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Abstract. In the scheme of a quantum nondemolition (QND) measurement, an

observable is measured without perturbing its evolution. In the context of studies

of decoherence in quantum computing, we examine the ‘open’ quantum system of

a two-level atom, or equivalently, a spin-1/2 system, in interaction with quantum

reservoirs of either oscillators or spins, under the QND condition of the Hamiltonian

of the system commuting with the system-reservoir interaction. For completeness, we

also examine the well-known non-QND spin-Bose problem. For all these many-body

systems, we use the methods of functional integration to work out the propagators.

The propagators for the QND Hamiltonians are shown to be analogous to the squeezing

and rotation operators, respectively, for the two kinds of baths considered. Squeezing

and rotation being both phase space area-preserving canonical transformations, this

brings out an interesting connection between the energy-preserving QND Hamiltonians

and the homogeneous linear canonical transformations.

PACS numbers: 03.65.Db, 03.65.Yz, 42.50.Ct
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1. Introduction

In the scheme of a quantum nondemolition (QND) measurement, an observable is measured

without perturbing its free motion. Such a scheme was originally introduced in the context

of the detection of gravitational waves [1]. It was to counter the quantum mechanical

unpredictability that in general would disturb the system being measured. The dynamical

evolution of a system immediately following a measurement limits the class of observables that

may be measured repeatedly with arbitrary precision, with the influence of the measurement

apparatus on the system being confined strictly to the conjugate observables. Observables

having this feature are called QND or back-action evasion observables [2, 3, 4]. In addition

to its relevance in ultrasensitive measurements, a QND scheme provides a way to prepare

quantum mechanical states which may otherwise be difficult to create, such as Fock states

with a specific number of particles. One of the original proposals for a quantum optical

QND scheme was that involving the Kerr medium [5], which changes its refractive index as

a function of the number of photons in the ‘signal’ pump laser. The advent of experimental

methods for producing Bose-Einstein condensation (BEC) enables us to make progress in the

matter-wave analogue of the optical QND experiments. In the context of research into BEC,

QND schemes with atoms are particularly valuable, for instance, in engineering entangled

states or Schrödinger’s cat states. A state preparation with BEC has recently been performed

in the form of squeezed state creation in an optical lattice [6]. In a different context, it

has been shown that the accuracy of atomic interferometry can be improved by using QND

measurements of the atomic populations at the inputs to the interferometer [7].

No system of interest, except the entire universe, can be thought of as an isolated system

– all subsets of the universe are in fact ‘open’ systems, each surrounded by a larger system

constituting its environment. The theory of open quantum systems provides a natural route for

reconciliation of dissipation and decoherence with the process of quantization. In this picture,

friction or damping comes about by the transfer of energy from the ‘small’ system (the system

of interest) to the ‘large’ environment. The energy, once transferred, disappears into the

environment and is not given back within any time of physical relevance. Ford, Kac and Mazur

[8] suggested the first microscopic model describing dissipative effects in which the system was

assumed to be coupled to a reservoir of an infinite number of harmonic oscillators. Interest in

quantum dissipation, using the system-environment approach, was intensified by the works of

Caldeira and Leggett [9], and Zurek [10] among others. The path-integral approach, developed

by Feynman and Vernon [11], was used by Caldeira and Leggett [9], and the reduced dynamics

of the system of interest was followed taking into account the influence of its environment,

quantified by the influence functional. In the model of the fluctuating or “Brownian” motion

of a quantum particle studied by Caldeira and Leggett [9], the coordinate of the particle was

coupled linearly to the harmonic oscillator reservoir, and it was also assumed that the system

and the environment were initially factorized. The treatment of the quantum Brownian motion

has since been generalized to the physically reasonable initial condition of a mixed state of the

system and its environment by Hakim and Ambegaokar [12], Smith and Caldeira [13], Grabert,

Schramm and Ingold [14], and by us for the case of a system in a Stern-Gerlach potential [15],

and also for the quantum Brownian motion with nonlinear system-environment couplings [16].

An open system Hamiltonian is of the QND type if the Hamiltonian HS of the system

commutes with the Hamiltonian HSR describing the system-reservoir interaction, i.e., HSR

is a constant of motion generated by HS . Interestingly, such a system may still undergo

decoherence or dephasing without any dissipation of energy [17, 18].

In this paper, we study such QND ‘open system’ Hamiltonians of particular interest in the
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context of decoherence in quantum computing, and obtain the propagators of the composite

systems explicitly using path integral methods, for two different models of the environment.

The aim is to shed some light on the problem of QND measurement schemes. Can one draw

upon any familiar symmetries to connect with the time-evolution operation of these QND

systems of immense physical importance?

