
extra signatures. For example, a thematic map is derived from multiple
inputs. Each pixel is characterized by individual entities or classes in a
thematic map. Fig. 4 illustrates the concepts of the two categories.
“A”,“B”, and “C” in Fig. 4 represent the objects or features in a scene.
“B” and “C”, which are available in the separate input images, are in-
tegrated into the fused image through combinative fusion in Fig. 4(a).
In Fig. 4(b), the discriminative fusion can identify “A”,“B”, and “C” in
the fused image, which is not possible in the input images.

From an implementation perspective, image fusion can be accom-
plished at three levels, i.e. pixel level, feature level, or decision level as
illustrated in Fig. 5. Pixel-level fusion generates a composite image, in
which objects/regions of interest are enhanced. The fused image is
further processed for object detection, target recognition, entity clas-
sification, or identity declaration (ID) for presentation to the end user.
However, a single image may not be enough to present multiple attri-
butes associated with each pixel object. Feature-level fusion associates
attributes, intensities, or regions with an object extracted from one or
more input images while at the decision level, categorical descriptors
are generated for each object based on associated data [28]. If the ca-
tegories are numerical, it is called score-level fusion.

The implementation of pixel-level fusion in the spatial domain is
straightforward with logic, arithmetic, or pixel selection operations.
Pixels’ selection in the spatial domain is only applicable to homogenous
images. Some measurements are considered in the decision of choosing
to populate the fused image over an entire region with the pixels from
one of the source images as opposed to some other measurements. One
such measurement which is sometimes employed for multifocus images
is the local frequency [29]. The pixels with higher local frequency are
retained in the fused image. However, this method is not feasible for

Fig. 3. Example of fusing TNO (in English: Netherlands Organisation for Applied Scientific Research) Kayak (frame 7118a) images [18].

Table 1

Sample applications of combinative fusion.

Multiple input images Purpose of fusion References

Multi-focus images Obtain fully-focused image with complete information [19]
Multi-exposure images Obtain high dynamic range (HDR) image [14,20,21]
Haze image processed by white balance and contrast enhancement Enhance the visibility of a haze-degraded image [22]
High-resolution panchromatic image low-resolution multispectral

images
Obtain a high-resolution multispectral image suitable for both geometric analysis and
thematic interpretation

[14,23,24]

Range image and infrared image Face recognition [25]
Transcranial color doppler and magnetic resonance images Medical diagnosis [26]
Computed tomography and magnetic resonance images Medical diagnosis [27]

Fig. 4. Illustration of combinative and discriminative fusion. Combinative fusion in-

tegrates complementary information while discriminative fusion identifies the different

entities.
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fusing infrared and visible images as they each keep a different intensity
table. Transform-based fusion approaches present image features in a
more accessible format of the coefficients in the transform domain.
Thus, a fusion rule can be directly applied to the coefficients. Higher
level measurements of features or information are formulated to guide
the fusion process. The inverse transform will generate the fused image.
Transform-based methods, such as wavelets, are the most popular
method for pixel-level fusion and numerous studies have been reported.
Besides the multiresolution analysis, learning-based approaches have
recently been proposed to use data-derived features for image fusion
[30–33].

Different from the pixel-level operations, feature-level fusion ex-
tracts and fuses features (e.g., shapes, edges, histogram of gradients)
from the input images to meet the requirements for a deeper under-
standing of the captured information, which helps avoid the limitations
of low-level fusion. As described, pixel-level fusion is not guided by the
desired characteristics of the output, where the fused image is subject to
the loss of information from the inputs [34]. The fused result at feature-
level is presented as a silhouette, a contour map, or a extended feature
vector [35,36]. As illustrated in Fig. 5(a), decision-level fusion com-
bines the identity declarations or sensor confidence degrees from each
image sources at a higher level of abstraction. The decision-fusion
process deals with the symbolic representation of images. The outcome
of the decision-level fusion could be binary, e.g. “Yes/No” or “accept/
reject”, or represented by a confidence degree value [37]. The identity
could be the whole image, ROI (region of interest) and even a point in
the image. More details are described in the following sections.

3. Image fusion algorithms

3.1. Pixel-level fusion

3.1.1. Multiresolution analysis based approach

The multiresolution analysis (MRA) approach represents an image I

(x, y) with a set of basis functions gi(x, y), where i identifies the basis
functions. The basic idea is to represented the image I(x, y) as [38]:

∑=I x y t g x y( , ) ( , )
i

i i
(1)

∑=t h x y I x y( , ) ( , )i

x y

i

, (2)

where ti are the transformed coefficients that can be obtained by pro-
jecting the image onto a set of projection functions hi(x, y). Different
MRA approaches employ different basis functions. Here, ti represents
the corresponding coefficient.

A fusion rule is applied to each ti based on the measurement of
image features and characteristics of gi(x, y) to obtain a set of fused
coefficients for each pixel (x, y). The process is illustrated with the
diagram in Fig. 6. The key elements include the MRA algorithm and the
coefficient combination rule or fusion rule. Thus, the two topics will be
discussed in detail respectively.

3.1.1.1. MRA algorithms. The use of different MRA algorithms is
motivated by the varied characteristics of those algorithms. The
considerations may vary with the application requirements, such as
the compactness of the representation, directional sensitivity, shift and
rotation invariance. Table 2 summarizes the typical MRA algorithms
used for image fusion. The coefficients in the transform domain are
often more closely related to image features like edges and boundaries
[39]. These coefficients will be combined and then an inverse transform
is applied to generate the fused image.

3.1.1.2. Fusion rules. The combination of coefficients in the transform
domain is implemented with a certain “fusion rule”. Generally, the K

input images Ik ( = ⋯k K1, , ) can be represented with their low- and
high-pass components as I I{ , },k

L
j k
H
, where j refers to the scale or

resolution level. The fused coefficient sets are F F{ , },L
j
H with which

the fused image F can be obtained. The well-adopted rule can be
expressed as [53]:
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1

j
H
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, ,
,

j
H

(3)

where M( · ) and wk are a measurement function and weighting
coefficients, respectively. For the low-pass component, the
coefficients are often combined by averaging or weighted averaging.
However, an averaging operation may introduce artifacts especially
when input images are of different modalities. Thus, a compensation
with some weights is desired. Maximum selection is usually applied to
the high-pass and band-pass components, which is based on the
assumption that larger coefficients correspond to salient features. The

Fig. 5. Image fusion at three different levels: a) pixel level, b) feature level, and c) de-

cision level.

Fig. 6. Image fusion in the MRA framework.
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function M( · ) may incorporate more relevant information. The typical
computation methods for such information are summarized in Table 3.
The key point is how to define the measurement function M( · ) and
weighting coefficients wk. There are generally six categories of
operations for the image fusion rule.

