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Abstract

Recently, a novel mixed–synchronization phenomenon is observed in counter–rotating non-

linear coupled oscillators [1]. In mixed–synchronization state: some variables are synchronized

in–phase, while others are out–of–phase. We have experimentally verified the occurrence of mixed–

synchronization states in coupled counter–rotating chaotic piecewise Rössler oscillator. Analytical

discussion on approximate stability analysis and numerical confirmation on the experimentally

observed behavior is also given.

1

ar
X

iv
:1

10
5.

58
56

v1
  [

nl
in

.C
D

] 
 3

0 
M

ay
 2

01
1



I. INTRODUCTION

Huygens first describes the anti–phase synchronization in a pair of pendulum clocks [2].

Later, the idea of synchronization of two identical chaotic system was introduced by Pecora

and Carroll [3]. Synchronization of chaotic systems has attracted much attention due to its

potential application in secure communication, chemical and biological system, information

science, and so on [4]. Many different synchronization states have been studied in literature,

namely complete or identical synchronization (CS) [3, 5, 6], in–phase (PS) [7, 8], anti–phase

[9], lag synchronization (LS) [10], generalized synchronization (GS) [11, 12], intermittent

lag synchronization(ILS) [13, 14], and anti-synchronization (AS) [15–17] in which one of the

dynamical variable is synchronized then rest of variable follow the same. All these type of

synchronization can be achieved with various type of interactions e.g. mismatch oscillators

[18], conjugate [19, 20], delay [21], and nonlinear [22, 23], indirect [24, 25].

If the directions of rotation of two oscillators are same, the system is co–rotating, while

system of oscillators rotating in opposite direction is called counter–rotating. Coupled co–

rotating nonlinear oscillators have been extensively studied from both theoretical and exper-

imental point of view [4]. Recently, a mixed–synchronization phenomenon was observed in

coupled counter–rotating nonlinear oscillators [1], similar phenomena was engineered using

a general formulation of coupling function in co–rotating coupled oscillators [26, 27]. In

mixed–synchronization state, some variables are synchronized to in–phase state while other

variables are out–of–phase. The mixed–synchronization phenomenon is also studied in the

case of extended systems [1].

In this Letter, we present the experimental observation of the mixed–synchronization

in two diffusive coupled counter–rotating chaotic piecewise Rössler oscillators. The ana-

lytical discussion on approximate stability analysis and numerical simulations are in close

agreement with experimental results. The critical value of coupling strength, where counter–

rotating coupled chaotic oscillators are synchronized, is larger in experiments as compared

to numerical simulations because of parameter mismatch in circuit implementation.

The Letter is organized as follows: In the section II we numerically study the mixed–

synchronization phenomenon in the coupled chaotic oscillators for piecewise Rössler system.

The linear stability analysis and numerical results are presented. The experimental setup

and the results of coupled counter–rotating chaotic oscillators are discussed in section III.
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Concluding remarks and discussion about the mixed–synchronization in coupled counter–

rotating chaotic oscillators are given in section IV.

II. THE MODEL SYSTEM

Here, we illustrate the mixed–synchronization phenomena in two diffusive coupled piece-

wise Rössler [28] systems given by following equations

ẋi = −γixi − αiyi − zi + ǫ(xj − xi) = f(xi, yi, ωi) + ǫ(xj − xi)

ẏi = βixi + aiyi = g(xi, yi, ωi)

żi = h(xi)− zi (1)

Here, in functions f and g, ωi’s represents the internal frequency of two oscillators with

opposite sign and it depends on the parameters αi and βi. The function h(x) = 0 if x ≤ 3, or

h(x) = µ(x− 3) if x > 3. The rotation of Piecewise Rössler system (in x− y plane) can be

changed by changing the sign of αi and βi. The first system has counter clockwise rotation

while second has clockwise rotation. The parameters values are: α1 = 0.5, α2 = −0.5,

β1 = 1, β2 = −1, γi = 0.05, ai = 0.113, and µi = 15. The coupling parameter is ǫ. For

identical oscillators, a1 = a2.