We take our system to be a two-level atom, or equivalently, a spin-1/2 system. We

consider two types of environment, describable as baths of either oscillators or spins. One

cannot in general map a spin-bath to an oscillator-bath (or vice versa); they constitute distinct

universality classes of quantum environment [19]. The first case of oscillator-bath models

(originated by Feynman and Vernon [11]) describes delocalized environmental modes. For the

spin-bath, on the other hand, the finite Hilbert space of each spin makes it appropriate for

describing the low-energy dynamics of a set of localized environmental modes. A difficulty

associated with handling path integrals for spins comes from the discrete matrix nature of the

spin-Hamiltonians. This difficulty is overcome by bosonizing the Hamiltonian by representing

the spin angular momentum operators in terms of boson operators following Schwinger’s theory

of angular momentum [20].

We then use the Bargmann representation [21] for all the boson operators. The

Schrödinger representation of quantum states diagonalizes the position operator, expressing

pure states as wave functions, whereas the Bargmann representation diagonalizes the creation

operator b†, and expresses each state vector |ψ〉 in the Hilbert state H as an entire analytic

function f(α) of a complex variable α. The association |ψ〉 −→ f(α) can be written

conveniently in terms of the normalized coherent states |α〉 which are the right eigenstates

of the annihilation operator b:

b|α〉 = α|α〉,

〈α′|α〉 = exp

(
−
1

2
|α′|2 −

1

2
|α|2 + α′∗α

)
,

giving

f(α) = e−|α|2/2 〈α∗|ψ〉.

We obtain the explicit propagators for these many-body systems from those of the expanded

bosonized forms by appropriate projection.

The propagators for the QND Hamiltonians with an oscillator bath and a spin bath

are shown to be analogous to the squeezing and rotation operators, respectively, which are

both phase space area-preserving canonical transformations. This suggests an interesting

connection between the energy-preserving QND Hamiltonians and the homogeneous linear

canonical transformations, which would need further systematic probing.

The plan of the paper is as follows. In section 2 we take up the case of a QND-type of

open system Hamiltonian where the bath is a bosonic one of harmonic oscillators. In section

2.1 we consider a case, which is a variant of the previous one, wherein we include an external

mode in resonance with the atomic transition and obtain its propagator. In section 2.2 we

discuss the non-QND variant of the Hamiltonian which usually occurs in the literature in

discussions of the spin-Bose problem [22, 23]. In section 3 we treat the case of a QND-type

of open system Hamiltonian where the bath is composed of two-level systems or spins. The

structure of the propagators in the two cases of the oscillator and spin baths is discussed in

section 4, and in section 5 we present our conclusions.
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2. Bath of harmonic oscillators

We first take the case where the system is a two-level atom interacting with a bosonic bath of

harmonic oscillators with a QND type of coupling. Such a model has been studied [24, 25, 26]

in the context of the influence of decoherence in quantum computation. The total system

evolves under the Hamiltonian,

H1 = HS +HR +HSR

=
h̄ω

2
σz +

M∑

k=1

h̄ωkb
†
kbk +

(
h̄ω

2

) M∑

k=1

gk(bk + b†k)σz. (1)

Here HS,HR and HSR stand for the Hamiltonians of the system, reservoir, and system-

reservoir interaction, respectively. We have made use of the equivalence of a two-level atom and

a spin-1/2 system, σx, σz denote the standard Pauli spin matrices and are related to the spin-

flipping (or atomic raising and lowering) operators S+ and S−: σx = S++S−, σz = 2S+S−−1.

In (1) b†k, bk denote the Bose creation and annihilation operators for the M oscillators of

frequency ωk representing the reservoir, gk stands for the coupling constant (assumed real) for

the interaction of the field with the spin. Since [HS ,HSR] = 0, the Hamiltonian (1) is of QND

type.

The explicit propagator exp(− iHt
h̄ ) for the Hamiltonian (1) is obtained by using functional

integration and bosonization [22, 27]. In order to express the spin angular momentum operators

in terms of boson operators, we employ Schwinger’s theory of angular momentum [20] by

which any angular momentum can be represented in terms of a pair of boson operators with

the usual commutation rules. The spin operators σz and σx can be written in terms of the

boson operators aβ, a
†
β and aγ , a

†
γ as

σz = a†γaγ − a†βaβ,

σx = a†γaβ + a†βaγ .

In the Bargmann representation [21] the actions of b and b† are

b†f(α) = α∗f(α),

bf(α) =
df(α)

dα∗
, (2)

where |α〉 is the normalized coherent state. The spin operator becomes

σz −→

(
γ∗

∂

∂γ∗
− β∗

∂

∂β∗

)
. (3)

Here the variable β∗ is associated with the spin-down state and the variable γ∗ with the spin-up

state.

