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Abstract

In this article, we study the Brezis-Nirenberg type problem of nonlinear Choquard equa-

tion involving a fractional Laplacian

(−∆)su =

(∫

Ω

|u|2
∗

µ,s

|x− y|µ
dy

)
|u|2

∗

µ,s
−2u+ λu in Ω,

where Ω is a bounded domain in Rn with Lipschitz boundary, λ is a real parameter,

s ∈ (0, 1), n > 2s and 2∗
µ,s

= (2n − µ)/(n − 2s) is the critical exponent in the sense of

Hardy-Littlewood-Sobolev inequality. We obtain some existence, multiplicity, regularity

and nonexistence results for solution of the above equation using variational methods.

Key words: Fractional Laplacian, Brezis-Nirenberg problem, Choquard equation, Crit-

ical exponent.
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1 Introduction

In the present paper, we study the existence of solutions of the following doubly nonlocal

fractional elliptic equation:

(Pλ) : (−∆)su =

(∫

Ω

|u|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−2u+ λu in Ω, u = 0 in R

n \Ω,

where Ω is a bounded domain in R
n with Lipschitz boundary, λ is a real parameter, s ∈ (0, 1),

n > 2s, 2∗µ,s = (2n− µ)/(n − 2s) and (−∆)s is the fractional Laplace operator defined as

(−∆)su(x) = −P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy
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†sreenadh@gmail.com

1



Fractional Choquard equation 2

(up to a normalizing constant), where P.V. denotes the Cauchy principal value. The fractional

power of Laplacian is the infinitesimal generator of Lévy stable diffusion process and arise

in anomalous diffusion in plasma, population dynamics, geophysical fluid dynamics, flames

propagation, chemical reactions in liquids and American options in finance. For more details,

we refer to [5, 14]. Problems of the type (Pλ) are inspired by the Hardy-Littlewood-Sobolev

inequality:

(∫

Rn

∫

Rn

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy

) 1
2∗µ,s

≤ C
1

2∗µ,s |u|22∗s , for all u ∈ Hs(Rn). (1.1)

where C = C(n, µ) is a positive constant and 2∗s =
2n

n−2s .

In the local case s = 1, authors in [9] studied the existence of of ground states for the nonlinear

Choquard equation

−∆u+ V (x)u =

(
1

|x|µ
∗ |u|p

)
|u|p−2u in R

n, (1.2)

where p > 1 and n ≥ 3. In the case when p = 2 and µ = 1, S. Pekar [28] used this equation

to describe the quantum theory of a polaron at rest and P. Choquard [20] adopted it as an

approximation to Hartree-Fock theory of one component plasma. In [26], authors considered

the existence of ground states under the assumptions of Berestycki-Lions type. With condi-

tions on the potential V , problems of type (1.2) are also studied in [2, 1].

In [19], Lieb considered the problem of the form

−∆u+ u = (|x|µ ∗ F (u))f(u) in R
n,

where f(t) is critical growth nonlinearity such that |tf(t)| ≤ C||t|2 + |t|
2n−µ
n−2s |, for t ∈ R, some

constant C > 0 and F (t) =
∫ z
0 f(z)dz. Under some appropriate structure conditions on the

nonlinearity f author proved the existence and uniqueness (up to translations) of the ground

state solutions. The existence of a sequence of radially symmetric solutions was shown by

Lions in [21]. The nonlocal counterpart of this problem with fractional Laplacian has been

studied in [33]. A class of Schrödinger equations with a generalized Choquard nonlinearity

and fractional diffusion has been investigated in [11]. Some existence, nonexistence and reg-

ularity results has been studied in [12]. For more details, we refer to [34, 15, 10, 3, 4].

In the pioneering work of Brezis-Nirenberg [6], authors studied the critical exponent problem

−∆u = |u|2
∗−2u+ λu in Ω, u = 0 in ∂Ω,

where 2∗ = n+2
n−2 . They proved the existence of solutions for λ > 0, n > 4 by analysing the .local

Palais-Smale sequences below the first critical level. In [13], Gao and Yang established some
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existence results for the Brezis-Nirenberg type problem of the nonlinear Choquard equation

−∆u =

(∫

Ω

|u|2
∗
µ

|x− y|µ
dy

)
|u|2

∗
µ−2u+ λu in Ω, u = 0 on ∂Ω, (1.3)

where Ω is a bounded domain with LIpschitz boundary in R
n , n ≥ 3, λ is a parameter and

2∗µ = (2n − µ)/(n − 2). Here again, authors obtianed the existence results using mountain

pass structure of the energy functional and and carefully analysing the local Palais-Smale

sequences below the first critical level as in [6].

Recently, many people studied the Brezis-Nirenberg type results for semilinear equations with

fractional Laplacian, for details and recent works we refer to [7, 31, 32, 8, 25, 24, 27, 17] and

the references therein. In [22, 23], the authors discuss recent developments in the description

of anamolous diffusion via fractional dynamics and several fractional equations are obtained

asymptotically from Lévy random walk models, extending Brownian walk models in a natural

way. Particularly, in [18] a fractional Schrödinger equation with local power type nonlinearity

has been studied.

In this paper, we consider the nonlocal counterpart of the problem in (1.3) namely (Pλ). Here,

we study the existence, multiplicity, regularity and nonexistence results for (Pλ) in the spirit

of [13]. We show several estimates while studying the compactness of Palais-Smale sequences

using the minimizers of the inequality in (1.1) and show the L∞ and C0,α regularity for the

solutions of (Pλ). To the best of our knowledge, there is no paper considering the choquard

equation with critical growth and fractional Laplacian. We aim at studying the existence and

multiplicity of choquard equation with upper critical exponent 2∗µ,s = (2n − µ)/(n − 2s) on

bounded domain in R
n, n > 2s and answer completely to the question of existence, multiplic-

ity and nonexistence of solutions. We are interested in the problem that how perturbation

with a linear term along with double nonlocal terms affect the existence and multiplicity of

the problem (Pλ).

The paper is organized as follows: In section 2, we give the functional setting for the problem

to use variational approach and state our main results. In section 3, we show that the weak

limit of every bounded Palais-Smale sequence gives a weak solution for (Pλ) by analyzing the

Palais-Smale sequences below the critical level. In section 4, we give the proof of our first

main theorem (when n ≥ 4s) for the cases λ ∈ (0, λ1) and λ ≥ λ1 separately, where λ1 is

the first eigenvalue of (−∆)s with homogenous Dirichlet datum given in R
n \ Ω. In section

5, we prove the existence result for (Pλ) when 2s < n < 4s, that is we show that there exists

λ̄ > 0 such that for any λ > λ̄, different from the eigenvalues of (−∆)s, (Pλ) has a nontrivial

solution. In section 6, we present the multiplicity results for (Pλ). In section 7, we show some

regularity result for weak solutions of (Pλ). Finally, in section 8, we prove a non-existence

result for λ < 0.
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2 Functional Setting and Main results

In [31], Servadei and Valdinoci discussed the Dirichlet boundary value problem for the frac-

tional Laplacian using variational methods. Due to the nonlocalness of the fractional Lapla-

cian, they introduced the function space (X0, ‖.‖X0). The space X is defined as

X =

{
u| u : Rn → R is measurable, u|Ω ∈ L2(Ω) and

(u(x)− u(y))

|x− y|
n
2
+s

∈ L2(Q)

}
,

where Q = R
2n \ (CΩ× CΩ) and CΩ := R

n \ Ω. The space X is endowed with the norm

‖u‖X = ‖u‖L2(Ω) + [u]X ,

where

[u]X =

(∫

Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)1
2

.

Then we define X0 = {u ∈ X : u = 0 a.e. in R
n \ Ω}. Also we have the Poincare type

inequality: there exists a constant C > 0 such that ‖u‖L2(Ω) ≤ C[u]X , for all u ∈ X0. Hence,

‖u‖ = [u]X is a norm on (X0, ‖.‖). Moreover, X0 is a Hilbert space and C∞
c (Ω) is dense in X0.

Note that the norm ‖.‖ involves the interaction between Ω and R
n\Ω. We denote ‖.‖ = [.]X

for the norm in X0. From the embedding results, we know that X0 is continuously and

compactly embedded in Lr(Ω) when 1 ≤ r < 2∗s, where 2∗s = 2n/(n− 2s) and the embedding

is continuous but not compact if r = 2∗s. We define

Ss = inf
u∈X0\{0}

∫
Q

|u(x)−u(y)|2

|x−y|n+2s dxdy
(∫

Ω |u|2∗s dx
)2/2∗s .

The key point to apply variational approach for the problem (Pλ) is the following well-known

Hardy-Littlewood-Sobolev inequality.

Proposition 2.1 [20] Let t, r > 1 and 0 < µ < n with 1/t+ µ/n+ 1/r = 2, f ∈ Lt(Rn) and

h ∈ Lr(Rn). There exists a sharp constant C(t, n, µ, r), independent of f, h such that
∫

Rn

∫

Rn

f(x)h(y)

|x− y|µ
dxdy ≤ C(t, n, µ, r)|f |t|h|r.

In general, let f = h = |u|q then by Hardy-Littlewood-Sobolev inequality we get,
∫

Rn

∫

Rn

|u(x)|q|u(y)|q

|x− y|µ
dxdy

is well defined if |u|q ∈ Lt(Rn) for some t > 1 satisfying

2

t
+
µ

n
= 2.