The fixed points of the piecewise Rössler oscillators are (x∗ = 3µi

κi

, y∗ = −3µiβi

aiκi

, z∗ =

−3µi

κi

(−γi +
αiβi

ai
)), where κi = −γi +

αiβi

ai
+ βi depends on the sign of the αi and βi. The

change in the dynamical behavior arises from the coupling between two identical piecewise

Rössler oscillators.

A. Numerical Results

We numerically study the mixed–synchronization of two coupled counter–rotating piece-

wise Rössler oscillators. At the very small coupling strength the two oscillators are uncor-

related. As the coupling strength increases, the phase synchronization set in when forth

largest Lyapunov exponent becomes negative and complete synchronization occurs when

third largest Lyapunov exponent becomes negative as shown in Fig. 1(a).
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To quantify synchronization, we use the following similarity function defined with respect

to dynamical variables, x and y, of the chaotic oscillator [10]

S(x) =

√

< [x2(t)− x1(t)]2 >

[< x2

1
(t) >< x2

2
(t) >]1/2

(2)

S(y) =

√

< [y2(t) + y1(t)]2 >

[< y2
1
(t) >< y2

2
(t) >]1/2

(3)

Synchronization (complete and anti) is characterized by S(.) = 0 for x and y variables

respectively. The variables x1 and x2 are in–phase while y1 and y2 are out–of–phase. The two

variables x and y shows complete in–phase and out–of–phase synchronization respectively

for coupling strength ǫ > ǫc, where ǫc ∼ 0.067. The z variable of the system also goes

to complete synchronization state, where S(z) is defined similar to S(x). The in–phase

synchronization in x1 and x2 while out–of–phase in y1 and y2 is shown in Figure 1(c). The

complete synchronization in x1 and x2 with zero relative phase while out–of–phase state of

y1 and y2 with phase difference of π is shown in Figure 1(d).

B. Linear Stability Analysis

We analyze the stability of the mixed–synchronized state of two counter–rotating coupled

chaotic systems given by Eq. (1) in x− y plane. The method of approximate linear stability

analysis is adopted for synchronization criteria [24]. If ξ and η represent the deviation of

coordinates x and y respectively from the synchronization state, their dynamic is governed

by the linearized equation as

ξ̇i = f ′(xi, yi, ωi) + ǫ(ξj − ξi),

η̇i = g′(xi, yi, ωi) (4)

Where the f and g are functions in terms of coordinate and parameter. ωi, i=1,2 represent

the frequency of the oscillators. The criteria for the stability is that synchronization state

corresponding to fixed point will be stable if all eigen values of the Eqs. (4) are negative.

Dynamics of the deviation from the synchronization state is governed by the linearized

equation of Eqs (1).
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ξ̇1 = (−γξ1 − α1η1)f
′(x1, y1) + ǫ(ξ2 − ξ1),

η̇1 = (β1ξ1 + aη1)g
′(x1, y1),

ξ̇2 = (−γξ2 − α2η2)f
′(x2, y2) + ǫ(ξ1 − ξ2),

η̇2 = (β2ξ2 + aη2)g
′(x2, y2) (5)

Where γ, α, β, and a are parameters. For the Perfect synchronization in counter rotating

coupled system , i.e. x1 = x2 (complete) and y1 = −y2 (Anti-synchronization), we can define

µ1 = ξ1 − ξ2,

µ2 = η1 + η2 (6)

Then Eqs (5) can be written as

µ̇1 = −γf ′(x1, y1)µ1 − (α1η1 − α2η2)f
′(x1, y1)− 2ǫµ1,

µ̇2 = (β1ξ1 + β2ξ2)g
′(x1, y1) + ag′(x1, y1)µ2 (7)

If we assume that the time average values of Jacobian matrix elements f ′(xi, yj) and

g′(xi, yi), where i=1,2 are approximately the same and can be replaced by an effective

constant value λ1 and λ2.