The bosonized form of the Hamiltonian (1) is

HB1
=
h̄ω

2

(
γ∗

∂

∂γ∗
− β∗

∂

∂β∗

)
+

M∑

k=1

h̄ωkα
∗
k

∂

∂α∗
k

+
h̄ω

2

M∑

k=1

gk

(
α∗
k +

∂

∂α∗
k

)(
γ∗

∂

∂γ∗
− β∗

∂

∂β∗

)
. (4)

Here α∗
k,

∂
∂α∗

k

are the Bargmann representations for b†k and bk, respectively. A particular

solution of the Schrödinger equation for the bosonized Hamiltonian (4) is

U1 = U00β
∗β′ + U01β

∗γ′ + U10γ
∗β′ + U11γ

∗γ′, (5)
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where the amplitude Uij are functions of time as well as the coherent state variables associated

with the boson oscillators, with the initial condition

Uij(t = 0) = exp

{
M∑

k=1

α∗
kα

′
k

}
δij (i, j = 0, 1). (6)

The initial state for the expanded propagator associated with the bosonized Hamiltonian (5)

is

U(t = 0) = exp

{
M∑

k=1

α∗
kα

′
k

}
exp

{
β∗β′ + γ∗γ′

}
. (7)

If the Hamiltonian is in the normal form given by H(α∗, ∂
∂α∗ , t), the associated propagator is

given as a path integral over coherent state variables as [28]

U(α∗, t;α′, 0) =

∫
D{α} exp





∑

0≤τ<t

α∗(τ+)α(τ) −
i

h̄

t∫

0

dτH (α∗(τ+), α(τ), τ)




 .(8)

Here
∑

0≤τ<t
α∗(τ+)α(τ) stands for

N−1∑
j=0

α∗(τj+1)α(τj) in the subdivision of the internal [0, t],

i.e., where τ stands for τj, τ+ stands for the next point τj+1 in the subdivision. Also, in the

subdivision scheme,

t∫

0

dτH (α∗(τ+), α(τ), τ) =
N−1∑

j=0

H (α∗(τj+1), α(τj), τj)∆τj.

Here the path differential in (8) is

D
2{α} =

∏

0<τ<t

D2α(τ), (9)

where the weighted differential is

D2α(τ) =
1

π
exp

(
−|α(τ)|2

)
d2α(τ). (10)

Using (8), the propagator for the bosonized Hamiltonian (4) is

u1(α
∗, β∗, γ∗, t;α′, β′, γ′, 0) =

∫
D

2{α}D2{β}D2{γ}

× exp

{
∑

0≤τ<t

[
M∑

k=1

α∗
k(τ+)αk(τ)

+ β∗(τ+)β(τ) + γ∗(τ+)γ(τ)

]

− i
M∑

k=1

t∫

0

dτωkα
∗
k(τ+)αk(τ)

− i
ω

2

t∫

0

dτ

[
γ∗(τ+)γ(τ)− β∗(τ+)β(τ)

]

− i
ω

2

M∑

k=1

t∫

0

dτgk

[
α∗
k(τ+) + αk(τ)

][
γ∗(τ+)γ(τ)

− β∗(τ+)β(τ)

]}
. (11)
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In Eq. (11) α is a vector with components {αk}, and D
2{α} =

∏M
k=1D

2{αk}.

Now we introduce a complex auxiliary field f(τ) to decouple the interaction term in (11)

as

exp


−

iω

2

M∑

k=1

t∫

0

dτgk [α
∗
k(τ+) + αk(τ)] [γ

∗(τ+)γ(τ) − β∗(τ+)β(τ)]




=

∫
D

2{f} exp



−i
M∑

k=1

t∫

0

dτf∗(τ)gk (α
∗
k(τ+) + αk(τ))





× exp




t∫

0

dτf(τ)
ω

2
(γ∗(τ+)γ(τ)− β∗(τ+)β(τ))



 . (12)

Here we have used the δ-functional identify, [22]

∫
D

2{x}P [x∗(t)] exp





t∫

0

dτy(τ)x(τ)



 = P [y(t)], (13)

where D
2{x} is the functional differential

D
2{x} = exp


−

t∫

0

dτ |x(τ)|2




∏

0≤τ<t

(
dτ

π

)
d2x(τ), (14)

and P[x∗(t)] is an explicit functional of x∗ only. Using (12), the bosonized propagator (11)

can be written as

u1(α
∗, β∗, γ∗, t;α′, β′, γ′, 0) =

∫
D

2{f}G1(α
∗, t;α′, 0; [f∗])

×N1
(
β∗, γ∗, t;β′, γ′, 0; [f ]

)
. (15)

Here G1 stands for the propagator for

HG1
= h̄

M∑

k=1

[
ωkα

∗
k

∂

∂α∗
k

+ f∗(t)gkα
∗
k + f∗(t)gkαk

]
, (16)