Thus, for u ∈ Hs(Rn), by Sobolev Embedding theorems, we must have

2n− µ

n
≤ q ≤

2n− µ

n− 2s
.
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From this, for u ∈ X0 we have

(∫

Rn

∫

Rn

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy

) 1
2∗µ,s

≤ C(n, µ)
1

2∗µ,s |u|22∗s ,

where C(n, µ) is a suitable constant. We define

SH
s := inf

Hs(Rn)\{0}

∫
Rn

∫
Rn

|u(x)−u(y)|2

|x−y|n+2s dxdy
(∫

Rn

∫
Rn

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x−y|µ dxdy

) 1
2∗µ,s

as the best constant which is achieved if and only if u is of the form

C

(
t

t2 + |x− x0|2

)n−2s
2

, x ∈ R
n,

for some x0 ∈ R
n, C > 0 and t > 0 (refer Theorem 2.15 of [12]). It is well-known that this

characterization of u provides the minimizer for Ss. Also,it satisfies

(−∆)su =

(∫

Rn

|u|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−2u in R

n. (2.1)

Moreover,

SH
s =

Ss

C(n, µ)
1

2∗µ,s

. (2.2)

Consider the family of functions {Uǫ} defined as

Uǫ(x) = ǫ−
(n−2s)

2 u∗
(x
ǫ

)
, x ∈ R

n,

where u∗(x) = ū
(

x

S
1/(2s)
s

)
, ū(x) = ũ(x)

|u|2∗s
and ũ(x) = α(β2 + |x|2)−

n−2s
2 with α ∈ R \ {0} and

β > 0 are fixed constants. Then for each ǫ > 0, Uǫ satisfies

(−∆)su = |u|2
∗
s−2u in R

n

and verifies the equality
∫

Rn

∫

Rn

|Uǫ(x)− Uǫ(y)|
2

|x− y|n+2s
dxdy =

∫

Rn

|Uǫ|
2∗s dx = S

n
2s
s .

(For a proof, we refer to [31].) Then

Ũǫ(x) = S
(n−µ)(2s−n)
4(n+2s−µ)

s C(n, µ)
2s−n

2(n+2s−µ)Uǫ(x)

gives a family of minimizer for SH
s and satisfies (2.1) and

∫

Rn

∫

Rn

|Ũǫ(x)− Ũǫ(y)|
2

|x− y|n+2s
dxdy =

∫

Rn

∫

Rn

|Ũǫ(x)|
2∗µ,s |Ũǫ(y)|

2∗µ,s

|x− y|µ
dxdy = (SH

s )
2n−µ

n+2s−µ .

Next lemma gives a property about SH
s which is known to be true for Ss.
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Lemma 2.2 Let n > 2s and we define

SH
s (Ω) := inf

X0\{0}

∫
Q

|u(x)−u(y)|2

|x−y|n+2s dxdy
(∫

Ω

∫
Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x−y|µ dxdy

) 1
2∗µ,s

.

Then SH
s (Ω) = SH

s and SH
s (Ω) is never achieved except Ω = R

n.

Proof. Clearly SH
s ≤ SH

s (Ω). Let {uk} ⊂ C∞
c (Rn) be a minimizing sequence for SH

s . We

choose τk ∈ R
n and θk > 0 such that

vk(x) := τ
n−2s

2
k uk(τkx+ θk) ∈ C∞

c (Ω)

which satisfies
∫

Rn

∫

Rn

|vk(x)− vk(y)|
2

|x− y|n+2s
dxdy =

∫

Rn

∫

Rn

|uk(x)− uk(y)|
2

|x− y|n+2s
dxdy

and ∫

Ω

∫

Ω

|vk(x)|
2∗µ,s |vk(y)|

2∗µ,s

|x− y|µ
dxdy =

∫

Rn

∫

Rn

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy.

By definition,

SH
s (Ω) ≤

∫
Q

|vk(x)−vk(y)|
2

|x−y|n+2s dxdy

∫
Ω

∫
Ω

|vk(x)|
2∗µ,s |vk(y)|

2∗µ,s

|x−y|µ dxdy

which implies SH
s (Ω) ≤ SH

s . Thus, SH
s (Ω) is never achieved except when Ω = R

n because {Ũǫ}

are the only family of minimizers for which the equality holds in Hardy-Littlewood-Sobolev

inequality and the best constant is achieved. �

Definition 2.3 We say that u ∈ X0 is a weak solution of (Pλ) if
∫

Q

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

=

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s−2u(y)ϕ(y)

|x− y|µ
dxdy + λ

∫

Ω
uϕ dx,

for every ϕ ∈ C∞
c (Ω).

The corresponding energy functional associated to the problem (Pλ) is given by

Iλ(u) = I(u) =
‖u‖2

2
−

1

22∗µ,s

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy −

λ

2

∫

Ω
|u|2dx.

Using Hardy-Littlewood-Sobolev inequality, we can show that I ∈ C1(X0,R) and

〈I ′(u), ϕ〉 =

∫

Q

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

−

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s−2u(y)ϕ(y)

|x− y|µ
dxdy − λ

∫

Ω
uϕ dx,
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for every ϕ ∈ C∞
c (Ω). Thus, u is a weak solution of (Pλ) if and only if u is a critical point of

functional I. We now state the main results of this paper.

Theorem 2.4 Let λ1 denote the first eigenvalue of (−∆)s with homogenous Dirichlet bound-

ary condition in R
n \ Ω. Then, for any λ ∈ (0, λ1), if n ≥ 4s for s ∈ (0, 1), (Pλ) has a

nontrivial solution.

Theorem 2.5 Let s ∈ (0, 1) and 2s < n < 4s, then there exist λ̄ > 0 such that for any

λ > λ̄ different from the eigenvalues of (−∆)s with homogenous Dirichlet boundary condition

in R
n \ Ω, (Pλ) has a nontrivial solution.

Theorem 2.6 Assume n > 2s and s ∈ (0, 1), then there exists a constant λ∗ such that if

there are q number of eigenvalues lying between λ and λ+ λ∗, then (Pλ) has q distinct pairs

of solutions.

Theorem 2.7 Let 0 ≤ u ∈ X0, n > 2s and λ > 0 be such that

∫

Q

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

=

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s−2u(y)ϕ(y)

|x− y|µ
dxdy + λ

∫

Ω
uϕ dx,

for every ϕ ∈ C∞
c (Ω), i.e. u is a nonnegative weak solution of (Pλ). Then, u ∈ L∞(Ω).

Theorem 2.8 Let n > 2s, λ < 0 and Ω 6= R
n be a strictly star shaped (with respect to origin),

C1,1 and bounded domain in R
n, then (Pλ) cannot have a nonnegative nontrivial solution.

3 Preliminary Results

We consider Ω to be a bounded domain in R
n with Lipschitz boundary and λ to be a real

parameter throughout this paper.

Definition 3.1 Let I be a C1 functional defined on Banach space X, we say that {vk} is a

Palais-Smale sequence of I at c (denoted by (PS)c) if

I(vk) → c, and I ′(vk) → 0, as k → +∞.

And we say that I satisfies the Palais-Smale condition at the level c, if every Palais-Smale

sequence at c has a convergent subsequence.

The following lemmas can be proved using the standard methods but we give some of their

proof here for the sake of completeness. To begin, we recall that pointwise convergence of a

bounded sequence implies weak convergence.
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Lemma 3.2 Let q ∈ (1,∞) and {uk} be a bounded sequence in Lq(Rn). If uk → v almost

everywhere in R
n as k → ∞, then uk ⇀ u weakly in Lq(Rn).

Lemma 3.3 Let n > 2s, 0 < µ < n and {uk} be a bounded sequence in L2∗s (Rn) such that

uk → u almost everywhere in R
n as n→ ∞, then the following hold,

∫

Rn

∫

Rn

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy −

∫

Rn

∫

Rn

|(uk − u)(x)|2
∗
µ,s |(uk − u)(y)|2

∗
µ,s

|x− y|µ
dxdy

→

∫

Rn

∫

Rn

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy as k → ∞.

Proof. Proof follows similarly as proof of lemma 2.3 [13]. �

Lemma 3.4 Let n > 2s, 0 < µ < n. Then every Palais-Smale sequence of I is bounded and

its weak limit is a weak solution of (Pλ).

Proof. Let {uk} be a Palais-Smale sequence of I at c ∈ R
n. We can assume c ≥ 0 and by

definition, there exist positive constants C1 and C2 such that

|I(uk)| ≤ C1, and |〈I ′(uk),
uk
‖uk‖

〉| ≤ C2.

We have

1

2
〈I ′(uk), uk〉 = I(uk)−

n+ 2s− µ

2(2n − µ)

∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy

which implies ∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy ≤ C2(1 + ‖uk‖),

for some positive constant C2. Also, we have

I(uk) +
1

2
〈I ′(uk), uk〉 = ‖uk‖

2 −
3n − 2s − µ

2(2n − µ)

∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy

≤ C3(1 + ‖uk‖),

for some positive constant C3. This implies

‖uk‖
2 ≤

3n− 2s − µ

2(2n − µ)

∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy + C3(1 + ‖uk‖)

≤ C4(1 + ‖uk‖),

for some positive constant C4. Thus, we get {uk} to be a bounded sequence in X0 which

implies that there exist a subsequence and u ∈ X0, still denoted by uk. such that uk ⇀ u in

X0 and also uk ⇀ u in L2∗s (Ω) as k → +∞. Then

|uk|
2∗µ,s ⇀ |u|2

∗
µ,s in L

2n
2n−µ (Ω)
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and

|uk|
2∗µ,s−2uk ⇀ |u|2

∗
µ,s−2u in L

2n
n+2s−µ (Ω)

as k → +∞. The Reisz potential defines a continuous map from L
2n

2n−µ (Ω) to L
2n
µ (Ω), using

Hardy-Littlewood-Sobolev inequality. This gives

∫

Ω

|uk(y)|
2∗µ,s

|x− y|µ
dy ⇀

∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy in L

2n
µ (Ω)

as k → +∞. Combining all these, we get

∫

Ω

|uk(y)|
2∗µ,s |uk(x)|

2∗µ,s−2uk(x)

|x− y|µ
dy ⇀

∫

Ω

|u(y)|2
∗
µ,s |u(x)|2

∗
µ,s−2u(x)

|x− y|µ
dy in L

2n
n+2s (Ω)

as k → +∞. Since I ′(uk) → 0 as k → +∞, for any ϕ ∈ C∞
c (Ω), we get

lim
k→+∞

(∫

Q

(uk(x)− uk(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

−

∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s−2uk(y)ϕ(y)

|x− y|µ
dxdy − λ

∫

Ω
ukϕ dx

)
= 0.