Activity-level measurement: The measurement of activity can be im-
plemented in three different ways [54]:

• Coefficient-based activity;

• Window-based activity;

• Region-based activity.

A coefficient-based activity measure employs the absolute or square
value of the individual coefficient while a small window (3× 3 or
5× 5 pixels) around the considered coefficient is used in the window-
based method. The activity measure can be obtained by weighted
summation of the coefficients within the window or by a rank filtering
operation, which uses the maximum coefficients [43]. Region-based
measurement differs from the window-based method with an auto-
mated segmentation approach to define the region [47]. Other methods
include using the dense SIFT (scale invariant feature transform) to de-
fine the activity level or, statistical properties of the local neighborhood
of a pixel [55,56].

Coefficient grouping: Another consideration in the fusion rule is the
relation between the coefficients across frequency bands and decom-
position levels [54]. There are basically two grouping methods, i.e.
single-scale grouping and multi-scale grouping. In single-scale
grouping, corresponding coefficients among different sub-bands at the
same scale are fused in the same manner while multi-scale grouping
method considers the coefficients at different scales. In [54], the weight
average of the activity levels of the grouped coefficients was used in the
fusion decision making in Eq. (3) above. A cross-band single-scale
grouping scheme was proposed in [57], in which the fusion decision for
coefficients in the band- or high-pass components was based on the sum
of their activity levels and their corresponding coefficients at a higher

scale. In [58,59], the impact from the corresponding coefficients at
adjacent scales was modeled with a membership function defined by a
generalized random walk method.

Cross-scale coefficient selection: The purpose of cross-scale coefficient
selection is to achieve intrascale and interscale consistencies so that
most of the details can be preserved in the fused image while artifacts
can be diminished. In [57], the selection decision at one scale also in-
volves the corresponding coefficients at adjacent scales, i.e. one level up
and down. In [58], a membership function is defined to choose of de-
tailed information (coefficients in high-pass bands) and weight the
approximate information (coefficients in low-pass band).

Coefficient modeling: The relationship of the coefficients can be re-
presented with statistical models. In [60,61], a Markov model, more
specifically hidden Markov tree, was adopted to model the interscale
and/or intrascale relationships. The model was only applied to the
high-frequency subbands. In [61], a binary segmentation map was
generated to guide the selection of coefficients in high-frequency sub-
bands.

Coefficient combination: The combination of coefficients follows the
general fusion rule in Eq. (3). The choose-maximum strategy for coef-
ficients in band- and/or high-pass bands considers the coefficient
grouping method as well as activity-level measurements to determine
the “maximum value” in the selection process. The approaches to
generate weighting coefficients in the low-pass band include image si-
milarity measurement, average local intensity, and pixel significance
[62,63].

Consistency verification: Consistency verification ensures neigh-
boring coefficients are fused in the same manner [54]. In [43], a
window-based verification was implemented with a majority filtering
operation at each scale. A cross-band verification was introduced in
[57], in which the coefficient was recalculated if its “children” coeffi-
cients came from a different source. Herein the children coefficients
refer to the corresponding coefficients at a lower resolution level.

Modifications of the MRA-based method include contrast pyramid
and gradient-based multiresolution fusion [64,65], which makes more
salient features available in the generated gradient maps. Thus, the
fusion quality can be further improved through additional features.

3.1.2. Learning-based approach

3.1.2.1. Sparse representation and dictionary learning. Sparse
representation (SR) obtained with a dictionary learning algorithm
offers an innovative way to represent an image or signal. In
conventional MRA methods, the image is represented by predefined
basis functions, i.e. wavelet functions. In contrast, SR uses the basis
vectors known as “dictionary” learned from the training data set to
represent the image. More specifically, sparse representation represents
a signal ∈Y n with a linear combination of basic elements, d ,from a
dictionary = ⋯ ∈ ×D d d[ , , ] ,K

n K
1 whose is composed by atoms in K

columns =d{ }j j
K

1
[66]. Thus, there is =Y DX, where ∈X K is the sparse

coefficient vector. The representation is to find the dictionary D, which
is overcomplete when n<K, and corresponding sparse coefficients X.
The solution is by solving the optimization [67]:

Table 2

Typical MRA algorithms used for image fusion.

MRA algorithm Characteristics References

Laplacian pyramid Differences of the blurred versions between each levels [40]
Steerable pyramid Translation-invariant and rotation-invariant properties [41,42]
Discrete wavelet Compactness, orthogonality, and the availability of directional information [43]
Discrete wavelet frame Aliasing free and translation invariant (without down-sampling) [44]
Multi-wavelet Perfect reconstruction with orthogonality, linear-phase symmetry, and high order of approximation [45]
Dual-tree complex wavelets Over-complete wavelet transform with shift invariance, directional selectivity, and perfect reconstruction [46,47]
Ridgelets Orthonormality, invertibility and nonredundancy [48,49]
Contourlet Multiresolution directional tight frame [50,51]
Curvelet Multiresolution transform with frame elements indexed by scale and location parameters [52]

Table 3

Typical measurement of image feature and activity level with coefficients in the transform
domain.

Feature/activity-level
measurement

Description References

Coefficient-based
methods

Luminance, chromaticity, and saliency
weight maps

[22]

Membership function of fused
coefficients

[58,59]

Window-based methods A small window (3× 3 or 5× 5 pixels)
around the considered coefficient

[43]

Sliding window with dense SIFT
descriptor

[55]

Statistical properties of a w×w

window
[56]

Region-based methods Region priority map [46]
Match and saliency measures for region [47]
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
− ≤∈ s tX Y DXmin , . . ɛ

p p
X K

(4)

where ℓ
p-norms ( = ∞p 0, 1, 2, and ) are used to measure the

differences; ε is the threshold and = ∑ xX p i i
pp . ℓ

0 norm of X

counts the nonzero elements in x. Eq. (4) can be solved with
approximation approaches like matching pursuit (MP) and orthogonal
matching pursuit (OMP) [68,69].

To perform image fusion, the input images need to be reorganized as
illustrated in Fig. 7. A sliding window of size n× n moves from the top
left corner to the bottom right. Each patch is lexicographically ordered
as a vector yj, which is written as [30]:

∑=
=

ky x d( )j

k

K

j
k

1 (5)

Eventually, the sparse matrix X can be obtained and xj is the j column in
the matrix. Thus, each input image i can be represented by =Y D Xi i i.

