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We examine the long-term behaviour of non-integrable, energy-conserved, 1D systems of macro-
scopic grains interacting via a contact-only generalized Hertz potential and held between stationary
walls. Existing dynamical studies showed the absence of energy equipartitioning in such systems,
hence their long-term dynamics was described as quasi-equilibrium. Here we show that these systems
do in fact reach thermal equilibrium at sufficiently long times, as indicated by the calculated heat
capacity. As a byproduct, we show how fluctuations of system quantities, and thus the distribution
functions, are influenced by the Hertz potential. In particular, the variance of the system’s kinetic
energy probability density function is reduced by a factor related to the contact potential.

Recently, there has been broad interest in 1D systems
of macroscopic grains held between stationary walls and
interacting via a power-law contact potential [1–6]. A
long-standing open problem is whether thermalization
(equipartition) can occur in these chains of grains. Only
very recently has it been shown that the related FPU
chain of coupled oscillators does reach equilibrium after
very long times [7]. In this paper, we show this is also
true for so-called Hertz chains. In the process, we ob-
tain wholly new approximate distribution functions for
interacting particles in the microcanonical ensemble.

Many power-law interacting systems are notable for
supporting solitary wave (SW) propagation [3, 6, 8].
However, in response to singular perturbations, the
breakup of SWs at the walls and from gaps be-
tween grains leads the system after a long time to an
equilibrium-like, ergodic phase [2–4]. Unusually large [2–
4] and occasionally persistent (rogue) [9] fluctuations in
the system’s kinetic energy are seen at late times for suf-
ficiently strong and unique perturbations. This has been
seen to impede an equal sharing of energy among all the
grains in the system, hence the long-term dynamics of
1D systems of interacting grains has been described as
quasi-equilibrium (QEQ) [2–4]. The question of whether
QEQ is the final state for these systems is addressed in
this letter.

To the time scales previously studied, quasi-
equilibrium has been seen to be a general feature of
the dynamics of systems with no sound propagation
[3]. However, we find that at sufficiently late times, ki-
netic energy fluctuations relax, allowing for energy to
be shared equally among all grains. Of course, energy
equipartitioning happens only in an average sense in fi-
nite systems, and at any given instant each grain will
not have exactly the same kinetic energy. Rather, each
grain’s kinetic energy fluctuates according to the same
probability density function (pdf), the long tail of which
determines the chance of large fluctuations.

The fluctuations are quantified by treating the chain
as a 1D gas of interacting spheres [10]. This requires new
velocity and kinetic energy distribution functions differ-

ent from hard spheres, which incorporate the interaction
potential. These distributions are also influenced by the
finite heat capacity of the system, which governs the fluc-
tuations in the system kinetic energy in a microcanonical
ensemble [11]. An equilibrium value for the specific heat
obtained using Tolman’s generalized equipartition theo-
rem [12], provides a direct way to probe the extent to
which energy equipartitioning occurs in large but finite
systems. We show that at sufficiently long times, cal-
culated specific heat capacities of chains of interacting
grains agree with the values predicted by the generalized
equipartition theorem, indicating that energy equiparti-
tioning holds, and consequently that the ultimate fate
of these systems is a true equilibrium phase that can be
described by statistical mechanics.
The specific systems under consideration are 1D chains

of N grains, each with mass m and radius R, interacting
via a Hertz-like contact-only potential [13]. The Hamil-
tonian describing the system is:

H = K + U =
1

2

N
∑

i=1

mv2i +

N−1
∑

i=1

a∆n
i,i+1, (1)

where vi is the velocity of grain i and ∆i,i+1 ≡ 2R −
(xi+1 − xi) ≥ 0 is the overlap between neighbouring
grains, located at xi. If ∆i,i+1 < 0, there is no poten-
tial interaction. In the above expression, the exponent
n is shape dependant (n = 2.5 for spheres), and a con-
tains the material properties of the grains [14]. The grain
interactions with the fixed walls adds two terms to the
Hamiltonian, cf. Ref. [6].
The pdf of particle velocity of a d-dimensional, fi-

nite sized microcanonical ensemble is not a Maxwell-
Boltzmann distribution [10, 15]. The actual distribution
can be found from the total volume of a 2dN -dimensional
phase space circumscribed by the total energy E,