This gives

0 =

∫

Q

(u(x) − u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

−

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s−2u(y)ϕ(y)

|x− y|µ
dxdy − λ

∫

Ω
uϕ dx

for any ϕ ∈ C∞
c (∞). Thus, u is a weak solution of (Pλ). �

Let u be the solution obtained in above lemma and we take ϕ = u as the test function in

(Pλ), then we get

‖u‖2 =

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy + λ

∫

Ω
u2 dx.

So,

I(u) =
n+ 2s− µ

2(2n − µ)

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy ≥ 0. (3.1)

Lemma 3.5 Let n > 2s, 0 < µ < n and {uk} be a (PS)c sequence of I with

c <
n+ 2s− µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ .

Then {uk} has a convergent subsequence.

Proof. Let u be the weak limit of {uk} obtained using lemma 3.4. We set wk := uk−u, then

wk ⇀ 0 in X0 and wk → 0 a.e. in Ω as k → +∞. By Brezis-Lieb Lemma, we have

‖uk‖
2 = ‖wk‖

2 + ‖u‖2 + ok(1), and |uk|
2
2 = |wk|

2
2 + |u|22 + ok(1).
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Also, using Lemma 3.3, we have

∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy

=

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy +

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy + ok(1)

Since I(uk) → c as k → +∞, we get

c = lim
k→+∞

I(uk) = lim
k→+∞

(
‖uk‖

2

2
−

1

22∗µ,s

∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy −

λ

2

∫

Ω
|uk|

2dx

)

=
‖wk‖

2

2
−
λ

2

∫

Ω
w2
k dx+

‖u‖2

2
−
λ

2

∫

Ω
u2dx

−
1

22∗µ,s

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy −

1

22∗µ,s

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy + ok(1)

= I(u) +
‖wk‖

2

2
−
λ

2

∫

Ω
w2
k dx−

1

22∗µ,s

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy + ok(1)

≥
‖wk‖

2

2
−

1

22∗µ,s

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy + ok(1), (3.2)

using (3.1) and
∫
Ωw

2
k dx → 0 as k → +∞ (because X0 →֒ L2(Ω) compactly). In a similar

manner, since u is a weak solution of (Pλ), u must be a critical point of I which gives

〈I ′(u), u〉 = 0 that is

ok(1) = ‖uk‖
2 −

∫

Ω

∫

Ω

|uk(x)|
2∗µ,s |uk(y)|

2∗µ,s

|x− y|µ
dxdy − λ

∫

Ω
|uk|

2dx

= ‖wk‖
2 − λ

∫

Ω
|wk|

2dx+ ‖u‖2 − λ

∫

Ω
|u|2dx

−

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy −

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy + ok(1)

= 〈I ′(u), u〉 + ‖wk‖
2 − λ

∫

Ω
|wk|

2dx−

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy + ok(1)

= ‖wk‖
2 −

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy + ok(1). (3.3)

This implies

lim
k→+∞

‖wk‖
2 = lim

k→+∞

∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy = a,

where a is nonnegative constant. From (3.2) and (3.3), we deduce

c ≥
n+ 2s− µ

2(2n − µ)
a.
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Using definition of SH
s , we get

SH
s

(∫

Ω

∫

Ω

|wk(x)|
2∗µ,s |wk(y)|

2∗µ,s

|x− y|µ
dxdy

) n−2s
2n−µ

≤ ‖wk‖
2,

which gives a ≥ SH
s a

n−2s
2n−µ . Thus, either a = 0 or a ≥ (SH

s )
2n−µ

n+2s−µ . If a = 0, we are done, else

a ≥ (SH
s )

2n−µ
n+2s−µ gives

n+ 2s− µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ ≤ c.

This contradicts the hypothesis that

c <
n+ 2s− µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ .

Thus, a = 0 which implies ‖uk − u‖ → 0 as k → +∞. �

4 Proof of Theorem 2.4

We fix n ≥ 4s and Ω be a smooth bounded domain in R
n. We divide the proof of 2.4

considering two cases.

4.1 Case (1): λ ∈ (0, λ1)

Without loss of generality, we assume 0 ∈ Ω and fix δ > 0 such that B4δ ⊂ Ω. Let η ∈ C∞(Rn)

be such that 0 ≤ η ≤ 1 in R
n, η ≡ 1 in Bδ and η ≡ 0 in R

n \B2δ. For ǫ > 0, we denote by uǫ

the following function

uǫ(x) = η(x)Uǫ(x),

for x ∈ R
n, where Uǫ is defined in section 2. We have the following results for uǫ using

Proposition 21 and 22 of [31].

Proposition 4.1 Let s ∈ (0, 1) and n > 2s. Then, the following estimates holds true as ǫ→ 0

(i)

∫

Rn

|uǫ(x)− uǫ(y)|
2

|x− y|n+2s
dxdy = Sn/(2s)

s + o(ǫn−2s),

(ii)

∫

Ω
|uǫ|

2∗s dx = Sn/(2s)
s + o(ǫn),

(iii)

∫

Ω
|uǫ(x)|

2 dx =





Csǫ
2s + o(ǫn−2s) if n > 4s

Csǫ
2s| log ǫ|+ o(ǫ2s) if n = 4s

Csǫ
n−2s + o(ǫ2s) if n < 4s

,
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for some positive constant Cs, depending on s.

Using (2.2), Proposition 4.1(i) can be written as

∫

Rn

|uǫ(x)− uǫ(y)|
2

|x− y|n+2s
dxdy ≤ Sn/(2s)

s + o(ǫn−2s) = (C(n, µ))
n−2s
2n−µ (SH

s )
n
2s + o(ǫn−2s). (4.1)

We now prove the following proposition in the spirit of section 3 of [13].

Proposition 4.2 The following estimates holds true:

(∫

Ω

∫

Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

) n−2s
2n−µ

≤ (C(n, µ))
n(n−2s)
2s(2n−µ) (SH

s )
n−2s

2 + o(ǫn−2s),

and

(∫

Ω

∫

Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

) n−2s
2n−µ

≥
(
(C(n, µ))

n
2s (SH

s )
2n−µ

2 + o(ǫn)
) n−2s

2n−µ
.

Proof. By Hardy-Littlewood-Sobolev inequality, Proposition 4.1(ii) and 2.2, we get

(∫

Ω

∫

Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

) n−2s
2n−µ

≤ (C(n, µ))
n−2s
2n−µ |uǫ|

2
2∗s

= (C(n, µ))
n−2s
2n−µ

(
Sn/(2s)
s + o(ǫn)

)n−2s
n

= (C(n, µ))
n−2s
2n−µ

(
(C(n, µ))

n(n−2s)
2s(2n−µ) (SH

s )
n
2s + o(ǫn)

)n−2s
n

= (C(n, µ))
n(n−2s)
2s(2n−µ) (SH

s )
n−2s
2s + o(ǫn−2s).

Next, we consider

∫

Ω

∫

Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

≥

∫

Bδ

∫

Bδ

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x− y|µ
dxdy =

∫

Bδ

∫

Bδ

|Uǫ(x)|
2∗µ,s |Uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

=

∫

Rn

∫

Rn

|Uǫ(x)|
2∗µ,s |Uǫ(y)|

2∗µ,s

|x− y|µ
dxdy − 2

∫

Rn\Bδ

∫

Bδ

|Uǫ(x)|
2∗µ,s |Uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

−

∫

Rn\Bδ

∫

Rn\Bδ

|Uǫ(x)|
2∗µ,s |Uǫ(y)|

2∗µ,s

|x− y|µ
dxdy.

(4.2)

We estimate the integrals in R.H.S. of (4.2) separately. Firstly, consider

∫

Rn

∫

Rn

|Uǫ(x)|
2∗µ,s |Uǫ(y)|

2∗µ,s

|x− y|µ
dxdy =

(
‖Uǫ‖

2

SH
s

) 2n−µ
n−2s

= (C(n, µ))
n

(2s) (SH
s )

2n−µ
2s . (4.3)
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Secondly, consider

∫

Rn\Bδ

∫

Bδ

|Uǫ(x)|
2∗µ,s |Uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

≤ C1,s

∫

Rn\Bδ

∫

Bδ

ǫµ−2n

|x− y|µ
(
1 + |xǫ |

2
) 2n−µ

2
(
1 + |yǫ |

2
) 2n−µ

2

dxdy

= ǫ2n−µC2,s

∫

Rn\Bδ

∫

Bδ

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy

≤ ǫ2n−µC2,s

∫

Rn\Bδ

1

|x|2n−µ(|x| − δ)µ
dx

∫

Bδ

1

(ǫ2 + |y|2)
2n−µ

2

dy

= o(ǫn)

∫ δ/ǫ

0

tn−1

(1 + t2)
2n−µ

2

dt ≤ o(ǫn)

∫ +∞

0

tn−1

(1 + t2)
2n−µ

2

dt = o(ǫn), (4.4)

where C1,s, C2,s are appropriate positive constants. Lastly, in a similar manner we have

∫

Rn\Bδ

∫

Rn\Bδ

|Uǫ(x)|
2∗µ,s |Uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

≤ C1,s

∫

Rn\Bδ

∫

Rn\Bδ

ǫµ−2n

|x− y|µ
(
1 + |xǫ |

2
) 2n−µ

2
(
1 + |yǫ |

2
) 2n−µ

2

dxdy

= ǫ2n−µC2,s

∫

Rn\Bδ

∫

Rn\Bδ

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy

≤ ǫ2n−µC2,s

∫

Rn\Bδ

∫

Bδ

1

|x− y|µ|x|2n−µ|y|2n−µ
dxdy = o(ǫ2n−µ).