A straightforward approach is to combine the sparse coefficients of
the i input images, i.e. Xi. In [30], a coefficient selection scheme is
proposed, where an activity level measurement is defined for each
column of Xi, i.e. =A Xi

j
i
j
1. The sparse coefficients associated with

larger activity measure will be retained in the fused sparse matrix Xf.
Here, f refers to the fused result. This process can be expressed as [30]:

= =s Ax x , arg max( )f
j

s
j

i
i
j

(6)

=Y DXf f (7)

A joint sparse representation scheme was introduced in [70], in
which two joint sparsity models (JSM) were described. The first model
(JSM-1) was adopted in [31] to implement image fusion. According to
[70], a signal yj can be represented by a shared common sparse com-
ponent (z) of the signal ensemble together with an innovation compo-
nent (zj) for its own. Let = ⋯Y Y Y Y{ , , , }1 2 Λ represent an ensemble of
input signals and ∈Yi

n. Λ is the total number of the inputs. The signal
Yi can be represented as [32,70]:

= + = + +Y Y Y DX DX ni
c

i
u c

i
u

i (8)

where Xc and Xi
u are the common and innovation component of the

sparse coefficient matrix respectively. The signal noise is represented by
ni. For all the signal in Y, Eq. (8) is represented as:
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⎣
⎢⎢ ⋮ ⎤
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1

Λ

1

Λ

1

2

Λ (9)

and can be further written as:

= +Y DX n (10)

To obtain the dictionary and joint sparse coefficient matrix, requires
solving the following optimization problem:


− ≤∈ × s tX Y DXmin , . . ɛ

X
0 2

K Λ
(11)

The solution to Eq. (11) includes the orthonormal matching pursuit

(OMP), K-singular value decomposition (K-SVD), and method of op-
timal directions (MOD) etc [67,68,71].

Based on the JSM-1 framework, several fusion approaches were
proposed [31–33]. Similarly, the fusion of multiple images is processed
with sliding windows and implemented by combining the sparse coef-
ficients from the inputs. Another feature that distinguishes different
fusion approaches is the way to build the dictionary. As far as the fusion
rule is concerned, weighted averaging is often adopted. Fusion rules
differ in the definition of weighting coefficients. In [33], the lexico-
graphical order matrices were subtracted from their mean value
( =m i, 1, 2i ) and then fed to the JSM-1 for representation. The fused
image of two inputs was obtained by:

= + + + + −τm τ mY DX DX DX (1 )f
c u u

1 2 1 2 (12)

where the weighting coefficient τ is defined as:

= + − −τ
β Y Y

1

1 exp( ( ))1 2 2 2 (13)

and the symbol Y refers to the mean subtracted component from input
and β is a positive constant. However, detailed information on how to
select β is not available in [33]. A dictionary was built with K-SVD
algorithm and images from USC-SIPI image database [72].

In [31], operation on mean substraction was not conducted and the
fusion rule is written as:

∑= +
=w
wX X X

1
f

c

i

i i
u

max 1

Λ

(14)

= < <w wmax ( )
i

imax
1 Λ (15)

=w Xi i
u
1 (16)

Thus, the fused image can be obtained by =Y DXf f . Algorithm K-SVD
was employed to train an overcomplete dictionary. However, the au-
thors did not clearly mention the image database used for training. The
impact of the training data sets on the fusion result is unknown.

The fusion rule in Eq. (12) was modified for general case in [32] as:

= + + mY DX DXf
c

f
u

î (17)

where DX f
u is the second item in (14) and î corresponds to the max-

imum absolute value of mi, i.e. =i m^ argmaxi i with = ⋯i {1, ,Λ}. This
modification makes it possible to handle multiple inputs larger than
two. This is a kind of “maximum coefficient selection” rule.

Sparse representation is relatively new to the image fusion com-
munity. The quality of training samples has a direct influence on the
dictionary, which can be trained with either the input images or
available image databases. The fused result may deteriorate with the
degradation of the input images. When other image databases are used,
how the multi-sensor input images can be accurately represented with
the sparse representation becomes a major issue. Likewise, the training
algorithm plays an important role as well. However, the available ex-
perimental results do not demonstrate significant improvements or
advantages over the MRA approaches in terms of the assessment me-
trics selected in each study. The sparse representation introduces some
complementary operations, such as denoising, which may improve the
robustness of the fusion process [30,31,33].

When the pan-sharpening application is considered, images from a
high-resolution (HR) panchromatic channel and several low-resolution
(LR) multispectral channels are fused to generate an HR multispectral
image. In [24], a sparse representation based approach named “Spar-
seFI” was proposed. The fusion process is illustrated in Fig. 8. The HR
panchromatic image X0 is first down-sampled to image Y0 of the same
size as the LR image Yk ( = ⋯k N1, , ) from the N multispectral chan-
nels. Two dictionaries, namely LR dictionary Dl and HR dictionary D ,h
are built with the image patches y0 and x0 derived from Y0 and X0,
respectively.

Fig. 7. Reorganize image patch into a lexicographic order vector and matrix.

Z. Liu et al. Information Fusion 42 (2018) 127–145

132



Each LR multispectral patch in the kth channel yk is then re-
presented as a linear combination of y0 with a coefficient vector ̂α ,k
which is estimated by −L L1 2 minimization:

̂ = + − ∼∼{ }α α αλ D yarg min
1

2
k

α
k k k

1 2

2

(18)

where there are:

= ⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

∼∼
β β

D
D

PD
y

y

w
l

h
k

k

k (19)

The standard Lagrangian multiplier, λ, is used to balance the sparsity of
the solution and the fidelity of the approximation to yk. A SL1MMER
algorithm can be applied to solve this optimization problem [24,73].
According to Zhu and Bamler [24], matrix P extracts the overlapped
region between current target patch and previously reconstructed ones.
And wk contains the pixel values of the previously reconstructed HR
multispectral image patch in the overlap region. β is a weighting
coefficient, which balances the goodness of fit of the LR input and the
consistency of reconstructed adjacent HR patches in the overlapping
area.

Once the sparse vector ̂αk is obtained, then ̂= αy Dk l k. Thus, the HR
multispectral patches can be obtained by ̂ ̂= αx Dk h k. The key assump-
tion here is that yk and its corresponding xk share the same sparse
coefficients in Dl and Dh [24]. Thus, the HR multispectral image X can
be obtained from the estimated patches ̂xk.

The sparseFI presents another way to fuse different-sized images. It
overcomes some inherent problems with the sparse representation
framework, such as inaccuracy in signal reconstruction and spatial in-
consistency in the fused image [74]. Thus, combined approaches were
proposed.

3.1.2.2. Combined fusion approach with MRA and SR. A general
framework for image fusion, which combines MRA and SR methods,
is introduced in [74]. In general, the MRA transform decomposes input
images into low-pass and high-pass components (one-level
decomposition). For the low-pass components of multi-input, sparse
representation based fusion is applied by using the methods described
in Section 3.1.2.1. The high-pass components are simply obtained by
the maximum absolute value selection rule.