Ω ∝

∫

Θ(E −H) dqdNdpdN , (2)

where Θ is the Heaviside step function. The integral in
Eq. (2) is taken over all grain momenta p and all grain
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positions q. Integration over the grain momenta evalu-
ates to the volume of a dN -dimensional hypersphere of
radius [2m(E−U)]1/2, leaving the remaining integral over
the grain positions:

Ω ∝

∫

(E − U)
dN/2

Θ(E − U) dqdN . (3)

This integral has been evaluated analytically for hard
spheres, where the system potential energy U = 0 [10,
15, 16], but to the best of our knowledge, not for any
case of an interaction potential.
Indeed there may not be an exact analytic solution

for the Hamiltonian in Eq. (1). Instead we seek an ap-
proximate solution, and making the simple observation
that the virial theorem holds for these systems, replace
(E − U) with (E − 〈U〉v) = 〈K〉v, where 〈. . . 〉v denotes
the expected value from the virial theorem. For Eq. (1),
the virial theorem yields 2〈K〉v = n〈U〉v, and thus

〈U〉v
E

=
2

n+ 2
;

〈K〉v
E

=
n

n+ 2
, (4)

with K the system kinetic energy. Thus 〈K〉v can come
out of the integral in Eq. (3), and the integral proceeds
as previously described [10, 15, 16].
This substitution cannot be exact: the grain momen-

tum’s limit is now set by 〈K〉v, an average value, and
there are certainly grains with kinetic energy that, at
times, are slightly greater than this value. However, we
can rely on decreasing fluctuations with increasing N ,
and show that for N > 10, the number of states beyond
this limit is small, and this is a very good approximation.
The resulting pdf of per-grain velocities vi in 1D is

then [10]:

pdf(vi) = B (α, β, ṽi) / (2〈v〉v) ,

=
1

2〈v〉v

(

Γ(α+ β)

Γ(α)Γ(β)
(ṽi)

α−1
(1− ṽi)

β−1

)

, (5)

where

ṽi =
1

2

(

1−
vi
〈v〉v

)

, (6)

with 〈v〉2v = 2〈K〉v/m, and α = β = (N − 1)/2. Also,
B(α, β, ṽi) is the beta distribution, and Γ is the gamma
function. In the limit N ≫ 1, Eq. (5) becomes the fa-
miliar Maxwell-Boltzmann 1D normal distribution with
mean µ = 0 and variance σ2 = 〈v〉2v/N .

The distribution of kinetic energy per-grain Ki is also
given by a beta distribution [10]:

pdf (Ki) = B
(

α, β; K̃
)

/〈K〉v, (7)

where K̃ = Ki/〈K〉v, α = 1/2, and β = (N − 1)/2. For
N ≫ 1, this becomes the familiar Maxwell-Boltzmann

distribution for kinetic energy, a gamma distribution
G(α, β,Ki):

pdf (Ki) = G(α, β,Ki) =
βα

Γ(α)
Kα−1

i e−βKi , (8)

where α = 1/2 and β = N/(2〈K〉v). Interestingly, the
possibility of large kinetic energy fluctuations increases
with the variance of Eq. (7) (and (8)), 〈δK2

i 〉 ≡ 〈K2
i 〉 −

〈Ki〉
2;

〈δK2
i 〉 =

2(N − 1)

N2(N + 1)

[(

n

n+ 2

)

E

]2

,

≈
2

N2

[(

n

n+ 2

)

E

]2

, (9)

which increases to the hard-sphere limit with larger n,
but rapidly decreases with increasing system size.
Finally, the distribution of system kinetic energy is

given by the Dirichlet distribution [10], which is a mul-
tivariate generalization of the beta distribution and not
amenable to visualization or calculation. Alternatively,
if we let Ki be independent and identically distributed
(i.i.d.) variates drawn from the distributions of either

Eq. (7) or (8), then the pdf of K =
∑N

i Ki can be
determined from statistical theory. No such distribu-
tion for beta-distributed variates exists for N > 2 [17];
however, for the gamma distribution, this is pdf (K) =
G(N/2, N/(2〈K〉v);K).
Although this has the correct mean, comparison with

simulation data shows it has the incorrect variance, and
after trial-and-error, a better approximation was found
to be

pdf (K) = G

(

n+ 2

2

N

2
,
n+ 2

2

N

2〈K〉v
;K

)

. (10)