(4.5)

Using (4.3), (4.4) and (4.5) in (4.2), we get

(∫

Ω

∫

Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

) n−2s
2n−µ

≥
(
(C(n, µ))

n
2s (SH

s )
2n−µ
2s − o(ǫn)

) n−2s
2n−µ

. (4.6)

This completes the proof. �

Remark 4.3 (4.6) and (4.1) still holds when 2s < n < 4s.

We prove the existence of solution to (Pλ) using an invariant of mountain pass lemma.

Lemma 4.4 If n > 2s and λ ∈ (0, λ1), then the energy functional I satisfies the following

properties:

(i) there exist β, ρ > 0 such that I(u) ≥ β when ‖u‖ = ρ,

(ii) there exist ũ ∈ X0 such that ‖ũ‖ > ρ and I(ũ) < 0.

Proof.
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(i) Since λ ∈ (0, λ1), using Sobolev embedding and Hardy-Littlewood-Sobolev inequality,

we get

I(u) ≥
1

2

(
1−

λ

λ1

)
‖u‖2 −

1

22∗µ,s
C1|u|

2(2n−µ)
n−2s

≥
1

2

(
1−

λ

λ1

)
‖u‖2 −

1

22∗µ,s
C1C2‖u‖

2(2n−µ)
n−2s ,

for all u ∈ X0 \ {0}, where C1, C2 are positive constants. Since 0 < µ < n, so 2 <

2
(
2n−µ
n−2s

)
. Thus, some β, ρ > 0 can be chosen such that I(u) ≥ β when ‖u‖ = ρ.

(ii) Fix u0 ∈ X0 \ {0}, since I(tu0) → −∞ as t→ ∞ we get

I(tu0) =
t2‖u0‖

2

2
−
t22

∗
µ,s

22∗µ,s

∫

Ω

∫

Ω

|u0(x)|
2∗µ,s |u0(y)|

2∗µ,s

|x− y|µ
dxdy −

λt2

2

∫

Ω
|u0|

2dx < 0

for sufficiently large t > 0. This implies, we can obtain ũ = t0u0 ∈ X0 for some t0 > 0

such that ‖ũ‖ > ρ and I(ũ) < 0. �

Proposition 4.5 [13] Using lemma 4.4 and the mountain pass lemma without (PS) condition

[35], there exists a (PS) sequence {uk} such that I(uk) → c and I ′(uk) → 0 in X∗
0 (dual of

X0) at the minimax level

c∗ = inf
γ∈Γ

max
t∈[0,1]

I(γ(t)) > 0,

where

Γ := {γ ∈ C([0, 1],X0) : γ(0) = 0, I(γ(1)) < 0}.

Proof of Theorem 2.4: (n ≥ 4s, λ ∈ (0, λ1))

Before proving this theorem, we claim that there exist w ∈ X0 \ {0} such that

‖w‖2 − λ
∫
Ω |w|2dx

(∫
Ω

∫
Ω

|w(x)|2
∗
µ,s |w(y)|2

∗
µ,s

|x−y|µ dxdy

) n−2s
2n−µ

< SH
s (4.7)

If n = 4s, using Proposition 4.1(iii), (4.1) and (4.6), we get

‖uǫ‖
2 − λ

∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) 2s
8s−µ

≤
(C(4s, µ))

4s
8s−µ (SH

s )2s − λCsǫ
2s| log ǫ|+ o(ǫ2s)

(
(C(4s, µ))2(SH

s )
8s−µ
2s − o(ǫ4s)

) 2s
8s−µ

≤ SH
s − λCsǫ

2s| log ǫ|+ o(ǫ2s) < SH
s .

(4.8)

If n > 4s then again using Proposition 4.1(iii), (4.1) and (4.6), we get

‖uǫ‖
2 − λ

∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) n−2s
2n−µ

≤
(C(n, µ))

n(n−2s)
2s(2n−µ) (SH

s )
n
2s − λCsǫ

2s + o(ǫn−2s)
(
(C(n, µ))

n
2s (SH

s )
2n−µ
2s − o(ǫn)

) n−2s
2n−µ

≤ SH
s − λCsǫ

2s + o(ǫn−2s) < SH
s .

(4.9)
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So (4.7) holds true if we take w = uǫ. We have

max
t≥0

(
t2‖w‖2

2
−
t22

∗
µ,s

22∗µ,s

∫

Ω

∫

Ω

|w(x)|2
∗
µ,s |w(y)|2

∗
µ,s

|x− y|µ
dxdy −

λt2

2

∫

Ω
w2dx

)

=
n+ 2s− µ

2(2n − µ)




‖w‖2 − λ
∫
Ω w

2dx
(∫

Ω

∫
Ω

|w(x)|2
∗
µ,s |w(y)|2

∗
µ,s

|x−y|µ dxdy

) n−2s
2n−µ




2n−µ
n+2s−µ

<
n+ 2s− µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ .

This implies

0 < max
t≥0

I(tw) <
n+ 2s− µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ .

From the definition c∗, we can say that c∗ < n+2s−µ
2(2n−µ)(S

H
s )

2n−µ
n+2s−µ . Then, there exist a (PS)

sequence, say {uk} at c∗, using Proposition 4.5. We know {uk} has a convergent subsequence,

using Lemma 3.5 and thus, I has a critical value c∗ ∈
(
0, n+2s−µ

2(2n−µ) (S
H
s )

2n−µ
n+2s−µ

)
which gives a

nontrivial solution for (Pλ). �

4.2 Case (2): λ ≥ λ1

Let us consider the sequence of eigenvalues of the operator (−∆)s with homogenous Dirichlet

boundary condition in R
n, denoted by

0 < λ1 < λ2 ≤ λ3 ≤ . . . ≤ λj ≤ λj+1 ≤ . . .

and {ej}j∈N ⊂ L∞(Ω) be the corresponding sequence of eigenfunctions. We also consider this

sequence of ej ’s to form an orthonormal basis of X0.

In this case, without loss of generality, we can assume λ ∈ [λr, λr+1) for some r ∈ N and er

denote the eigenfunction corresponding to λr. We define

Mr+1 := {u ∈ X0 : 〈u, ei〉 =

∫

Q

(u(x)− u(y))(ei(x)− ei(y))

|x− y|n+2s
dxdy = 0, i = 1, 2, . . . , r},

and

Dr := span{e1, e2, . . . , er}.

Clearly, Dr is finite dimensional and Dr ⊕Mr+1 = X0.

Lemma 4.6 Let n > 2s and λ ∈ [λr, λr+1) for some r ∈ N. Then the energy functional I

satisfies the following properties :

(i) There exists β, ρ > 0 such that I(u) ≥ β, for any u ∈ Mr+1 with ‖u‖ = ρ.

(ii) If u ∈ Dr, then I(u) < 0.

(iii) If E is any finite dimensional subspace of X0, then there exists R > ρ such that for any

u ∈ E with ‖u‖ ≥ R, we have I(u) ≤ 0.
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Proof.

(i) Since λ ∈ [λr, λr+1), using Sobolev embedding and Hardy-Littlewood-Sobolev inequal-

ity, we get

I(u) ≥
1

2

(
1−

λ

λr+1

)
‖u‖2 −

1

22∗µ,s
C1|u|

2(2n−µ)
n−2s

2∗s

≥
1

2

(
1−

λ

λr+1

)
‖u‖2 −

1

22∗µ,s
C1C2‖u‖

2(2n−µ)
n−2s ,

for all u ∈ Mr+1 \ {0}, where C1, C2 are positive constants. Since 0 < µ < n, so

2 < 2
(
2n−µ
n−2s

)
and thus, some β, ρ > 0 can be chosen such that I(u) ≥ β for ‖u‖ = ρ.

(ii) Let u ∈ Dr, then there exists ai ∈ R such that u =
∑r

i=1 aiei. Since ej ’s form an

orthonormal basis of X0 and L2(Ω), we get

∫

Ω
u2 dx =

r∑

i=1

a2i and ‖u‖2 =

r∑

i=1

a2i ‖ei‖
2.

This implies

I(u) =
1

2

r∑

i=1

a2i (‖ei‖
2 − λ)−

1

22∗µ,s

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy

<
1

2

r∑

i=1

a2i (λi − λ) ≤ 0,

because λ ∈ [λr, λr+1).

(iii) We can assume E = span{v1, v2, . . . , vk}. So, for every vi, there exists a ti > 0 such

that I(tvi) < 0, whenever t > ti. Let t̂ = max{t1, t2, . . . , tk}, then I(tu) < 0 whenever

t > t̂ and u ∈ E. Therefore, there exists R > ρ such that for any u ∈ E with ‖u‖ ≥ R,

we have I(u) ≤ 0. �

Now, we prove the fractional version of Lemma 4.2 of [13] following the same.

Lemma 4.7 Let n > 2s and Ω be a bounded domain in R
n. Then

‖u‖0 :=

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy

for u ∈ L2∗s (Ω), defines an equivalent norm on L2∗s (Ω).