3.1.2.3. Artificial neural networks. Artificial neural networks (ANN) are
another learning-based approach for image fusion. Fig. 9 illustrates the
use of NN in image fusion [75]. A probabilistic neural network and a
radial basis function network (RBFN) were used to select the input
image blocks based on designated features. A cooperative neural fusion
regularization algorithm was proposed in [76], which can achieve the
optimal image estimate while mitigating loss of contrast information.

The convolutional neural network (CNN) is a recent advance in
machine learning, which has shown great potential in various image
analytic problems. In [77], a CNN was employed to first increase the
resolution of multispectral images and then the Gram–Schmidt
transform was used to fuse the enhanced multispectral image and
panchromatic image. Although the CNN did not directly contribute to
the fusion process in this study, it is worth more effort to investigate its
benefits to image fusion research.

3.1.3. Fusion in color space

As the human visual system is sensitive to color, fusion in color
space could achieve a more informative result. The idea of false color
fusion is simple, where the different color channels are mapped to the
processed input images [78], and a composite (fused) color image will
be obtained. However, the false color image does not always have a
natural appearance. Thus, a color transfer operation needs to be applied
as illustrated in Fig. 10. In [79], two transfer methods, i.e. principal
component transform and lαβ, were proposed to transfer the color
characteristics from natural daylight imagery to false color night vision
imagery.

A scheme to fuse visible and infrared (IR) images in the color space
was presented in [80]. The fusion algorithm is illustrated in Fig. 11.
Input images are manipulated in three color spaces, i.e., RGB (R: red,
G: green, B : blue), HSV (H: hue, S : saturation, V: brightness value) and
LAB (L: brightness, A: red–green chrominance, B: yellow–blue chro-
minance). The original infrared image and its reverse polarity are fused
with the V component from the HSV space. The discrete wavelet frame
(DWF) is used, which is a shift invariant transform. Following the
flowchart in Fig. 11, seven fused images, {F1RGB, F1LAB, F2LAB, F2RGB,
F2HSV, F3HSV, F3RGB}, can be obtained. Among the fused results, F3RGB is
most similar to the original color image.

Another color fusion scheme is shown in Fig. 12 [81]. The reverse
polarity of the infrared image was used in this method. A curvelet
transform was employed to fuse the visible and infrared image as well

Fig. 8. The “sparseFI” algorithm for pan-sharpening application [24]. Fig. 9. The diagram for image fusion with image blocks and a neural network [75].

Fig. 10. Natural color mapping/transfering for false color fusion of visible and Infrared

(IR) images.
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as the inverse IR image. The fused results (F1 and F3) were fed into the R
(red) and B (blue) channel respectively. The G (green) channel is the
linear combination (see Fig. 10) result (F2) of visible and infrared
image. The RGB channels compose the fused result.

Fusion in color space can offer an intuitive result to the end user,
which is more suitable for human perception. Zheng and coworkers
[82,83] present the quantitative metrics for colorization evaluations.
Another example is tone-mapping from which structural quality metrics
are used to determine the color fusion of the dynamic range of input
images [84]. However, it is not clear if the fused color image can benefit
from computer-based enhancement and currently includes the in-
vestigation of matching objective machine metrics with that of human
subjective metrics.

3.1.4. Other approaches

3.1.4.1. Other image transformations. Besides the MRA and learned
dictionaries; other transforms, which represent an image in the
corresponding transform domain, have been employed as well. In
[85], source images transformed by the fractional Fourier transform
were then decomposed with self-fractional Fourier functions followed
by selection operation based the maximum absolute value rule. Average
filtering can also present an image in multiple scales, e.g. base layer and
detail layer [86]. The sub-band images at the two layers are fused by a
weighted averaging operation followed by a reconstruction procedure.
The weighting coefficients are created by guided filtering. Higher order
singular value decomposition (HOSVD), which is an efficient tensor

decomposition technique to represent high-dimensional data and extract
features, offers an alternative transform for image fusion [87]. The

input images are constructed into a tensor, which describes the local
information. A sliding window is then applied to the tensor with
HOSVD. The subtensors are combined with a sigmoid function
weighted by the activity-level measurement, which is defined as the
sum of absolute values of the coefficients from HOSVD of subtensors.
Compressive sensing (CS) provides another domain, where fusion can be
performed with the CS measurement values [88]. Empirical mode

decomposition (EMD) based fusion was introduced in [89] to improve
face recognition. An EMD pyramid was developed in [90]. The fusion
algorithm with non-negative matrix factorization was described in [91].

3.1.4.2. Adaptive fusion. The adaptive fusion approach is currently
implemented by choosing the best one from a set of preselected
fusion rules in terms of a predefined evaluation model. Zhang [92]
comes up with a total variation minimizing process as the evaluation
model for region-based fusion. However, this approach introduces with
high computational cost and complexity as the final fusion result is
selected for the evaluation. In other words, “adaptability” is achieved
by picking up a better fusion rule based on the fused results, i.e. a post
evaluation process.

3.1.4.3. Optimization-based fusion. Image reconstruction and
restoration are operations, which are often applied to derive a
complete image from multiple input images. Variational models are
successful in a wide variety of restoration problems [93,94]. The idea of
image fusion with total variation is to preserve important image
features while removing noises [93]. Such an example of multifocus
image fusion can be found in [95], where weighted energy functions
were proposed and minimized in the spatial and wavelet domain
respectively. The energy functions are based on the local average
modulus of gradients or intra- and inter-scale wavelet coefficients as
well as the power transform [95].

The energy minimization problem can also be formulated as a
maximum flow problem in a graph, which is defined as a minimal cut of
the graph [96]. Thus, image fusion can be treated as a discrete multi-
label optimization problem, which can be solved by a graph cuts ap-
proach via swap or alpha-expansion moves [27]. A total variation (TV)
approach is implemented to fuse visible and infrared images as well as
computed tomography (CT) and magnetic resonance imaging (MRI) at
pixel level in [97].

In [98], a simultaneous registration and fusion based on the ex-
pectation-maximization (EM) algorithm is presented. The major ad-
vantage of the joint approach is the ability to automatically tune the

Fig. 11. Fusion of images in color space. The

application is concealed weapon detection [80].

Image one is the visual image while image two is

the infrared image.

Fig. 12. Fusion scheme for visible and infrared images in color space by using the reverse

polarity of the infrared image [81].
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registration parameters so that an “optimal” (with respect to registra-
tion) fusion performance can be achieved.

3.1.4.4. Cascade fusion. Usually, a fusion operation is performed once
in a process. A two-stage fusion scheme is presented in [99]. Multiple
radar images were first fused by applying addition and multiplication or
performing wavelet and principal component analysis (PCA) based
fusion. A second stage applied fuzzy operators to achieve high target
intensities and lower clutter levels [99]. The cascade scheme takes the
advantages of multiple stages. Future research may study the structure
of the cascade fusion and how to incorporate the feedback from fusion
performance assessment for optimized image fusion results.