N1 is the propagator for

HN1
=
h̄ω

2

(
γ∗

∂

∂γ∗
− β∗

∂

∂β∗

)
+
ih̄ω

2
f(t)

(
γ∗

∂

∂γ∗
− β∗

∂

∂β∗

)
. (17)

These obey the Schrödinger equations ih̄ ∂
∂tG1 = HG1

G1, ih̄
∂
∂tN1 = HN1N1 with the initial

conditions

G1(t = 0) = exp

{
M∑

k=1

α∗
kα

′
k

}
,

N1(t = 0) = exp
{
β∗β′ + γ∗γ′

}
. (18)

The propagator G1 is given by

G1 = exp

{
M∑

k=1

α∗
kα

′
ke

−iωkt −
M∑

k=1

[
iα∗

kgk

t∫

0

dτf∗(τ)e−iωk(t−τ)

+ iα′
kgk

t∫

0

dτe−iωkτf∗(τ)

+ g2k

t∫

0

dτ

τ∫

0

dτ ′e−iωk(τ−τ ′)f∗(τ)f∗(τ ′)

]}
. (19)
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The propagator N1 is given by

N1 = exp
{
Q00β

∗β′ +Q01β
∗γ′ +Q10γ

∗β′ +Q11γ
∗γ′
}

=
∞∑

l=0

1

l!

[
(β∗, γ∗)Q

(
β′

γ′

)]l
. (20)

Here Q(t) is given by

Q(t) = exp


 iω

2
σzt−

ω

2
σz

t∫

0

dτf(τ)


 , (21)

with Qij(0) = δij , Q(0) = I.

Thus the propagator for the bosonized Hamiltonian (4) as given by (15) becomes

u1 =
∞∑

l=0

∫
D

2{f}G1
1

l!

[
(β∗, γ∗)Q

(
β′

γ′

)]l
. (22)

The propagator for the Hamiltonian (1) is obtained from (22) by taking the l = 1 term in

the above equation. By making use of the δ-functional identity (13) the amplitudes of the

propagator for the Hamiltonian (1) are obtained in matrix form as

u1 =

(
U00 U01

U10 U11

)
= exp

{
M∑

k=1

α∗
kα

′
ke

−iωkt

}

× eA
(
eB 0

0 e−B

)
, (23)

where

A = i

(
ω

2

)2 M∑

k=1

g2k
ωk
t−

(
ω

2

)2 M∑

k=1

g2k
ω2
k

(
1− e−iωkt

)
, (24)

B =
M∑

k=1

φk
(
α∗
k + α′

k

)
+ i

ω

2
t, (25)

φk =
ω

2

gk
ωk

(
1− e−iωkt

)
. (26)

Here we associate the values α∗ with time t and α′ with time t = 0 as is also evident

from (8). The simple form of the last term on the right-hand side of (23) reveals the QND

nature of the system-reservoir coupling. Since we are considering the unitary dynamics of

the complete Hamiltonian (1) there is no decoherence, and the propagator (23) does not have

any off-diagonal terms. In a treatment of the system alone, i.e., an open system analysis of

Eq. (1) after the tracing over the reservoir degrees of freedom, it has been shown [25] that

the population, i.e., the diagonal elements of the reduced density matrix of the system remain

constant in time while the off-diagonal elements that are a signature of the quantum coherences

decay due to decoherence, as expected.

Note that though the commonly used coordinate-coupling model describing a free particle

in a bosonic bath, explicitly solved by Hakim and Ambegaokar [12], with

H =
P 2

2
+

1

2

M∑

j=1

(
p2j + ω2

j (qj −Q)2
)
, (27)
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is seemingly not of the QND type, it can be shown to be unitarily equivalent to a Hamiltonian

of the QND type as follows:

U2U1HU
†
1U

†
2 =

P 2

2
+ P

M∑

j=1

ωjqi +
1

2

M∑

j=1

(
p2j + ω2

j q
2
j

)

+
1

2




M∑

j=1

ωjqj




2

, (28)

where U1 and U2 are the unitary operators

U1 = exp



 iπ
2h̄

M∑

j=1

(
p2j
2ωj

+
1

2
ωjq

2
j

)

 , (29)

U2 = exp


−i
h̄
Q

M∑

j=1

ωjqj


 . (30)

The above Hamiltonian (28) is of the QND type with [HS ,HSR] = [P 2/2, P
M∑
j=1

ωjqj] = 0. It

is commonly known as the velocity-coupling model [29].