Proof. Let u, v ∈ L2∗s (Ω), then using Hölder inequality and semigroup property of Reisz

potential, we get

∫

Ω

∫

Ω

|(u+ v)(x)|2
∗
µ,s |(u+ v)(y)|2

∗
µ,s

|x− y|µ
dxdy =

∫

Ω

∫

Ω

|(u+ v)(x)|22
∗
µ,s

|x− y|µ
dxdy

≤

∫

Ω

∫

Ω

|u(x)||(u + v)(x)|22
∗
µ,s−1

|x− y|µ
dxdy +

∫

Ω

∫

Ω

|v(x)||(u + v)(x)|22
∗
µ,s−1

|x− y|µ
dxdy
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≤

(∫

Ω

∫

Ω

|u(x)|22
∗
µ,s

|x− y|µ
dxdy

) 1
22∗µ,s

(∫

Ω

∫

Ω

|(u+ v)(x)|22
∗
µ,s

|x− y|µ
dxdy

)1− 1
22∗µ,s

+

(∫

Ω

∫

Ω

|v(x)|22
∗
µ,s

|x− y|µ
dxdy

) 1
22∗µ,s

(∫

Ω

∫

Ω

|(u+ v)(x)|22
∗
µ,s

|x− y|µ
dxdy

)1− 1
22∗µ,s

=

(∫

Ω

∫

Ω

|(u+ v)(x)|22
∗
µ,s

|x− y|µ
dxdy

)1− 1
22∗µ,s

×



(∫

Ω

∫

Ω

|u(x)|22
∗
µ,s

|x− y|µ
dxdy

) 1
22∗µ,s

+

(∫

Ω

∫

Ω

|v(x)|22
∗
µ,s

|x− y|µ
dxdy

) 1
22∗µ,s


 .

Therefore, we get ‖u + v‖0 ≤ ‖u‖0 + ‖v‖0 and other properties of norm are also satisfied by

‖ · ‖0. So, ‖ · ‖0 is a norm on L2∗s (Ω) and L2∗s (Ω) is a Banach space under this norm(proof can

be sketched using the techniques to prove Lp(Ω) is a Banach space with the usual Lp-norm).

By Hardy-Littlewood-Sobolev inequality, we have

‖u‖0 ≤ (C(n, µ))
1

22∗µ,s |u|2∗ .

So, the identity map from (L2∗µ,s(Ω), ‖ · ‖0) to (L2∗µ,s(Ω), | · |2∗µ,s) is linear and bounded. Thus,

by open mapping theorem, we obtain ‖ · ‖0 is equivalent norm to the standard norm | · |2∗µ,s
on L2∗µ,s(Ω). �

Before proceeding further, we define the linear space

Gr,ǫ := span{e1, e2, . . . , er, uǫ}

and set

gr,ǫ := max
u∈M

(
‖u‖2 − λ

∫

Ω
|u|2 dx

)
,

where M = {u ∈ Gr,ǫ :
∫
Ω

∫
Ω

|u(x)|
2∗µ,s |u(y)|

2∗µ,s

|x−y|µ dxdy = 1} and uǫ (from (4.7)) is such that

‖uǫ‖
2 − λ

∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) n−2s
2n−µ

< SH
s .

Lemma 4.8 Let n ≥ 2s and λ ∈ [λr, λr+1) for some r ∈ N, then the following holds true:

(i) There exist ug ∈ Gr,ǫ such that gr,ǫ is achieved at ug and

ug = w + tuǫ

with w ∈ Dr and t ≥ 0.
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(ii) As ǫ→ 0, we have

gr,ǫ =

{
(λr − λ)|w|22 if t = 0

(λr − λ)|w|22 + Fǫ(1 + |w|2o(ǫ
n−2s

2 )) + o(ǫ
n−2s

2 )|w|2 if t > 0,

where w is defined in (i) and Fǫ is given by

Fǫ =
‖uǫ‖

2 − λ
∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) n−2s
2n−µ

.

Proof.

(i) Clearly Gr,ǫ is finite dimensional, so gr,ǫ is achieved at ug, say. Then, ug ∈ M and by

definition of Gr,ǫ, there exist w ∈ Dr and t ∈ R such that ug = w+ tuǫ. We can assume

t ≥ 0 because if t < 0, then we can replace ug by −ug.

(ii) To prove this, first let t = 0, then ug = w ∈ Dr and

gr,ǫ = ‖w‖2 − λ

∫

Ω
|w|2 dx ≤ (λr − λ)|w|22.

Now, suppose t > 0 and set

ŵ = w + t

r∑

i=1

(∫

Ω
uǫeidx

)
ei ∈ Dr and ûǫ = uǫ −

r∑

i=1

(∫

Ω
uǫeidx

)
ei

and find that ŵ and ûǫ are orthogonal in L2(Ω). Then, ug = ŵ + tûǫ and |ug|
2
2 =

|ŵ|22 + t2|ûǫ|
2
2. Since ∫

Ω

∫

Ω

|ug(x)|
2∗µ,s |ug(y)|

2∗µ,s

|x− y|µ
dxdy = 1,

using lemma 4.7, we get a constant C0 > 0(independent of ǫ) such that |ug|2∗µ,s ≤ C0.

Subsequently, using Hölder inequality, we get a constant C1 > 0(also independent of

ǫ) such that |ug|
2
2 ≤ C1. Therefore, we can find C2 > 0 such that |ug|

2
2 and |ŵ|22 are

both uniformly bounded in ǫ. This further implies that t < C3, for some C3 > 0. By

computations as before, we get

|uǫ|
3n−2µ+2s

n−2s
n(3n−2µ+2s)
(2n−µ)(n−2s)

=

(∫

Ω
|uǫ|

n(3n−2µ+2s)
(2n−µ)(n−2s) dx

)2n−µ
n

≤

(∫

B2δ

|Uǫ|
n(3n−2µ+2s)
(2n−µ)(n−2s) dx

) 2n−µ
n

≤ C4ǫ
n−2s

2



∫ 2δ

ǫ

0

rn−1

(1 + r2)
n(3n−2µ+2s)
(2n−µ)(n−2s)

dr




2n−µ
n

≤ o(ǫ
n−2s

2 ),

(4.10)

where C4 > 0 is constant. Since e1, e2, . . . , er ∈ L∞(Ω), we have ŵ ∈ L∞(Ω). Using the

fact that the map t 7→ t22
∗
µ,s in convex, for t ≥ 0 and Dr being finite dimensional, all
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norms are equivalent, we get

1 =

∫

Ω

∫

Ω

|ug(x)|
2∗µ,s |ug(y)|

2∗µ,s

|x− y|µ
dxdy =

∫

Ω

∫

Ω

|(w + tuǫ)(x)|
22∗µ,s

|x− y|µ
dxdy

≥

∫

Ω

∫

Ω

|tuǫ(x)|
22∗µ,s

|x− y|µ
dxdy + 22∗µ,s

∫

Ω

∫

Ω

|tuǫ(x)|
22∗µ,s−1|w(x)|

|x− y|µ
dxdy

≥

∫

Ω

∫

Ω

|tuǫ(x)|
2∗µ,s |tuǫ(y)|

2∗µ,s

|x− y|µ
dxdy

− 22∗µ,s|w|∞

∫

Ω

∫

Ω

|tuǫ(x)|
22∗µ,s−1

2 |tuǫ(y)|
22∗µ,s−1

2

|x− y|µ
dxdy

≥

∫

Ω

∫

Ω

|tuǫ(x)|
2∗µ,s |tuǫ(y)|

2∗µ,s

|x− y|µ
dxdy − C5|w|2|uǫ|

3n−2µ+2s
n−2s

n(3n−2µ+2s)
(2n−µ)(n−2s)

.

Considering (4.10) with above inequality, we get
∫

Ω

∫

Ω

|tuǫ(x)|
2∗µ,s |tuǫ(y)|

2∗µ,s

|x− y|µ
dxdy ≤ 1 + C5|w|2o(ǫ

n−2s
2 ).

Hence, using the definition of Aǫ and v being linear combination of finitely many eigen-

functions, we get

gr,ǫ ≤ (λr − λ)|w|22 +Aǫ

(∫

Ω

∫

Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x− y|µ
dxdy

) n−2s
2n−µ

+ C6

∫

Ω
uǫwdx

≤ (λr − λ)|w|22 +Aǫ

(
1 + C5|w|2o(ǫ

n−2s
2 )
)
+ C7|uǫ|1|w|2

≤ (λr − λ)|w|22 +Aǫ

(
1 + C5|w|2o(ǫ

n−2s
2 )
)
+ o(ǫ

n−2s
2 )|w|2,

where we used |uǫ|1 = o(ǫ
n−2s

2 ) (which can be derived as other estimates done before). This

completes the proof. �

Lemma 4.9 If n ≥ 4s and λ ∈ [λr, λr+1), for some r ∈ N, then for every u ∈ Gr,ǫ we have

‖u‖2 − λ
∫
Ω |u|2dx

(∫
Ω

∫
Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x−y|µ dxdy

) n−2s
2n−µ

< SH
s .

Proof. It is enough to show that gr,ǫ < SH
s . From lemma 4.8, if t = 0 we have

gr,ǫ ≤ (λr − λ)|w|22 < 0 < SH
s .

Else if t > 0, then we consider the cases n = 4s and n > 4s separately.

Case: (n = 4s) By lemma 4.8(ii) and estimates in (4.8), we have

gr,ǫ ≤ (λr − λ)|w|22 +
‖uǫ‖

2 − λ
∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) 2s
8s−µ

(1 + |w|2)o(ǫ
s) + o(ǫs)|w|2

≤ SH
s − λCsǫ

2s| log ǫ|+ o(ǫ2s) + (λr − λ)|w|22 + |w|2o(ǫ
s),
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for sufficiently small ǫ > 0.

Case: (n > 4s) Again, by lemma 4.8(ii) and estimates in (4.9), we have

gr,ǫ ≤ (λr − λ)|w|22 +
‖uǫ‖

2 − λ
∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) n−2s
2n−µ

(1 + |w|2)o(ǫ
n−2s

2 ) + o(ǫ
n−2s

2 )|w|2

≤ SH
s − λCsǫ

2s + o(ǫn−2s) + (λr − λ)|w|22 + |w|2o(ǫ
n−2s

2 )

for sufficiently small ǫ > 0. Also, we have that

(λr − λ)|w|22 + |w|2o(ǫ
n−2s

2 ) ≤
1

4(λr − λ)
o(ǫn−2s) = o(ǫn−2s, )

which implies gr,ǫ < SH
s for both the cases. This completes the proof. �

Proof of Theorem 2.4: (n ≥ 4s, λ > λ1)

In the proof of lemma 4.8(ii), we considered

ûǫ = uǫ −
r∑

i=1

(∫

Ω
uǫeidx

)
ei.