3.2. Feature-level fusion

Image features include edges, regions, shape, size, length and seg-
ments. The methodology for feature-level fusion depends on the nature
of the image and varies with fusion application. A challenge remains for
the fusion of features from different algorithms and data sources.

3.2.1. Image segmentations, contours and silhouettes

The fusion of multiple segmentations from reference images (at-
lases) has found great benefits for medical imaging [100]. Multiple
atlases can provide more accurate and robust results than any in-
dividual. A shape-based averaging (SBA) was proposed in [101] to
combine multiple segmentations of multidimensional images. The
natural distance relationship between pixels of an n-dimensional image
was utilized to average segmentations based on the signed Euclidean
distance maps of the labels in each input segmentation [101]. The SBA
method was further extended into a global weighted shape-based
averaging and a local weighted shape-based averaging method by in-
cluding the similarity information between the atlas and the target
images with a Markov random field based neighborhood prior model
[100].

In [102], edges extracted from the electro-optical (EO) image are
blended with a registered infrared image with an alpha blending pro-
cess, i.e. = − × + ×c α a α b(1 ) , for the purpose of highlighting the
tiny objects in the scene. Herein, a and b refer to the two input images
respectively. However, a complete quantitative assessment is not
available in the report [102].

Logic operations, e.g. “OR” and “AND”, were applied to objects
detected from visible and infrared images in [35]. The targeted features
were presented with centroid, size, aspect ratio and angular direction.
The “OR” operation obtains the union of infrared tracking and visual
tracking while the “AND” operation obtains the intersection of the two
sensor tracks. In [103], the selection of relevant feature from the inputs
was performed with mutual information.

In the application of land-cover classification with SAR (synthetic
aperture radar) and optical data [104], the binary images from pre-
classification for each data source were stacked together as a new multi-
level feature to train a new classifier.

3.2.2. Image amplitude, phase, and eigen features

The amplitude and phase features of a facial image are independent
of changes of illumination and contrast [105]. These features can be
fused to improve the performance of face recognition. A dual ν-support
vector machine (2ν-SVM) was trained to select the amplitude or phase
feature. A match score was further obtained for the fused feature vector.
In [106], genetic algorithm (GA) was employed to combine eigen-
features from visible and infrared images. The eigenspaces for visible
and infrared images are firstly built from which new inputs are pro-
jected onto the two eigenspaces respectively. GAs were applied to de-
cide eigenfeature selection from each eigenspace. Face recognition was
performed with the fused eigenfeatures.

3.2.3. Image statistical features

Images are characterized by its statistical features, such as proper-
ties of binary objects, histogram features, color features, and texture
features etc. Usually, the extracted image feature is presented with a
vector in a predefined feature space. When multiple input images are
considered, those feature vectors can be simply stacked into a tensor or
cascaded as a new vector, whose dimension or length is expanded.
Principal component analysis (PCA) is often employed to reduce the
size and keep the discriminatory information. In [107], a generalized N-
dimensional independent component analysis (ICA) was proposed for
multi-feature fusion for color image classification. The fusion of visible
and infrared images was formulated as a statistical estimation problem
in [108]. The mean square error between the fused image and the true
scene is minimized by incorporating covariance intersection into the
expectation maximization process. An iterative bootstrapping non-
parametric expectation-maximization (BNEM) algorithm is proposed
[109].

3.3. Decision-level fusion

Decision-level fusion as illustrated in Fig. 5(a) deals with the iden-
tity declaration (ID) directly. The initial IDs are derived from multiple
input images with a classification process or statistical modeling. Fusion
generates a joint ID from the input IDs. Averaging is the simplest form of
decision-level fusion. In [110], pedestrian tracking was implemented in
surveillance area with visible and infrared videos. Background and
foreground (pedestrian) objects were segmented in each frame by ap-
plying a threshold to the averaged codewords from visible and infrared
video. The codewords were defined for the visible and infrared images
respectively. A Dezert–Smarandache (DSm) theory based match score

fusion was proposed in [111] for face recognition with visible and in-
frared images. Match scores were computed by matching the global and
local features for visible and infrared images respectively. The two
match scores for each imaging modality were fused with DSm theory.
The fused match scores for visible and infrared face images are com-
bined again to get a composite match score for the multi-sensor input
images. A final decision, accept or reject, is made with this composite
score. The Bayesian rule was used to fuse the outputs from two classi-
fiers, i.e. fast sparse representation and support vector machine, for a
SAR image in [112]. However, it is not clear how the priori probability
is defined. In [113], the classification of ground vehicles from SAR
images were fused through multi-view, multi-feature, and multi-clas-
sifier decision fusion. Significant performance benefits for target re-
cognition were reported. The posterior probabilities from multiple
classifiers were fused with linear opinion pools and logarithmic opinion
pools in [114] for hyperspectral image classification.

In [115], classifications of remote sensing image were fused with
the iterative conditional modes algorithm to maximize the modified a

posteriori. A so-called composite decision fusion, which combines SVM
classification with the composite kernel method, was proposed in [116]
to deal with the combined classification of a high spatial resolution
color image and a lower spatial resolution hyperspectral image of the
same scene.

Other approaches for decision-level fusion include random forest
[117], fuzzy integral [118], Dempster–Shafer evidence theory [119],
fuzzy logic [120], and support vector machine [121]. Typically, the
approaches for combining multiple classifiers can be utilized in deci-
sion-level image fusion. A closely related concept in machine learning is
ensemble method. More details about ensembles of classifiers are avail-
able in [122,123].

4. Fusion performance assessment

Generally, an image fusion assessment can be categorized into
“external” and “internal” methods. The external or validation method
is to check how the fusion meets the requirements of a specific
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application as an ultimate evaluation. The internal methods verify the
quality of the fused image, which can be measured or quantified with
certain metrics, such as entropy and information measurement.
Performance assessment is critical to the fusion algorithm im-
plementation. First, the effectiveness can be assessed against bench-
mark data. Secondly, the fusion algorithm can be further optimized by
tuning the parameters in the algorithm based on the performance
measurement. The current focus of research is on the quality of the
fusion performance, which is represented by the measures of accuracy
and reliability. This section considers the performance assessment of
pixel-level fusion.