2.1. An external mode in resonance with the atomic transition

In this subsection we consider a Hamiltonian which is a variant of the one in (1):

H2 =
h̄ω

2
σz + h̄Ωa†a−

h̄Ω

2
σz

+
M∑

k=1

h̄ωkb
†
kbk +

h̄ω

2

M∑

k=1

gk(bk + b†k)σz. (31)

Here

Ω = 2~ǫ.~d∗, (32)

where ~d is the dipole transition matrix element and ~ǫ comes from the field strength of the

external driving mode ~EL(t) such that

~EL(t) = ~ǫe−iωt + ~ǫ∗eiωt. (33)

Here we have used the form −Ω
2 σz, associated with the external mode, instead of the usual

form −Ω
2 σx and (31) is of a QND type. Proceeding as in section 2 and introducing the symbol

ν∗ for the Bargmann representation of the external mode a† we have the amplitudes of the

propagator for (31) in matrix form as

u2 =

(
U00 U01

U10 U11

)
= exp

{
M∑

k=1

α∗
kα

′
ke

−iωkt

}

× exp
{
ν∗ν ′e−iΩt

}
eA
(
eB2 0

0 e−B2

)
, (34)

where A is as in Eq. (24),

B2 =
M∑

k=1

φk
(
α∗
k + α′

k

)
+ i

(
ω − Ω

2

)
t, (35)

and φk is as in Eq. (26).
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2.2. Non-QND spin-Bose problem

In this subsection we consider a Hamiltonian that is a variant of the spin-Bose problem

[22, 27, 23]. This addresses a number of problems of importance such as the interaction

of the electromagnetic field modes with a two-level atom [30, 31]. Another variant of the

spin-Bose problem has been used for treating problems of phase transitions [32, 33] and also

to the tunnelling through a barrier in a potential well [34]. Our Hamiltonian is

H3 =
h̄ω

2
σz +

M∑

k=1

h̄ωkb
†
kbk

+
h̄ω

2

M∑

k=1

gk(bk + b†k)σx. (36)

This could describe, for example, the interaction of M modes of the electromagnetic field with

a two-level atom via a dipole interaction. This has a form similar to Eq. (1) except that here

the system-environment coupling is via σx rather than σz. This makes the Hamiltonian (36)

a non-QND variant of the Hamiltonian (1). We proceed as in Section II with HN1
(17) now

given by

HN1
=
h̄ω

2

(
γ∗

∂

∂γ∗
− β∗

∂

∂β∗

)
+ i

h̄ω

2
f(t)

(
γ∗

∂

∂β∗
+ β∗

∂

∂γ∗

)
. (37)

The propagator for HN1
(37) has the same form as N1 (20) but with Q now satisfying the

equation

∂

∂t
Q =

iω

2
σzQ+

ω

2
f(t)σxQ, (38)

with Qij(0) = δij , Q(0) = I. This is solved recursively to yield the series solution

Q(t) =
∞∑

n=0

Q(n)(t),

Q(n)(t) =

(
iω

2
σz

)n
t∫

0

dτn

τn∫

0

dτn−1...

τ2∫

0

dτ1

× exp


ω
2
σx




τ1∫

0

−

τ2∫

τ1

+...+ (−1)n
t∫

τn


 dτf(τ)


 . (39)

Using Eq. (39) and proceeding as before, we obtain the amplitudes of the propagator for the

Hamiltonian (36) in matrix form as

u3 =

(
U00 U01

U10 U11

)

= exp

{
M∑

k=1

α∗
kα

′
ke

−iωkt

}

×
∞∑

n=0

(
iω

2

)n
t∫

0

dτn

τn∫

0

dτn−1...

τ2∫

0

dτ1 exp
{
κ(n)

}

×

(
cosh

(
χ(n)

)
sinh

(
χ(n)

)

(−1)n sinh
(
χ(n)

)
(−1)n cosh

(
χ(n)

)
)
, (40)
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where

κ(n) = −

(
ω

2

)2 M∑

k=1

g2k
ω2
k

[
(2n + 1)− iωkt+ (−1)n+1e−iωkt

− 2
n∑

l=1

(−1)l+1e−iωkτl + 2(−1)n
n∑

l=1

(−1)l+1e−iωk(t−τl)

+ 4
n∑

p=2

p−1∑

q=1

(−1)p+qe−iωk(τp−τq)

]
, (41)

and

χ(n) = −
ω

2

M∑

k=1

gk
ωk

[
(
α′
k + (−1)nα∗

k

) (
1 + (−1)n+1e−iωkt

)

+ 2α∗
k

n∑

l=1

(−1)l+1e−iωk(t−τl) − 2α′
k

n∑

l=1

(−1)l+1e−iωkτl

]
. (42)

This agrees with the results obtained in [22, 27]. The matrix on the right-hand side of Eq. (40)

contains diagonal as well as off-diagonal terms in contrast to the matrix on the right-hand side

of Eq. (23) in which only diagonal elements are present. This is due to the non-QND nature

of the system-bath interaction of the Hamiltonian described by Eq. (36) whose propagator is

given by Eq. (40), whereas Eq. (23) is the propagator of the Hamiltonian given by Eq. (1)

where the system-bath interaction is of the QND type. The simpler form of the structure of

the propagator (23) compared to the non-QND propagator (40) reflects on the simplification

in the dynamics due to the QND nature of the coupling.