From the definition of G(r, ǫ), we can write that

Gr,ǫ = Dr ⊕ uǫR = Dr ⊕ ûǫR,

where uǫR = {ruǫ : r ∈ R} and similarly, zǫR. By lemma 4.6, we have

(i) infu∈Mr+1,‖u‖=ρ I(u) ≥ β > 0,

(ii) supu∈Dr
I(u) < 0, and

(iii) supu∈Gr,ǫ,‖u‖≥R I(u) ≤ 0,

where β, ρ are defined in lemma 4.6. Therefore, I satisfies the geometric structure of the

linking theorem (Theorem 5.3,[30]). We define

c̄ = inf
γ∈Γ

max
u∈A

I(γ(u)) > 0,

where γ := {γ ∈ C(Ā,X0) : γ = id on ∂A} and A := (B̄R ∩ Dr) ⊕ {rûǫ : r ∈ (0, R)}. By

definition, for any γ ∈ Γ, we have c̄ ≤ maxu∈A I(γ(u)) and particularly, if we take γ = id on

Ā, then

c̄ ≤ max
u∈A

I(u) ≤ max
Gr,ǫ

I(u).

As we earlier saw, for any u ∈ X0 \ {0},

n+ 2s− µ

2(2n − µ)




‖w‖2 − λ
∫
Ω |w|2dx

(∫
Ω

∫
Ω

|w(x)|2
∗
µ,s |w(y)|2

∗
µ,s

|x−y|µ dxdy

) n−2s
2n−µ




2n−µ
n+2s−µ

= max
t≥0

I(tu). (4.11)
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Since Gr,ǫ is a linear space, we have

max
u∈Gr,ǫ

I(u) = max
u∈Gr,ǫ,t6=0

I(
|t|u

|t|
) ≤ max

u∈Gr,ǫ,t≥0
I(tu).

Hence, using lemma 4.9 and (4.11), we get

c̄ ≤ max
u∈Gr,ǫ,t≥0

I(tu) <
n+ 2s− µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ .

Finally, using Linking theorem and lemma 3.5, we conclude that (Pλ) has a nontrivial solution

in X0 with critical value c̄ ≥ β. �

5 Proof of Theorem 2.5

We will prove this theorem using the Mountain Pass and Linking Theorem in a combined

way.

Lemma 5.1 Let 2s < n < 4s and uǫ be as defined in section 4, case 1. Then there exists

λ̄ > 0 such that for λ > λ̄,

‖uǫ‖
2 − λ

∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) n−2s
2n−µ

< SH
s .

Proof. Using Proposition 4.1 and 4.2, we get

‖uǫ‖
2 − λ

∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) n−2s
2n−µ

≤
(C(n, µ))

n(n−2s)
2s(2n−µ) (SH

s )
n
2s − λCsǫ

n−2s + o(ǫ2s)
(
(C(n, µ))

n
2s (SH

s )
2n−µ
2s − o(ǫn)

) n−2s
2n−µ

≤ SH
s +

ǫn−2s(o(1) − λCs)

((C(n, µ))
n
2s (SH

s )
2n−µ
2s − o(ǫn))

n−2s
2n−µ

+ o(ǫ2s)

< SH
s ,

when we choose λ > 0 large enough, say λ > λ̄ and provided ǫ > 0 be sufficiently small. This

completes the proof. �

We have already seen in previous sections that the functional I satisfies geometry of

Mountain Pass when λ < λ1 (using Lemma 4.4). When λ ≥ λ1, without loss of generality,

we assume λ ∈ [λr, λr+1), for some r ∈ N. Then using Lemma 4.6, we get that I satisfies

geometry of Linking theorem. Also, by Lemma 3.5, we get that I satisfies the (PS)c condition

when

c <
n+ 2s − µ

2(2n − µ)
) = (SH

s )
2n−µ

n+2s−µ .

So, in order to apply the classical critical point theorems, we need the Mountain Pass critical

level and Linking critical level of I to stay below this threshold. Consider Mr+1,Dr and Gr,ǫ
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be as defined in earlier section. Note that Lemma 4.8 holds true in this case and we have the

following lemma.

Lemma 5.2 If 2s < n < 4s and λ ∈ [λr, λr+1), for some r ∈ N, then for every u ∈ Gr,ǫ we

have
‖u‖2 − λ

∫
Ω |u|2dx

(∫
Ω

∫
Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x−y|µ dxdy

) n−2s
2n−µ

< SH
s .

Proof. If t = 0 then since λ ∈ [λr, λr+1), we get

gr,ǫ ≤ (λr − λ)|w|22 ≤ 0 < SH
s .

When t > 0, then

gr,ǫ ≤ (λr − λ)|w|22 +
‖uǫ‖

2 − λ
∫
Ω |uǫ|

2dx
(∫

Ω

∫
Ω

|uǫ(x)|
2∗µ,s |uǫ(y)|

2∗µ,s

|x−y|µ dxdy

) 2s
8s−µ

(1 + |w|2)o(ǫ
n−2s

2 ) + o(ǫ
n−2s

2 )|w|2

≤ SH
s +




(o(1)− λCs)ǫ
n−2s

(
(C(n, µ))

n
2s (SH

s )
2n−µ
2s − o(ǫn)

) n−2s
2n−µ

+ o(ǫ2s)


 (1 + |w|2)o(ǫ

n−2s
2 )

+ (λr − λ)|w|22 + |w|2o(ǫ
n−2s

2 )

≤ SH
s +

(o(1) − λCs)ǫ
n−2s

(
(C(n, µ))

n
2s (SH

s )
2n−µ
2s − o(ǫn)

) n−2s
2n−µ

+ (λr − λ)|w|22 + |w|2o(ǫ
n−2s

2 ) < SH
s ,

for sufficiently small ǫ > 0 because we consider λ > λ̄ and λ ∈ (λr, λr+1). Hence the result

follows. �

Proof of Theorem 2.5: We consider two cases:

Case 1. (λ1 > λ̄) For this case, we use Mountain Pass theorem if λ ∈ (λ̄, λ1) and Linking

theorem if λ ∈ (λr, λr+1) for some r ∈ N.

If λ ∈ (λ̄, λ1), using Remark 4.3, Lemma 4.4 and Proposition 4.5, following the same

arguments as Case 1 in proof of Theorem 2.4, we get that (Pλ) admits a nontrivial solution.

Otherwise if (λ1 > λ̄) , we assume λ ∈ (λr, λr+1) for some r ∈ N (since λ is not an

eigenvalue of (−∆)s). Here, following the arguments as in Case 2 in proof of Theorem 2.4,

we get that (Pλ) admits a nontrivial solution.

Case 2. (λ1 < λ̄) In this case, we can assume λ ∈ (λr, λr+1) for some r ∈ N and λ > λ̄. Here

again, following the arguments as in Case 2 in proof of Theorem 2.4, we get that (Pλ) admits

a nontrivial solution.
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6 Multiplicity Results

By the equivalence of norms obtained in lemma 4.7, we can find a constant C ′ > 0 such that

C ′|u|2∗s ≤

(∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy

) 1
22∗µ,s

,

for all u ∈ L2∗s (Ω). Let us define

λ∗ :=
SH
s (C ′)2

|Ω|
2s
n

and we consider the set containing the eigenvalues between λ and λ+ λ̄, that is

Υ = {λ < λi < λ∗} = {λk+1, λk+2, . . . , λk+q}.

If Υ is not empty, then we can prove Theorem 2.6.

Let V be a Banach space, we define

∑
:= {E ⊂ V \ {0} : E is closed in V and symmetric with respect to origin}.

We also define genus of the set E ∈
∑

as

γ(E) := inf{k ∈ N : ∃ ϕ ∈ C(E,Rk) \ {0}, ϕ(x) = −ϕ(y)}.

Also, γ(E) = +∞, if there exists no ϕ as given in definition above. We give the definition of

pseudo-index.

Definition 6.1 [13] For E ∈
∑∗ = {A ∈

∑
;A is compact} and

Λ∗(ρ) = {h ∈ C(V, V );h is an odd homeomorphism and h(B1) ⊂ I−1(0,+∞) ∪Bρ},

we define i∗(E) = infh∈Λ∗(ρ) γ(E ∩ h(∂B1)), for any ρ > 0.

We state some necessary results (without giving their proofs) from [13] that will help us to

conclude our main theorem.

Proposition 6.2 (i) Let t ∈ N and Y be a subspace of V with codimension t and E ⊂
∑

with γ(E) > t, then E ∩ Y 6= ∅.

(ii) If E ⊂ V , Ω is a bounded neighborhood of 0 in R
t, and there exists a mapping h ∈

C(E, ∂Ω) with h an odd homeomorphism, then γ(E) = t.

(iii) If γ(E) = t and 0 6∈ E, then E contains at least t distinct pairs of points.

Lemma 6.3 Let V be a Banach space and I ∈ C(V,R) be an even functional satisfying:

(i) There exist ρ, β > 0 and V1 ⊂ V with dimV1 = t such that I |∂Bρ∩V ⊥
1
≥ β.
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(ii) There exist V2 ⊂ V with dimV2 = t1 > t and R > 0 such that for any u ∈ V2 \ BR,

I(u) ≤ 0.

We define c∗k := inf{supu∈A I(u) : A ∈
∑∗, i∗(A) ≥ k}. If 0 < c∗k+1 ≤ c∗k+2 ≤ . . . ≤ c∗m < +∞

and I satisfies the (PS)c∗i condition at c∗i (k + 1 ≤ i ≤ m), then I has atleast m− k distinct

pairs of critical points and c∗i (k + 1 ≤ i ≤ m) is the corresponding critical value.