4.1. Combinative fusion assessment

As combinative fusion integrates complementary information, the
assessment of the fusion’s performance will count quantitatively how
much information from inputs is transferred to the final fused image.
There are different approaches to represent such information. As illu-
strated in Fig. 13, the assessment can be categorized into subjective and
objective approaches. The subjective methods rely on human perception-
based measures whereas objective methods are based on computational
models, which count the amount of image features, contents, or in-
formation transferred from input data to the fused result [124]. Ex-
tensive subjective assessment is not always feasible because of the high
cost and the difficulties in the control of varied human factors (e.g.,
individual differences, biases, and sensing abilities). The objective
computational models are also known as fusion metrics, which can
reveal certain inherent properties of the fusion process or the fused
image. The summary of the available metrics is given in Table 4. A
comparative study on these metrics was reported in [124]. The chal-
lenge for using these metrics is that it is difficult to know the

significance between two metric values like 0.82 and 0.83.
Two examples on subjective fusion performance assessment were

conducted [31,32]. One is the “forced choice subjective assessment”,
where passive, informal, and preference tests were designed to compare
the fusion algorithms with “visual inspection.” It can be applied when
only a few choices are considered. It is not practical when multiple
fusion algorithms need to be compared and ranked over large data sets.
The work on using statistical methods to see if fusion measures match
human ranks was reported in [125,126].

The assessment of multi-exposure image fusion is a special case of
multi-modal image fusion as the images are of the same format or with
the same intensity table. In [127], two perceptual quality measures, i.e.
perceived local contrast and color saturation, were proposed for multi-
exposure fusion assessment. Hassen et al. proposed to use the combi-
nation of image contrast preservation, sharpness, and structure pre-
servation to evaluate the fused multi-exposure multi-focus image [128].
An objective image quality assessment (IQA), which utilizes multi-scale
SSIM (structure similarity measure), was used to assess multi-exposure
image fusion [129].

4.2. Discriminative fusion assessment

The assessment of discriminative fusion, whose result is often pre-
sented as a thematic map, can employ the similar criteria as to evaluate
a classifier [143]. Given the ground truth reference, a confusion or error
matrix X is employed to summarize the classification accuracy and
highlight the thematic errors through comparison [143]. Let xij re-
present the number of pixels that actually belong to Ci but is classified
into Cj for = ⋯i j r, 1, 2, , . The rows and columns correspond to the
ground truth and calculated results respectively. Thus, the sample
number for Ci, ni, is the sum of row ≡ ∑+ =x xi j

r
ij1
while the column total

≡ ∑+ =x xj i

r
ij1
denotes the number of pixels classified into Cj [144].
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Thus, the class-averaged accuracy C(X), overall accuracy A(X), and
kappa statistic coefficient κ(X) are defined below for accuracy assess-
ment [144]:
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where ≡ ∑ =N n
j

r
i1
is the total number of pixels. In [144], a coefficient

based on Kullback–Leibler (KL) information in multinomial distribu-
tions was proposed to overcome the limitation of kappa coefficient,
which is evaluated only by the diagonal elements, column and row
totals of the error matrix X. The off-diagonal elements are neglected,
and thus kappa is not an appropriate coefficient for accuracy assess-
ment [144]. Moreover, two parameters quantity disagreement and al-
location disagreement, were proposed in [145] to replace the kappa
coefficient.

When the fused result gives a degree of a pixel belonging to a certain
class or a confidence degree value, the calculations in Eq.(21a) to (21c)
do not work. A fuzzy similarity based approach proposed in [146] is
more feasible in such a situation. A comprehensive review on classifi-
cation accuracy assessment is available in [147] for a more in-depth
discussion.

Fig. 13. Approaches for the assessment of combinative fusion.

Table 4

Summary of fusion metric calculations [124].

Information theory based metric QMI: Normalized mutual information [130]
QTE: Mutual information based on Tsallias
entropy [131]
QNCIE: Nonlinear correlation information
entropy [132]

Image feature based metric QG: Gradient-based fusion metric [133]
QM: Image fusion metric based a multiscale
scheme [134]
QSF: Image fusion metric based on spatial
frequency [135]
QP: Image fusion metric based on phase
congruency [136,137]

Image structural similarity based
metric

QS: Piella’s metric [138]

QC: Cvejie’s Metric [139]
QY: Yang’s Metric [140]

Human perception inspired fusion
metric

QCV: Chen-Varshney metric [141]

QCB: Chen-Blum metric [142]
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5. Evaluation of the state-of-the-art

5.1. Significance test for statistical comparison

Most research on pixel-level image fusion usually seeks a compar-
ison of the proposed algorithm with a baseline method in terms of se-
lected fusion metrics. Even though variations in metric values are ob-
served, the significance of such differences is not clear without a
statistical analysis. The authors proposed conducting a non-parametric
statistical test for comparison of fusion algorithms [148]. An Image

Fusion Toolbox Employing Significance Test (ImTEST) was developed to
facilitate such analysis [149]. The procedure for comparison is clearly
defined in [149].

The significance is calculated based on the algorithm ranking rather
than the metric values. The significance test is first conducted to check
if there is a significant difference in the results. The null hypothesis (H0)
states that there is no effect or no difference, whereas the alternative
hypothesis (H1) claims the presence of an effect or a difference between
algorithms. The Wilcoxon signed-ranks test and the Friedman test are
applied to the cases of two or more than two algorithms respectively.
The test reports “No” or “Yes” based on the p-value ( =α 0.05). For the
tests of “Yes”, a multiple (1×N) post-hoc procedure, i.e., Friedman test
with FinnerâÇÖs correction, is followed to identify which pair of al-
gorithms differ significantly. The Finner procedure is simple but pow-
erful. Again, the ranks of algorithms are used. The newly proposed
fusion algorithm is employed as a controlled reference. The results are
presented with a “correlation plot” as shown in Figs. 14–16. The size
and color of the circle show the fusion metric correlation values be-
tween the different algorithms. The approximated actual values are
given in the lower part of the plot. If the difference between two al-
gorithms is not significant, a red cross is placed in the corresponding
square. For those (Algorithm 13 and 30) which only have two algo-
rithms, the correlation plots are not presented.

5.2. Evaluation results and highlights

In this section, we survey the state-of-the-art in image fusion from
40 publications, which were screened based on specific image data sets
as well as the selected fusion metrics in each study. The significance of
40 fusion algorithms is investigated with statistical analyses. Even
though the comparison is not applicable across all the studies, the
significance of the proposed algorithms can be understood through the
comparison. The tests are categorized into three classes: 1) transform-
based approach, 2) learning-based approach, and 3) other approaches.
The abbreviations of the algorithms in Figs. 14–16 are provided in the
Appendix of this paper for reference.

Fig. 14 shows the case of transform-based methods. Fig. 14(i) shows
a performance comparison over ten methods, while Fig. 14(h) shows
almost no differences. Since DWT is a common baseline, then com-
parisons shown an significance improvement with the sparse re-
presentation methods.

There are 19 algorithms in transform-based approach category as
listed in Table 5. Among the 19 algorithms, six (32%) are not significant
while the remaining 13 (68%) are significant in terms of the threshold
value 0.05. Checking the twelve correlation plots with a significant
indication in Fig. 14, we find five out of twelve have shown their sig-
nificance in the post-hoc tests, which means the newly proposed algo-
rithm is effective. However, we need to look at the context of the va-
lidation process for each new fusion algorithm. Three of them only
conducted a limited comparison, e.g. compared with only three algo-
rithms. The other two compared six other algorithms. Details are
summarized in Table 8.