3. Bath of spins

Now we consider the case where the reservoir is composed of spin-half or two-level systems, as

has been dealt with by Shao and collaborators in the context of QND systems [18] and also

quantum computation [35], and for a nanomagnet coupled to nuclear and paramagnetic spins

[19]. The total Hamiltonian is taken as

H4 = HS +HR +HSR

=
h̄ω

2
Sz +

M∑

k=1

h̄ωkσzk +
h̄ω

2

M∑

k=1

ckσxkSz. (43)

Here we use Sz for the system and σzk, σxk for the bath. Since [HS ,HSR] = 0, we have a

QND Hamiltonian. In the Bargmann representation, we associate the variable β∗ with the

spin-down state and the variable γ∗ with the spin-up state for the bath variables, and we have

σz −→ γ∗
∂

∂γ∗
− β∗

∂

∂β∗
,

σx −→ γ∗
∂

∂β∗
+ β∗

∂

∂γ∗
. (44)

Similarly, the bosonization of the system variable gives

Sz −→ ξ∗
∂

∂ξ∗
− θ∗

∂

∂θ∗
, (45)
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where the variable θ∗ is associated with the spin-down state and the variable ξ∗ with the

spin-up state. The bosonized form of the Hamiltonian (43) is given by

HB4
=
h̄ω

2

(
ξ∗

∂

∂ξ∗
− θ∗

∂

∂θ∗

)
+

M∑

k=1

h̄ωk

(
γ∗k

∂

∂γ∗k
− β∗k

∂

∂β∗k

)

+
h̄ω

2

M∑

k=1

ck

(
γ∗k

∂

∂β∗k
+ β∗k

∂

∂γ∗k

)(
ξ∗

∂

∂ξ∗
− θ∗

∂

∂θ∗

)
. (46)

A particular solution of the Schrödinger equation for the bosonized Hamiltonian (46) is

obtained by attaching amplitudes to the polynomial parts in the products

U4 = (θ∗ + ξ∗)(θ′ + ξ′)
M∏

k=1

(β∗k + γ∗k)
(
β′k + γ′k

)
. (47)

The initial state for the expanded propagator associated with the bosonized Hamiltonian (46)

is

U(t = 0) = exp
{
θ∗θ′ + ξ∗ξ′

} M∏

k=1

exp
{
β∗kβ

′
k + γ∗kγ

′
k

}
. (48)

Using (8), the propagator for the bosonized Hamiltonian (46) is

u4(θ
∗, ξ∗,β∗,γ∗, t; θ′, ξ′,β′,γ′, 0) =

M∏

k=1

∫
D

2{θ}D2{ξ}D2{βk}D
2{γk}

× exp

{
∑

0≤τ<t

[
θ∗(τ+)θ(τ) + ξ∗(τ+)ξ(τ)

+ β∗k(τ+)βk(τ) + γ∗k(τ+)γk(τ)

]

− i
ω

2

t∫

0

dτ

[
ξ∗(τ+)ξ(τ)− θ∗(τ+)θ(τ)

]

− i

t∫

0

dτωk

[
γ∗k(τ+)γk(τ)− β∗k(τ+)βk(τ)

]

− i
ω

2

t∫

0

dτck

[
γ∗k(τ+)βk(τ) + β∗k(τ+)γk(τ)

]

×

[
ξ∗(τ+)ξ(τ) − θ∗(τ+)θ(τ)

]}
. (49)

On the left-hand side of Eq. (49), β∗, γ∗ are vectors with components {βk} and {γk},

respectively. Now we introduce a complex auxiliary field f(τ) to decouple the interaction

term in (49) as

exp


−i

ω

2

t∫

0

dτck [γ
∗
k(τ+)βk(τ) + β∗k(τ+)γk(τ)] [ξ

∗(τ+)ξ(τ)− θ∗(τ+)θ(τ)]




=

∫
D2{f} exp



−i
t∫

0

dτf∗(τ)ck (γ
∗
k(τ+)βk(τ) + β∗k(τ+)γk(τ))




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× exp




t∫

0

dτf(τ)
ω

2
(ξ∗(τ+)ξ(τ) − θ∗(τ+)θ(τ))


 . (50)