We justify this distribution not only by the excellent em-
pirical match to the distribution calculated from molecu-
lar dynamics (MD) simulation, but also from the connec-
tion between the variance of system kinetic energy and
the specific heat capacity in the microcanonical ensemble.
In ergodic systems in the thermodynamic limit, Tol-

man’s generalized equipartition theorem [12] applied to
Eq. (1) yields an average total energy per grain 〈ǫ〉 =
kBT/2 + kBT/n, where kB is Boltzmann’s constant and
T is the canonical temperature. The corresponding spe-
cific heat per grain is then

CV =

(

n+ 2

2n

)

kB , (11)

which evidently depends only upon the exponent in the
potential, i.e. there is no grain material, grain size, or
temperature dependence. The equivalence of different
statistical ensembles when N → ∞ implies Eq. (11) is
also valid for the microcanonical ensemble in this limit,
and when energy is equipartitioned.
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It is possible to express the fluctuations in total system
kinetic energy in terms of CV using the approximation
found in Refs. [11, 18] which, for 1D systems is

〈δK2〉

〈K〉2
=

2

N

(

1−
1

2CV

)

, (12)

where CV is in units of kB . Then using Eq. (11), we
have:

〈δK2〉 =
2

N

(

2

n+ 2

)

〈K〉2, (13)

from which the factor of (n+2)/2 appears as part of the
distribution variance of Eq. (10).
Eq. (12) also provides one method to calculate the spe-

cific heat per grain from an MD simulation. However,
taking an energy derivative of the so-called microcanon-
ical temperature gives the exact formula for the micro-
canonical specific heat, which in 1D is [18]:

CV =
kB
N

(

1−
(N − 4)〈1/K2〉

(N − 2)〈1/K〉2

)−1

. (14)

With this equation and Eq. (10), we can compute an
approximate CV for finite microcanonical systems, via
analytic approximations of 〈1/K〉 and 〈1/K2〉.
The cumulative distribution function of K is

FK(K0) ≡ P (K < K0). Now consider X ≡ K−ρ, where
ρ > 0. By definition K ≥ 0, thus FX(x) = 0 for x < 0.
Meanwhile for x > 0, FX(x) ≡ P (0 < K−ρ ≤ x) =
P (K ≥ x−1/ρ) = 1 − P (K < x−1/ρ) = 1 − FK(x−1/ρ).
The pdf(X) is given by dFX(x)/dx, thus pdf(X) =
F ′

K(x−1/ρ)/(ρx(ρ+1)/ρ) = (pdf(K)|k=x−1/ρ)/(ρx(ρ+1)/ρ).
Knowing the pdfs of 1/K (ρ = 1) and 1/K2 (ρ = 2), the
means 〈1/K〉 and 〈1/K2〉 can be computed in a standard
way. The result is:

CV = kB

[

n+ 2

2n
−

1

N

(

n+ 2

n
+

4(N − 2)

nN

)]

, (15)

which has the form of Eq. (11) plus an N -dependent cor-
rection term that vanishes in the thermodynamic limit.
Hence Eq. (15) provides an estimate for CV in a large
but finite system in which the energy is equipartitioned
among the interacting grains.
We point out that all of the distribution functions pre-

sented above (per-grain velocity, per-grain kinetic energy,
and total system kinetic energy) depend only on the num-
ber of grains N , the total system energy E, and most
interestingly, the exponent of the potential energy n. To
test these distribution functions, we ran MD simulations
of a 1D monatomic chain of N grains held between fixed
walls and described by the Hamiltonian in Eq. (1), which
includes grain-wall interactions [6]. Our grains and walls
are steel, and the grains are 6 mm in radius.
We consider values of the potential exponent n from 2

(harmonic) to 5, and system sizes from N = 10 to 100.

A standard velocity Verlet algorithm is used to integrate
the equations of motion with a 10 ps timestep, and no dis-
sipation is included. The grains are set into motion with
an initial velocity applied to the first grain only, directed
into the chain, causing a SW to propagate through the
system. The SW breaks down in collisions with bound-
aries and in the formation of gaps, creating numerous
secondary solitary waves (SSWs). After a period of time,
the number of SSWs increases to a point where the sys-
tem enters into quasi-equilibrium [3, 4]. We allow the
system to evolve for a substantial amount of time past
this phase change, and at least an order of magnitude
longer than previous work has considered.
The time scale to equilibrium onset is determined by