Similarly, for leaning-based approaches, there are six out of eight
algorithms that demonstrate statistical significance (see Table 6).
Among the six, five demonstrate their effectiveness in terms of the post-

hoc test. The five proposed algorithms are compared with four, three,

and two algorithms respectively (see Fig. 15). In other fusion approaches,
nine out of thirteen algorithms are significant and three among the nine
do show the significance of the proposed algorithm. The details are
available in Table 7 and Fig. 16.

Table 8 summarizes the statistic significant test results. In the all 40
algorithms, about 70% show the significant difference and about 50%
indicate the difference coming from the proposed algorithms. In other
words, about 35% of the total 40 algorithms demonstrated the effec-
tiveness in the context of selected data sets, evaluation metrics, and
algorithms to compare with. However, the insignificant test results do
not necessarily mean the fusion method is not valid, just that: “the
proposed method is (or is not) significant in comparison with the

selected fusion algorithms in terms of the specific data sets and

selected fusion metrics”. Obviously, the impact on the statistical test
originates from a number of factors. Currently, there are lack of
benchmark data and commonly accepted protocols to conduct a com-
parative study, but this is critical for high quality research on image
fusion.

6. Discussions

One of the research efforts on image fusion is focused on re-
presentation of image features, which is typical an artful selection. The
sparse representation is such an example to use the image’s intrinsic
features. It is worth more investigations in this direction. Recent ad-
vances in machine learning and deep neural network offer a mechanism
to achieve the feature creation. In [28], an image is regarded as a
distribution of attributes of objects (DAO) and image fusion becomes
the matter of attribute composition. Thus, more attention should be
paid to the physical implications of the image.

When a new fusion algorithm is proposed, the effectiveness and
feasibility is usually validated or demonstrated by applying it to several
different applications, where general fusion assessment metrics are
adopted to evaluate the fusion performance. The disadvantages of this
methodology is that the specific requirements of the application are not
fully explored and considered. And the research may stay at the level of
trying the different combinations for the image representation and no
significant breakthroughs are achieved. Thus, the benefits offered by
image fusion will not be fully understood. It is worth more efforts on the
application itself when image fusion is considered as one of its solu-
tions.

The fused image by combinative pixel-level fusion is intuitively
meaningful. However, the significance offered by the fused image has
not been fully revealed through quantitative analysis. Fusion perfor-
mance assessment is indeed an application dependent issue. The gen-
eral fusion metrics can reflect the certain aspect of the overall fusion
process, e.g. information gain, image feature enrichment, etc; but is not
always the complete performance.

Current performance assessment does not directly reflect the fusion
objective. The assessments are concentrated on the fusion process, and
thus a kind of “internal evaluation”, which focuses on the quality of
fused data. Most of the metrics assess the operational achievement, i.e.
measuring how the entropy, energy, or features have been effectively
transferred to the fused result. It is not clear how such achievements
benefit the actual use of the fused image for an application involving
humans, which is known as the bottom line “external evaluation”. How
the fused image can be further used is critical for evaluating the fusion
performance. In [179], Hossny et al. introduced the concepts of Type-I
and Type-II fusion errors, fusion capacity, and fusion worthiness, which
are more general and target how the fusion outcome benefits the ap-
plication. The use of human subjects is another practice. However, the
challenges included in such campaign come from the neglected un-
controllable factors and the volume of the collected data. Limited scale
of subjective assessment does not always assure a solid ground truth
reference. Toet et al. [180] suggested the future research direction is
“cognitive” fusion, which emphasizes the high-level image
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Fig. 14. The correlation plots of the transform-based fusion algorithms. (The size and color of the circle show the fusion metric correlation values between the different algorithms. The

approximated actual values are given in the lower part of the plot. If the difference between two algorithms is not significant, a red cross is put in the corresponding square.) (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 15. The correlation plots of the learning-based fusion algorithms (see Caption in Fig. 14 for explanation).

Fig. 16. The correlation plots of other fusion algorithms (see Caption in Fig. 14 for explanation). (For interpretation of the references to colour in this figure legend, the reader is referred

to the web version of this article.)
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understanding and interpretation. In the experiments described in
[180], the human subjects were not asked to give the evaluation score
directly. Instead, they were asked to find the contour of the target ob-
jective. The sketched contours were used as a subjective reference to
evaluate the fusion performance. When the computer is used to further
analyze or process the fused image, the classification/recognition/
identification algorithms on the computer will tell which fused result is
better.

7. Conclusion

Image fusion offers an effective way to integrate or combine images
from multiple sources for a comprehensive perception of the target
and/or scene. This paper screens and categorizes the state-of-the-art of
fusion implementation and performance assessment. A complete pro-
cess from fusion algorithm development to validation is presented.
Moreover, an evaluation of 40 recently proposed fusion algorithms is
conducted with significance test for statistical comparison. About 14
out of 40 algorithms (35%) show the significant differences from the
others in the comprehensive comparison. No more than half of the al-
gorithms are significant given the context of comparison settings, e.g.
algorithms to compare with and image data sets in the experiments.
Learning-based fusion is relatively new, but according to the post-hoc

test, it appears to be more significant in its comparison.

Table 5

Transform-based image fusion approaches.

No. Algorithm Data source Significance

1 NSCT and intensity-hue-saturation transform Table 1 in [51] No (0.2160)
2 Improved additive-wavelet transform Table 1 in [150] No (0.8186)
3 Type-2 fuzzy logic (T2FL) in NSCT domain Table 1 in [151] Yes (< −e2.2 16)
4 Compressive sensing and graph cuts Table 3 in [152] Yes (0.0099)
5 PCA/wavelet model-based fusion Table 1 (top) in [153] No (0.9891)
6 Complex wavelets transform (CWT) Table 1 in [154] No (0.05476)
7 a‵ trous wavelet transform (AWT/UAW) based fusion Table 2 in [155] No (0.3468)

8 Shift-invariant shearlet transform (SIST) based fusion Tables 1 and 2 in [156] Yes ( −e6.7506 08)
9 Directive contrast based fusion in NSCT domain Table 1 in [157] Yes ( −e1.5543 15)
10 Daubechies complex wavelet transform (DCxWT) Table 1–3 in [158] Yes ( −e4.7696 08)
11 Hybrid multiresolution method Table 1 in [159] Yes (< −e2.2 16)
12 Multicontourlet transform based fusion (MCTF) Table 3 in [160] Yes ( −e4.4613 07)
13 Discrete cosine transform (DCT) Table 1 in [161] Yes (< −e2.2 16)
14 Support value transform (SVT) Table 1 in [162] Yes ( −e1.9250 11)
15 Dense scale invariant feature transform (SIFT) Table 1 in [74] Yes (< −e2.2 16)
16 Non-subsampled shearlet transform and fast non-negative matrix factorization (NF) Table 1 and 2 in [163] Yes ( −e1.4451 11)
17 Directive contrast in NSCT domain (DC.NSCT) Table 1 in [164] Yes ( −e4.4542 13)
18 Shearlets and PCNN (ST.PCNN) Table 1 in [165] Yes (0.0128)
19 Gradient entropy metric and p-Laplace diffusion constraint-based fusion algorithm Table 2 in [166] No (0.7975)

Table 6

Learning-based fusion approaches.