In the case of counter rotating Rössler systems, frequency of the coupled systems are of

opposite sign: α1 = −α2 and β1 = −β2. Then

µ̇1 = −(γλ1 + 2ǫ)µ1 − α1λ1µ2,

µ̇2 = β1λ2µ1 + aλ2µ2 (8)

Eliminating µ2 from above equations, we get

µ̈1 = (aλ2 − (γλ1 + 2ǫ))µ̇1 − (α1β1λ1λ2 − aλ2(γλ1 + 2ǫ))µ1 (9)

Solution of the equation µ1 = Aemt, we get
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m =
(aλ2 − (γλ1 + 2ǫ))±

√

(aλ2 − (γλ1 + 2ǫ)))2 − 4(α1β1λ1λ2 − aλ2(γλ1 + 2ǫ))

2
(10)

The synchronization state define by µ1 = ξ1 − ξ2 = 0 and µ2 = η1 + η2 = 0, is stable if

Re[m] is negative for both the solutions.

• If (aλ2 − γλ1 − 2ǫ))2 < 4(α1β1λ1λ2 − aλ2(γλ1 + 2ǫ)), m is complex and the stability

condition becomes (γλ1 + 2ǫ) > aλ2.

• If (aλ2−γλ1−2ǫ))2 > 4(α1β1λ1λ2−aλ2(γλ1+2ǫ)), m real and the stability condition

becomes (γλ1 + 2ǫ) > aλ2.

The transition to stable synchronization is given by the threshold values of the parameters

satisfying the condition

ǫc =
1

2
(aλ2 − γλ1) (11)

Figure 2 shows the transition from the unsynchronized to mixed–synchronization state

in the ǫ − a space. A linear relations is clearly seen and the solid line is drawn with the

effective λ1 = −1.45 and λ2 = 0.55, thus validating the transition criterion of Eq. (11)

obtained from the stability theory. The condition given by Eq. (11) is necessary but not

sufficient for synchronization.

III. EXPERIMENTAL SETUP AND RESULTS

Experiments are conducted using a pair of electronic oscillators whose dynamics mimic

that of the chaotic Rössler oscillator [28]. One of the oscillators rotate clockwise while

another anti–clockwise. The two oscillators are approximately identical since in reality it

is not possible to ensure that parameters are exactly equal. Further, unlike the piecewise

Rössler system (Eq. (1)) discussed above, the coupling is asymmetric and frequencies of the

oscillators are not equal in experiment. Hence, we observe lag and phase synchronization in

coupled piecewise Rössler oscillators as coupling is increased.

The Piecewise Rössler oscillator circuit shows the dynamics of rotation in counter clock-

wise. We have to connect two inverting amplifier U9 and U10 (as shown in Fig. 3) for changing
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the direction of the rotation in circuit. Both piecewise Rössler oscillators are consisting of

the passive components like resistance R1−42, capacitors C1−6, diodes D1−2 and operational

amplifier uA741 U1−16. We use simple linear scheme for the coupling between x variables

of the two piecewise Rössler oscillators. The OPAMP U6,7,15,16 in circuit are used for linear

coupling scheme. RF1 and RF2 are the variable resistors characterizing the coupling param-

eter. The electronic components in circuits are carefully chosen and values are mentioned

in the diagram (Fig. 3). The typical oscillating frequencies of the circuits are in the audio

frequency range. Both oscillators are operated by a low-ripple and low noise power supply.

The output voltages form both oscillators are monitored using digital oscilloscope 100MHz

2 channel (Agilent DSO1012A) with maximum sampling rate of 2 GSa/s.

Transitions from asynchronous chaos to lag synchronization and then to in–phase syn-

chronization is observed at the critical values of variable resistance, Rc1 and Rc2, respectively.

The lag synchronization occurs in the interval [Rc1, Rc2], where Rc1 = 0.5kΩ and Rc2 = 9kΩ.