Using (50) in (49) the propagator for the bosonized Hamiltonian (46) becomes

u4
(
θ∗, ξ∗,β∗,γ∗, t; θ′, ξ′,β′,γ′, 0

)
=

M∏

k=1

∫
D2{f}M1

(
θ∗, ξ∗, t; θ′, ξ′, 0; [f ]

)

×N1k

(
β∗k , γ

∗
k , t;β

′
k, γ

′
k, 0; [f

∗]
)
, (51)

where M1 is the propagator for

HM1
=
h̄ω

2

(
ξ∗

∂

∂ξ∗
− θ∗

∂

∂θ∗

)
+
ih̄ω

2
f(t)

(
ξ∗

∂

∂ξ∗
− θ∗

∂

∂θ∗

)
, (52)

and N1k is the propagator for

HN1k
= h̄ωk

(
γ∗k

∂

∂γ∗k
− β∗k

∂

∂β∗k

)
+ h̄f∗(t)ck

(
γ∗k

∂

∂β∗k
+ β∗k

∂

∂γ∗k

)
. (53)

Here the propagator M1 is

M1 =
∞∑

p=1

1

p!

[
(θ∗, ξ∗) Q̃

(
θ′

ξ′

)]p
, (54)

where Q̃ is given by

Q̃(t) = exp


 iω

2
Szt−

ω

2
Sz

t∫

0

dτf(τ)


 , (55)

with Q̃ij(0) = δij , Q̃(0) = I.

The propagator N1k is

N1k =
∞∑

l=0

1

l!

[
(β∗k , γ

∗
k)Q

k
(
β′k
γ′k

)]l
, (56)

where Qk satisfies the equation

∂

∂t
Qk = i (ωkσzk − f∗(t)ckσxk

)Q(k). (57)

This equation can be solved recursively to give

Qk(t) =
∞∑

n=0

Qk(n)(t), (58)

with

Qk(0)(0) = I, Qk(n)(0)(n 6= 0) = 0, (59)

Qk(n)(t) = (iωkσzk)
n

t∫

0

dτn

τn∫

0

dτn−1...

τ2∫

0

dτ1

× exp


−iσxk

ck




τ1∫

0

−

τ2∫

τ1

+...+ (−1)n
t∫

τn


 dτf∗(τ)


 . (60)
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Using Eqs. (54), (56) with p = 1, l = 1, respectively, in Eq. (51) and making use of Eqs. (55),

(58), (59), (60) along with the δ-functional identity (13), the amplitudes of the propagator for

the Hamiltonian (43) are obtained in matrix form (in the Hilbert space of HR) as

u4 =

(
U00 U01

U10 U11

)
=

M∏

k=1

∞∑

n=0

(iωk)
n

t∫

0

dτn

τn∫

0

dτn−1...

τ2∫

0

dτ1

× ei
ω
2
Szt
(

cos(Θk(n)) i sin(Θk(n))

(−1)ni sin(Θk(n)) (−1)n cos(Θk(n))

)
, (61)

where

Θk(n) =
ω

2
SzckAn, (62)

An =
n∑

j=1

(−1)j+12τj + (−1)nt. (63)

Now if we expand the terms containing Sz, i.e., make an expansion in the system space,

in Eq. (61) we get terms such as

ei
ω
2
Szt cos(Θk(n)) = cos(

ω

2
ckAn)

(
ei

ω
2
t o

0 e−iω
2
t

)
. (64)

Here we have used the fact that

eSzA =

(
eA o

0 e−A

)
. (65)

Similarly,

ei
ω
2
Szti sin(Θk(n)) = i sin(

ω

2
ckAn)

(
ei

ω
2
t o

0 −e−iω
2
t

)
. (66)

The above equations have only diagonal elements. We can see from the above equations that

there are 16 amplitudes of the propagator for each mode k of the reservoir out of which only the

energy-conserving terms are present due to the QND nature of the system-reservoir coupling.

4. Discussions

We look closely at the forms of the propagators (23) and (61) of the QND type Hamiltonians

(1) and (43), respectively. In the first case with an oscillator bath, Eq. (23) involves the

matrix (
eB 0

0 e−B

)
,

where B is given by Eq. (25). This can be used to generate the following transformation in

phase space:
(
X

P

)
=

(
eB 0

0 e−B

)(
x

p

)
. (67)

It can be easily seen from Eq. (67) that the Jacobian of the transformation is unity and it is a

phase space area-preserving transformation. The first matrix on the right-hand side of (67) has

the form of a ‘squeezing’ operation [36], which is an area-preserving (in phase space) canonical

transformation coming out as an artifact of homogeneous linear canonical transformations [37].