No. Algorithm Data source Significance

20 Group-spare representation with
dictionary learning (GSDL)

Table 3 in
[167]

Yes ( −e7.1502 07)

21 Multi-task sparse representation and
spatial context

Table 2 in
[168]

Yes ( −e1.8977 07)

22 SparseFI Table 1 in [24] No (0.2013)
23 Online coupled dictionary learning Table 2 in

[169]
No (0.1361)

24 Dictionary-based sparse
representation

Table 1 in
[170]

Yes (< −e2.2 16)

25 Joint sparse representation Table 2 in [31] Yes ( −e8.0329 10)
26 Joint sparse model (JSM) Table 2–4 in

[33]
Yes (< −e2.2 16)

27 Joint patch clustering-based
dictionary learning (S.JCPD)

Table 1 in
[171]

Yes ( −e3.8796 08)

Table 7

Other fusion approaches.

No. Algorithm Data source Significance test (p-value)

28 Guided filtering fusion (GFF) Table 1 in [86] Yes (< −e2.2 16)
29 High order singular value decomposition (PKInf) Table 2 in [87] Yes ( −e5.4057 13)
30 Compressive sensing Table 1 in [88] Yes (0.003843)
31 Median filter and recursive filter (MFRF) Table 1 in [172] Yes ( −e2.1404 09)
32 Intensity transformation function Table 1 in [173] No (0.06008)
33 Compressive measurement Table 2 in [174] No (0.09302)
34 Maximum likelihood (ML) fusion Table 2 in [98] Yes ( −e5.1993 06)
35 Intuitionistic fuzzy sets Table 5 and 7 in [175] No (0.5270)
36 Independent component analysis (ICA) Table 1 in [176] Yes ( −e6.0862 13)
37 Maximum local frequency Table 4 in [29] No (0.0828)
38 Energy evaluation model (EEM) Table 1 in [92] Yes (0.0031)
39 Image matting Table 1 in [177] Yes (< −e2.2 16)
40 Edge-preserving decomposition and guided image filter (EPDGF) Table 1 in [178] Yes ( −e5.1503 12)

Table 8

Summary of the statistic significant tests for different fusion algorithms.

Statistic test results
( =α 0.05)

Transform-
based
approaches
(19)

Learning-
based
approaches
(8)

Other
approaches
(13)

Total (40)

Significance
test

Yes 13 (68%) 6 (75%) 9 (69%) 28 (70%)

No 6 (32%) 2 (25%) 4 (31%) 12 (30%)
post-hoc test Yes 5 (42%) 5 (83%) 3 (37%) 14 (54%)

No 7 (58%) 1 (17%) 5 (63%) 12 (46%)
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The results suggest that fusion research should move from a feasi-
bility study to problem-solving development. The research should de-
monstrate fusion as an effective solution in the context of a specific
problem or application rather than simply showing a differently for-
mulated fusion algorithm applicable to a number of general problems.

To facilitate future research on image fusion at its initial stage,
benchmark data and assessment protocols need to be created and es-
tablished to fill the gap for comparing different fusion methodologies.
This remains a topic for our future work.

Appendix

Abbreviations of algorithms in the experiments

The abbreviations for algorithms that are used for the comparative study are given in Table 9.

Table 9

Abbreviations of algorithms in the comparative study.

AIHS Adaptive intensity-hue-saturation (IHS) method [181]

ASR Adaptive sparse representation [182]
AWLP Proportional additive wavelet intensity-hue-saturation fusion [183]
BLS.GSM Bayesian-least squares-Gaussian-scale-mixture [184]
CBF Cross bilateral filter-based fusion [185]
CHMT HMT model in contourlet domain [186]
Contrast Contrast pyramid [64]
CP Contrast pyramid [165]
C-PCNN Contourlet-PCNN [165]
CP.LS Control-point based least square [187]
CT, NSCT.1, NSCT.2 Contourlet transform [50,188,189]
CVT Curvelet transform [190]
DCT Discrete cosine transform [161]
DCHWT Multi-scale discrete cosine harmonic wavelet transform [191]
DTCWT Dual-tree complex wavelet transform [192]
DWT/WTF Discrete wavelet transform [193]
GP Gradient pyramid [65]
Gradient Gradient map image fusion [65]
GRW Generalized random walks [194]
HOSVD High order singular value decomposition [87]
HMT Hidden Markov tree [186]
HS Homogeneity similarity [195]
iCAM06 Image color appearance model [196]
I2CM Improved intersecting cortical model [197]
IG Image gradient [198]
LAP Laplacian pyramid [199]
Linear fusion Linear mixing model [200]
LWT Lifting wavelet transform [201]
MF/IFM Image matting fusion [170,177]
MI Mutual information [202]
MM Mathematic morphology [203]
MWT Multiwavelet transform [204]
ND Neighbor distance [205]
NSCT/CTF Nonsubsampled contourlet transform [188]
NSR Sparse representation in NSCT [74]
PCA Principal component analysis [206]
PCNN Pulse coupled neural network [207]
Photomatix HDR images from uncompressed image data [208]
P.XS Variational model for panchromatic and multispectral images [209]
Reinhard Photographic tone reproduction [210]
RSR Robust sparse representation [168]
RSSF Region segmentation and spatial frequency [211]
S22 Contrast based fusion in NSCT domain [157]
S27 Neuro-fuzzy fusion [212]
SAID Saliency analysis and image decomposition [213]
S.DCT, S.KSVD1,

S.KSVD2
sparse representation-based method using the fixed or learned
dictionaries

[171,214]

Sharp fusion bilateral gradient-based sharpness criterion [215]
SNAS serial NSCT aiding SWT [159]
SOMP simultaneous orthogonal matching pursuit [214]
SSAN serial SWT aiding NSCT [159]
ST shearlet transform [216]
SWT stationary wavelet transform [217]
UW.BLS.GSM undecimated orthogonal wavelet transform [218]
W.BLS.GSM BLS.GSM for the orthogonal wavelet transform [184]
WHMT HMT model in wavelet domain [219]
W-PCNN wavelet-PCNN [165]
WSSM wavelet-based statistical sharpness measure [220]
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