Lemma 6.4 If n > 2s and λ < λj+1 for some j ∈ N, then the energy functional I satisfies

the following:

(i) There exists β, ρ > 0 such that I(u) ≥ β, for any u ∈ D
⊥
j with ‖u‖ = ρ.

(iii) If E be any finite dimensional subspace of X0, then there exists R > ρ such that for any

u ∈ E with ‖u‖ ≥ R, we have I(u) ≤ 0.

Proof. Proof follows similar to proof of lemma 4.6. �

Lemma 6.5 The following holds, for 1 ≤ m ≤ q,

β ≤ c∗j+m <
n+ 2s − µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ .

Proof. Let A ∈
∑∗ and i∗(A) ≥ j +m. We set f = ρ.id, where ρ is obtained in Lemma 6.3

and id is the identity map. Then it can be easily checked that f ∈ Γ∗ and

γ(A ∩ ∂Bρ) = γ(A ∩ ∂f(∂B1)) ≥ inf
f∈Γ∗(ρ)

γ(A ∩ f(∂B1)) = i∗(A) ≥ j +m.

Thus, using Proposition 6.2(i), we get A ∩ ∂Bρ ∩ D
⊥
r 6= ∅. Then lemma 6.4(i) gives

sup
u∈A

I(u) ≥ inf
u∈∂Bρ∩D⊥

r

I(u) ≥ β.

Since A is arbitrary, β ≤ c∗j+m. Now, we define Ã = Dj+m ∩ B̄R ∈
∑∗. So, for any

f ∈ Γ∗(ρ)(0 < ρ < R), we have

Ã ⊃ Dj+m ∩ (I−1(0,+∞) ∪Bρ) ⊃ Dj+m ∩ h(B1).

Using definition of pseudo-index, i∗(Ã) ≥ j +m and from definition of c∗j+m, we get c∗j+m ≤

supu∈Ã I(u). Using compactness of Ã, we obtain ũ ∈ Ã such that

I(ũ) = sup
u∈Ã

I(u).
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Hence, c∗j+m ≤ I(ũ) = maxt>0 I(tũ). Now, using the value of λ∗, Sobolev embedding, Hardy-

Littlewood-Sobolev inequality and the fact that ũ ∈ Ã, we have

max
t≥0

I(tu) =
n+ 2s− µ

2(2n − µ)




‖ũ‖2 − λ
∫
Ω |ũ|2dx

(∫
Ω

∫
Ω

|ũ(x)|2
∗
µ,s |ũ(y)|2

∗
µ,s

|x−y|µ dxdy

) n−2s
2n−µ




2n−µ
n+2s−µ

≤
n+ 2s− µ

2(2n − µ)




(λk+m−λ)
∫
Ω ũ

2dx
(∫

Ω

∫
Ω

|ũ(x)|2
∗
µ,s |ũ(y)|2

∗
µ,s

|x−y|µ dxdy

) n−2s
2n−µ




2n−µ
n+2s−µ

≤
n+ 2s− µ

2(2n − µ)


λ∗|Ω|

2s
n

(∫
Ω ũ

2∗s
) 2

2∗s

(C ′)2
(∫

Ω ũ
2∗s
) 2

2∗s




2n−µ
n+2s−µ

<
n+ 2s− µ

2(2n − µ)
(SH

s )
2n−µ

n+2s−µ .

Therefore, c∗j+m < n+2s−µ
2(2n−µ)(S

H
s )

2n−µ
n+2s−µ . �

Proof of Theorem 2.6: Since all the conditions of Lemma 6.3 holds, using Lemma 3.5 and

6.5, we get the (PS)c∗j+m
, for 1 ≤ m ≤ q. Thus, problem (Pλ) has atleast q distinct pairs of

solution. �

7 Regularity of weak solutions

In this section, we prove that any weak solution of (Pλ) is bounded and moreover loclly Holder

continuous. First we we prove Theorem 2.7.

Theorem 7.1 Let 0 ≤ u ∈ X0, n > 2s and λ > 0 be such that
∫

Q

(u(x)− u(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

=

∫

Ω

∫

Ω

|u(y)|2
∗
µ,s |u(x)|2

∗
µ,s−2u(x)ϕ(x)

|x− y|µ
dydx+ λ

∫

Ω
uϕ dx,

for every ϕ ∈ C∞
c (Ω), i.e. u is a nonnegative weak solution of (Pλ). Then, u ∈ L∞(Ω).

Proof. We may assume that u does not vanish identically (otherwise the proof is trivial)

and let u be nonnegative. Let δ > 0, to be chosen appropriately small whose choice will be

done on (7.14) later in proof. Now, let c > 0 be a constant chosen in such a way that for any

x ∈ R
n, v(x) := u(x)

c ∈ X0 satisfies

∫

Q

(v(x) − v(y))(ϕ(x) − ϕ(y))

|x− y|n+2s
dxdy

≤

∫

Ω

∫

Ω

|v(y)|2
∗
µ,s |v(x)|2

∗
µ,s−2v(x)ϕ(x)

|x− y|µ
dydx+ λ

∫

Ω
vϕ dx,

(7.1)
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for every 0 ≤ ϕ ∈ C∞
c (Ω) and |v|2∗s = δ. It is a simple observation that if v ∈ X0, then

v+ := max{v, 0} satisfies

(v(x) − v(y))(v+(x)− v+(y)) ≥ |v+(x)− v+(y)|2, (7.2)

for any x, y ∈ R
n. Let us set Ck := 1− 2−k, vk := v − Ck, wk := v+k ∈ X0 and Uk := |wk|2∗s .

We get that

0 ≤ |v|+ Ck ≤ |v|+ 1 ∈ L2(Ω) ⊂ L2∗s (Ω),

being Ω bounded, and

lim
k→+∞

wk = (v − 1)+.

Therefore, by the Dominated Convergence Theorem,

lim
k→+∞

Uk =

(∫

Ω
[(v − 1)+]2

∗
s dx

) 1
2∗s

. (7.3)

For any k ∈ N, Ck+1 > Ck and so wk+1 ≤ wk a.e. in R
n. Also let Ak := Ck+1/(Ck+1 −Ck) =

2k+1 − 1, for any k ∈ R
n. We claim that for any k ∈ N

v < Akwk on {wk+1 > 0}. (7.4)

To check this, let x ∈ {wk+1 > 0}. Then v(x) > Ck+1 > Ck, so wk(x) = vk(x) = v(x) − Ck

and

Akwk(x) = v(x) +
Ck

Ck+1 − Ck
(v(x) − Ck+1) > v(x).

Notice also that vk+1(x) − vk+1(y) = v(x) − v(y), for any x, y ∈ Rn. Using this, (7.1), (7.4),

(7.2), Hölder’s inequality and the fact that wk+1 = v+k+1 ∈ X0, we get

∫

R2n

|wk+1(x)− wk+1(y)|
2

|x− y|n+2s
dxdy =

∫

Q

|v+k+1(x)− v+k+1(y)|
2

|x− y|n+2s
dxdy

≤

∫

R2n

(vk+1(x)− vk+1(y))(v
+
k+1(x)− v+k+1(y))

|x− y|n+2s
dxdy

=

∫

R2n

(v(x)− v(y))(v+k+1(x)− v+k+1(y))

|x− y|n+2s
dxdy

≤

∫

Ω

∫

Ω

|v(y)|2
∗
µ,s |v(x)|2

∗
µ,s−2v(x)wk+1(x)

|x− y|µ
dydx+ λ

∫

Ω
v(x)wk+1(x) dx

=

∫

{wk+1(x)>0}

∫

Ω

|v(y)|2
∗
µ,s |v(x)|2

∗
µ,s−2v(x)wk+1(x)

|x− y|µ
dydx+ λ

∫

{wk+1>0}
v(x)wk+1(x) dx

≤ A
2∗µ,s−1

k

∫

{wk+1(x)>0}

∫

Ω

|v(y)|2
∗
µ,s |wk(x)|

2∗µ,s−1wk+1(x)

|x− y|µ
dydx+ λAk

∫

{wk+1>0}
w2
k(x) dx

≤ A
2∗µ,s−1

k

∫

{wk+1(x)>0}

∫

Ω

|v(y)|2
∗
µ,s |wk(x)|

2∗µ,s

|x− y|µ
dydx+ λ2k+1|wk|

2
2∗s
|{wk+1 > 0}|

2s
n dx. (7.5)
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Let us consider the first integral of R.H.S. of above inequality separately and we get that

∫

{wk+1(x)>0}

∫

Ω

|v(y)|2
∗
µ,s |wk(x)|

2∗µ,s

|x− y|µ
dydx

≤

(∫

{wk+1(x)>0}

∫

{v(y)≤Ck+1}
+

∫

{wk+1(x)>0}

∫

{v(y)>Ck+1}

)
|v(y)|2

∗
µ,s |wk(x)|

2∗µ,s

|x− y|µ
dydx

= I1 + I2, (say).

(7.6)

Now using (7.4) and Hardy- Littlewood- Sobolev inequality, we have

I1 =

∫

{wk+1(x)>0}

∫

{wk+1(y)>0}

|v(y)|2
∗
µ,s |wk(x)|

2∗µ,s

|x− y|µ
dydx

≤ A
2∗µ,s
k

|wk(y)|
2∗µ,s |wk(x)|

2∗µ,s

|x− y|µ
dydx ≤ A

2∗µ,s
k C(n, µ)|wk|

22∗µ,s
2∗s

.

(7.7)

Next, again using (7.4) and Hölder’s inequality we have

I2 =

∫

{wk+1(x)>0}

∫

{wk+1(y)>0}

|v(y)|2
∗
µ,s |wk(x)|

2∗µ,s

|x− y|µ
dydx

≤ C
2∗µ,s
k+1

∫

{wk+1(x)>0}
|wk(x)|

2∗µ,s

∫

Ω

dy

|x− y|µ
dx

≤MC
2∗µ,s
k+1

∫

{wk+1(x)>0}
|wk(x)|

2∗µ,sdx

≤MC
2∗µ,s
k+1|{wk+1 > 0}|

µ
2n |wk|

2∗µ,s
2∗s

.