It has been observed in experiments that the variables of one of the oscillator tends to fellow

the variables of the another oscillator in some range of the coupling strength [29]. Here, it

is due to the parameter mismatch in the coupled oscillators. The Similarity function of x

and y variables (Eq. (2) and (3)) of the coupled piecewise Rössler oscillator with variable

resistance R is shown in Fig. 4. At RF1 = RF2 = 1.4kΩ the output voltage of x1 and x2

shows in–phase dynamics while y1 and y2 are out–of–phase. Phase relationship of x and y

variables with lag synchronization are shown in Fig. 5(c-d). Further increase of the coupling

strength shows the transition from lag to phase synchronization. Phase relationship at RF1

= RF2 = 11.2kΩ is shown in Fig. 5(e-f).

IV. CONCLUSION

We presented the experimental evidence of mixed–synchronization in the piecewise

Rössler oscillators circuit via diffusive type of coupling under the parameter mismatch. The

experimental results are in close agreement with the numerical results. The critical value of

coupling strength for onset of mixed–synchronization is calculated using approximate linear

stability analysis. We have also studied the sprott circuit [30] and obtained similar results for

mixed-synchronization. The natural emergence of novel mixed–synchronization phenomenon

in chaotic as well as limit cycle counter–rotating coupled oscillators has possible applications
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in secure communication and chaos based computing.
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Figure Captions

Figure 1: (Color online) (a) The largest four Lyapunov exponents of identical cou-

pled counter–rotating piecewise Rössler oscillators. (b) the similarity functions for x, y

and z variables of the coupled oscillators. (c) and (d) the phase relationship between

the variables x, y and z at ε = 0.06 and ε = 0.1 respectively. The similarity function

and dynamics for variables x, y, and z are marked by black, red, and green color respectively.

Figure 2: (Color online) Transition from unsynchronized to mixed–synchronized region is

shown in the parameter plane (a, ǫ) for coupled piecewise Rössler oscillators.

Figure 3: (Color online) Schematic diagram of two bidirectional coupled (counter clockwise

and clockwise) piecewise chaotic Rössler oscillator. Variable resistors are used to change

the coupling. The OPAMP are type of uA741. All resistors are metal film type with

tolerance 1% and capacitors are polyester type with tolerance 5%. The circuit is run by

±12V source.

Figure 4: (Color online) Similarity function S for x (circle) and y (triangle) variables of

the experimental system of two coupled counter rotating piecewise Rössler oscillators with

variable resistance RF1 = RF2 = R.

Figure 5: (Color online) Dynamic of the piecewise Rössler oscillator in (a) counter clock-

wise rotation (b) clockwise rotation. The phase relationship of x and y variables respectively

at RF1 = RF2 = 1.4kΩ for lag–synchronization in (c) and (d). mixed–synchronization at

RF1 = RF2 = 11.2kΩ in (e) and (f).
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FIG. 1: (Color online) (a) The largest four Lyapunov exponents of identical coupled counter–

rotating piecewise Rössler oscillators. (b) the similarity functions for x, y and z variables of the

coupled oscillators. (c) and (d) the phase relationship between the variables x, y and z at ε = 0.06

and ε = 0.1 respectively. The similarity function and dynamics for variables x, y, and z are marked

by black, red, and green color respectively.
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FIG. 2: (Color online) Transition from unsynchronized to mixed–synchronized region is shown in

the parameter plane (a, ǫ) for coupled piecewise Rössler oscillators.
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FIG. 3: (Color online) Schematic diagram of two bidirectional coupled (counter clockwise and

clockwise) piecewise chaotic Rössler oscillator. Variable resistors are used to change the coupling.

The OPAMP are type of uA741. All resistors are metal film type with tolerance 1% and capacitors

are polyester type with tolerance 5%. The circuit is run by ±12V source.
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FIG. 4: (Color online) Similarity function S for x (circle) and y (triangle) variables of the experi-

mental system of two coupled counter rotating piecewise Rössler oscillators with variable resistance

RF1 = RF2 = R.
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FIG. 5: (Color online) Dynamic of the piecewise Rössler oscillator in (a) counter clockwise rotation

(b) clockwise rotation. The phase relationship of x and y variables respectively at RF1 = RF2 =

1.4kΩ for lag–synchronization in (c) and (d). mixed–synchronization at RF1 = RF2 = 11.2kΩ in

(e) and (f).
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