the potential exponent n [2], so we adjust the velocity
perturbation such that the system arrives at equilibrium
quickly. Still, it was necessary to collect at least one sec-
ond of real time data for n = 2, 2.5, 2.75, and even longer
(up to 6 s) for larger values of n. Data of grain position
and velocity are recorded to file every 1 µs, though we re-
sample the data at time intervals beyond the dampening
of velocity autocorrelation (not shown). The deviation
from the expected virial 〈K〉v was < 1% for all systems.
In Fig. 1 we show the distribution functions obtained

from MD simulations and the corresponding expected
pdfs (Eqs. (5), (7), (8), and (10)) for three represen-
tative systems. In each system, the per-grain velocity
data agrees with the beta distribution, Eq. (5), which is
nearly identical to the normal distribution for large N
(see Figs. 1(i-a), (ii-a)). The difference between the nor-
mal and beta distributions becomes apparent for small
systems (N . 30), where the per-grain velocity data fits
the beta distribution better.
The grain kinetic energy distributions are presented in

Figs. 1(i-b)-(iii-b), illustrating agreement between MD
results and Eq. (7) for large N . The difference between
Eqs. (7) and (8) seems pronounced in the log scale with
smaller N , where the beta distribution has a cutoff be-
fore the tail of the MD data. However, for N = 10,
P (Ki > 〈K〉v) = 0.03%, while for larger N it’s even less.
This shows that the limitation of our original virial ap-
proximation is quite small. Finally, the sensitivity to n
and N are also shown in Fig. 1, with curves of n + 1 or
1.1N . They do not agree as well with the data.
Figs. 1(i-c)-(iii-c) contain the distributions of system

kinetic energy from MD simulations, along with corre-
sponding Eq. (10), for the three systems. The agreement
between MD data and the expected result is very good
for N = 100, see Fig. 1(i-c); less so with decreasing N .
This is because Eq. (10) develops an increasing skew with
decreasing N , cf. Figs. 1(i-c) and (iii-c). For comparison,
we also present the distribution without the variance cor-
rection, ie. n = 0, which we call the hard sphere limit,
and clearly does not agree with any MD data of interact-
ing grains.
Lastly, we computed the specific heats of MD simula-
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FIG. 1. (Color online) Distribution of grain velocity, grain kinetic energy, and system kinetic energy for three representative
systems. Results of MD simulations are shown as filled circles. In columns (a) and (b), solid lines are predicted distributions
(Eqs. (5), (7), (8)), and dashed/dotted lines are the corresponding distributions with parameters slightly changed to illustrate
the sensitivity of Eqs. (5) and (7). In column (c), solid curve is the theoretical prediction Eq. (10), and dashed line is the
corresponding hard-sphere distribution.

tion data using both Eqs. (12) and (14). These results are
directly compared with CV predicted by Eq. (11) shown
as the solid line in both Figs. 2(a) and (b), from which it
is evident that as N increases, the values calculated by
Eq. (12) agree very well with the theory. Moreover, even
for small (N . 20) systems, the deviation from theory is
no more than ∼ 10% for Eq. (12), and improve with ad-
ditional statistics. We also present the n,N -dependant
CV predicted by Eq. (15) as dashed lines in Fig. 2(b),
which agrees with the MD data within the error bars for
N = 100.

The fact that the calculated specific heat agrees with
the value predicted by the generalized equipartition the-
orem for N ≫ 1 provides evidence that energy is indeed
equipartitioned in the Hertz chain at late enough times.
This finally establishes that the very late-time dynamics
of 1D granular chains perturbed at one end with zero
dissipation is a true equilibrium phase [3]. The appear-
ance of large fluctuations at late times is thus entirely
predictable [9]. While real granular alignments are inher-
ently dissipative, dissipation-free versions of our systems
may be possibly realized as integrated circuits and hence
our results may be observable in the laboratory. Finally,
quantitative analysis of the QEQ phase may now be pos-
sible with this equilibrium theory as the starting point.

These results are also the first empirical demonstration

of how the potential energy function can affect the kinetic
energy distribution. Shirts et al. [16], in their calcula-
tion of the exact distribution for the finite hard-sphere
system, speculate that for attractive potentials pdf(Ki)
would differ somehow, but concede it would be exceed-
ingly complicated to derive. We have shown accurate
distributions that may guide attempts to solve Eq. (3)
for finite interaction potentials.
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