In the second case of a spin bath, Eq. (61) involves the matrix

R ≡

(
cosΘk(n) i sinΘk(n)

(−1)ni sinΘk(n) (−1)n cosΘk(n)

)
, (68)
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where Θk(n) is given by Eq. (62). For particular n and k, we write Θk(n) as Θ. For n even,

the above matrix (68) becomes
(

cosΘ i sinΘ

i sinΘ cosΘ

)
= eiΘσx . (69)

Using the Campbell-Baker-Hausdorff identity [38] this matrix can be shown to transform the

spin vector σ = (σx, σy, σz) as

eiΘσx



σx
σy
σz


 e−iΘσx =



1 0 0

0 cos 2Θ − sin 2Θ

0 sin 2Θ cos 2Θ





σx
σy
σz


 , (70)

i.e., the abstract spin vector is ‘rotated’ about the x-axis by an angle 2Θ. For n odd, (68)

becomes (again writing Θk(n) for particular n and k as Θ)
(

cosΘ i sinΘ

−i sinΘ − cosΘ

)
= σz

(
cosΘ i sinΘ

i sinΘ cosΘ

)
= σze

iΘσx . (71)

Thus the n-odd matrix is related to the n-even matrix by the spin-flipping energy. The above

matrix transforms the spin vector σ as

σze
iΘσx




σx
σy
σy



 e−iΘσxσz = eiπ




1 0 0

0 cos 2Θ sin 2Θ

0 sin 2Θ − cos 2Θ








σx
σy
σz



 . (72)

It can be easily seen from the right-hand side of the Eq. (72) that the determinant of the

transformation of the spin vectors brought about by the n-odd matrix (71) has the value

unity. It is well known that the determinant of a rotation matrix is unity [39]. Thus we see

that the above transformation has the form of a rotation. Specifically, it can be seen that

σz

(
cos 2Θ sin 2Θ

sin 2Θ − cos 2Θ

)
=

(
cos 2Θ sin 2Θ

− sin 2Θ cos 2Θ

)
, (73)

and
(

cos 2Θ sin 2Θ

− sin 2Θ cos 2Θ

)T

=

(
cos 2Θ − sin 2Θ

sin 2Θ cos 2Θ

)
. (74)

Here T stands for the transpose operation. From the above it is seen that the matrix

(68) has the form of the operation of ‘rotation’, which is also a phase space area-

preserving canonical transformation [36] and comes out as an artifact of homogeneous linear

canonical transformations [37]. Any element of the group of homogeneous linear canonical

transformations can be written as a product of a unitary and a positive transformation [40, 41],

which in turn can be shown to have unitary representations (in the Fock space) of rotation

and squeezing operations, respectively [37]. It is interesting that the propagators for the

Hamiltonians given by Eqs. (1) and (43), one involving a two-level system coupled to a bath

of harmonic oscillators and the other with a bath of two-level systems, are analogous to the

squeezing and rotation operations, respectively.

5. Conclusions

In this paper we have investigated the forms of the propagators of some QND Hamiltonians

commonly used in the literature, for example, for the study of decoherence in quantum

computers. We have evaluated the propagators using the functional integral treatment relying

on coherent state path integration. We have treated the cases of a two-level system interacting

with a bosonic bath of harmonic oscillators (section 2), and a spin bath of two-level systems
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(section 3). In each case the system-bath interaction is taken to be of the QND type, i.e.,

the Hamiltonian of the system commutes with the Hamiltonian describing the system-bath

interaction. We have shown the commonly occuring free-particle coordinate coupling model

to be unitarily equivalent to the free-particle velocity coupling model which is of the QND

type. For the variants of the model in section 2, we have examined (a) the case where the

two-level system in addition to interacting with the bosonic bath of harmonic oscillators is

also acted upon by an external mode in resonance with the atomic transition (section 2.1),

and (b) the non-QND spin-Bose problem (section 2.2), which could be used to describe the

spin-Bose problem of the interaction of a two-level atom with the electromagnetic field modes

in a cavity via a dipole interaction.

The evaluation of the exact propagators of these many body systems could, apart from

their technical relevance, also shed some light onto the structure of QND systems. We

have found an interesting analogue of the propagators of these many-body Hamiltonians to

squeezing and to rotation, for the bosonic and spin baths, respectively. Every homogeneous

linear canonical transformation can be factored into the rotation and squeezing operations

and these cannot in general be mapped from one to the other – just as one cannot in

general map a spin bath to an oscillator bath (or vice versa) – but together they span the

class of homogeneous linear canonical transformations and are ‘universal’. Squeezing and

rotation, being artifacts of homogeneous linear canonical transformations, are both phase-

space area-preserving transformations, and thus this implies a curious analogy between the

energy-preserving QND Hamiltonians and the homogeneous linear canonical transformations.

This insight into the structure of the QND systems would hopefully lead to future studies into

this domain.
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