(7.8)

Using (7.6), (7.7), (7.8) and Sobolev inequality in (7.5), we get

Ss|wk+1|
2
2∗s

≤

∫

R2n

|wk+1(x)−wk+1(y)|
2

|x− y|n+2s
dxdy

≤ A
2∗µ,s−1

k

(
A

2∗µ,s
k C(n, µ)|wk|

22∗µ,s
2∗s

+MC
2∗µ,s
k+1|{wk+1 > 0}|

µ
2n |wk|

2∗µ,s
2∗s

+2k+1|wk|
2
2∗s
|{wk+1 > 0}|

2s
n dx

)
.

(7.9)

Now we claim that

{wk+1 > 0} ⊂ {wk > 2−(k+1)}. (7.10)

To establish this, we observe that if x ∈ {wk+1 > 0} then

v(x)− Ck+1 > 0.

Accordingly, vk(x) = v(x)− Ck > Ck+1 −Ck = 2−(k+1), so that,

wk(x) = vk(x) > 2−(k+1).

Thus, (7.10) gives

U
2∗s
k = |wk|2∗s ≥

∫

{wk>2−(k+1)}
w

2∗s
k dx ≥ 2−(k+1)|{wk+1 > 0}|. (7.11)
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As a consequence of (7.11), from (7.9) we get

Ss|wk+1|
2
2∗s

≤ A
2∗µ,s−1

k

(
A

2∗µ,s
k C(n, µ)|wk|

22∗µ,s
2∗s

+MC
2∗µ,s
k+12

µ(k+1)
2n |wk|

2∗s
2∗s

+2k+1|wk|
2∗s
2∗s
2

2s(k+1)
n dx

)

≤ 2(2
∗
µ,s−1)(k+1)

(
22

∗
µ,s(k+1)C(n, µ)|wk|

22∗µ,s
2∗s

+M2
µ(k+1)

2n |wk|
2∗s
2∗s

+2k+1|wk|
2∗s
2∗s
2

2s(k+1)
n dx

)

≤ 2(2
∗
µ,s−1)(k+1)max{22

∗
µ,s(k+1)C(n, µ),M2

µ(k+1)
2n + 2(k+1)(1+ 2s

n
)}×

(
|wk|

22∗µ,s
2∗s

+ |wk|
2∗s
2∗s

)
.

(7.12)

Therefore using definition of Uk in (7.12), we get

Uk+1 ≤ D(k+1)

(
U

2∗µ,s
k + U

2∗s
2

k

)
, (7.13)

where, D =
(
1 + (2(2

∗
µ,s−1)max{22

∗
µ,sC(n, µ),M2

µ
2n + 2(1+

2s
n
)})1/2

)
> 1 and 2∗µ,s > 2∗s/2 > 1.

Now we are ready to perform our choice of δ: namely we assume that δ > 0 is so small that

δ
2∗s
2
−1 <

1

(22
∗
µ,sD)

1
(2∗s/2)−1

. (7.14)

We also fix η ∈

(
δ

2∗s
2
−1, 1

(22
∗
µ,sD)

1
(2∗s/2)−1

)
. Since D > 1 and 2∗s/2 > 1, we get η ∈ (0, 1).

Moreover,

δ
2∗s
2
−1 ≤ η and 22

∗
µ,sDη

2∗s
2
−1 ≤ 1. (7.15)

We claim that

Uk ≤ 2δηk+1. (7.16)

The proof is by induction. First of all

U0 = |v+|2∗s ≤ |v|2∗s = δ ≤ 2δ

which is (7.16) when k = 0. Let us now suppose that (7.16) holds true for k and let us prove

it for k + 1. Using (7.13) and (7.15), we get

Uk+1 ≤ Dk+1(U
2∗µ,s
k + U

2∗s
2

k ) ≤ 22
∗
µ,s+1Dk+1(δηk+1)

2∗s
2

≤ 2δ(22
∗
µ,sDη

2∗s
2
−1)k+1δ

2∗s
2
−1ηk ≤ 2δηk+1.

This proves our claim (7.16). Then using η ∈ (0, 1) and (7.16), we conclude that

lim
k→+∞

Uk = 0.

Hence, by (7.3), (v − 1)+ = 0 a.e. in Ω, that is v ≤ 1 a.e. in Ω. Therefore, u ≤ c a.e. in Ω

which implies |u|∞ ≤ c. This completes the proof. �
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Theorem 7.2 Let u be a positive solution of (Pλ). Then there exist α ∈ (0, s] such that

u ∈ Cα
loc(Ω)..

Proof. Let Ω′ ∈ Ω. Then using above regularity result, for any ψ ∈ C∞
c (Ω) we obtain

∫

Ω′

∫

Ω′

|v(y)|2
∗
µ,s |v(x)|2

∗
µ,s−2v(x)ψ(x)

|x− y|µ
dydx+ λ

∫

Ω′

vψ dx ≤ C

∫

Ω′

ψdx

for some constant C > 0, since u ∈ L∞(Ω). Thus we have |(−∆p)
su| ≤ C weakly on Ω′. So,

using theorem 4.4 of [16] and applying a covering argument on inequality in corollary 5.5 of

[16], we can prove that there exist α ∈ (0, s] such that u ∈ Cα(Ω′), for all Ω′ ⋐ Ω. Therefore,

u ∈ Cα
loc(Ω). �

8 Nonexistence result

In this section, we prove a non-existence result for λ ≤ 0 when Ω is a star shaped domain.

At first, we prove the Pohozaev type identity:

Proposition 8.1 If n > 2s, λ < 0, Ω be bounded, C1,1 domain and u ∈ L∞(Ω) solves (Pλ),

then

2s− n

2

∫

Ω
u(−∆)su dx−

Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2
(x.ν)dσ

=
2n − µ

22∗µ,s

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy +

λ

n

∫

Ω
|u|2dx,

where δ(x) = dist (x, ∂Ω) and ν denotes the unit outward normal to ∂Ω at x and Γ is the

Gamma function.

Proof. Since u solves (Pλ), u satisfies the problem

(−∆)su =

(∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−2u+ λu in Ω.

Multiplying both sides of the above equation by (x.∇u) and integrating, we get

∫

Ω
(x.∇u)(−∆)su dx =

∫

Ω
(x.∇u)

(∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−1dx+

λn

2

∫

Ω
|u|2dx. (8.1)

Using Theorem 1.4 and 1.6 of [29] (since u ∈ L∞(Ω), f(u) ∈ C0,1(Ω̄), where f(u) =(∫
Ω

|u|2
∗
µ,s

|x−y|µdy

)
|u|2

∗
µ,s−2u+ λu), we get

∫

Ω
(x.∇u)(−∆)su dx =

2s− n

2

∫

Ω
u(−∆)su dx−

Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2
(x.ν)dσ.
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Now, consider the term

∫

Ω
(x.∇u)

(∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−1dx

= −

∫

Ω
u(x)

(
n

(∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u|2

∗
µ,s−1 + (2∗µ,s − 1)|u(x)|2

∗
µ,s−2x.∇u(x)

∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

+ |u(x)|2
∗
µ,s−1

∫

Ω
(−µ)x.(x− y)

|u(y)|2
∗
µ,s

|x− y|µ+2
dy

)
dx

= −n

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy − (2∗µ,s − 1)

∫

Ω
x.∇u(x)

∫

Ω

|u(x)|2
∗
µ,s

|x− y|µ
dy|u(x)|2

∗
µ,s−1dx

+ µ

∫

Ω

∫

Ω
x.(x− y)

|u(y)|2
∗
µ,s

|x− y|µ+2
|u(x)|2

∗
µ,sdydx.

This gives

2∗µ,s

∫

Ω
x.∇u(x)

∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy|u(x)|2

∗
µ,s−1dx

= −n

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy + µ

∫

Ω

∫

Ω
x.(x− y)

|u(y)|2
∗
µ,s

|x− y|µ+2
|u(x)|2

∗
µ,sdydx,

and similarly,

2∗µ,s

∫

Ω
y.∇u(x)

∫

Ω

|u(x)|2
∗
µ,s

|x− y|µ
dx|u(y)|2

∗
µ,s−1dy

= −n

∫

Ω

∫

Ω

|u(y)|2
∗
µ,s |u(x)|2

∗
µ,s

|x− y|µ
dydx+ µ

∫

Ω

∫

Ω
y.(y − x)

|u(x)|2
∗
µ,s

|x− y|µ+2
|u(y)|2

∗
µ,sdxdy.

Thus, we have

∫

Ω
(x.∇u(x))

(∫

Ω

|u(y)|2
∗
µ,s

|x− y|µ
dy

)
|u(x)|2

∗
µ,s−1dx =

µ− 2n

22∗µ,s

∫

Ω

|u(x)|2
∗
µ,s |u(x)|2

∗
µ,s

|x− y|µ
dxdy.

Since ∫

Ω
(x.∇u)udx = −

n

2

∫

Ω
u2dx,

using (8.1), the result follows. �

Proof of Theorem 2.8: Let u ≥ 0 be a nontrivial solution of (Pλ), then by Theorem 7.1,

u ∈ L∞(Ω). Therefore, we have

‖u‖2 =

∫

Ω

∫

Ω

|u(x)|2
∗
µ,s |u(y)|2

∗
µ,s

|x− y|µ
dxdy + λ

∫

Ω
u2dx.

Using Proposition 8.1, we get

Γ(1 + s)2

2

∫

∂Ω

( u
δs

)2
(x.ν)dσ = λ

∫

Ω
u2dx.

But, since Ω is star shaped with respect to origin in R
n, so x.ν > 0 . From above equation

and λ < 0, we have u ≡ 0, which is a contradiction. This completes the proof. �
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