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We analyze the dynamics of entanglement in a two-qubit system interacting with an initially
squeezed thermal environment via a quantum nondemolition system-reservoir interaction, with the
system and reservoir assumed to be initially separable. We compare and contrast the decoherence
of the two-qubit system in the case where the qubits are mutually close-by (‘collective regime’)
or distant (‘localized regime’) with respect to the spatial variation of the environment. Sudden
death of entanglement (as quantified by concurrence) is shown to occur in the localized case rather
than in the collective case, where entanglement tends to ‘ring down’. A consequence of the QND
character of the interaction is that the time-evolved fidelity of a Bell state never falls below 1/v/2, a
fact that is useful for quantum communication applications like a quantum repeater. Using a novel
quantification of mixed state entanglement, we show that there are noise regimes where even though
entanglement vanishes, the state is still available for applications like NMR quantum computation,
because of the presence of a pseudo-pure component.

PACS numbers: 03.65.Yz, 03.67.Mn, 03.67.Bg, 03.67.Hk

I. INTRODUCTION

Open quantum systems are ubiquitous in the sense that any system can be thought of as being surrounded by its
environment (reservoir or bath) which influences its dynamics. They provide a natural route for discussing damping
and dephasing. One of the first testing grounds for open system ideas was in quantum optics [1]. Its application
to other areas gained momentum from the works of Caldeira and Leggett [2], and Zurek [3], among others. The
total Hamiltonian is H = Hg + Hr + Hgr , where S stands for the system, R for the reservoir and SR for the
system-reservoir interaction. The evolution of the system of interest S is studied taking into account the effect of
its environment R, through the SR interaction term, making the resulting dynamics non-unitary. Depending upon
the system-reservoir (S — R) interaction, open systems can be broadly classified into two categories, viz., quantum
non-demolition (QND), which we consider here, or dissipative (cf. for example Ref. [4]). A particular type of quantum
nondemolition (QND) S — R interaction is given by a class of energy-preserving measurements in which dephasing
occurs without damping the system, i.e., where [Hg, Hsr] = 0 while the dissipative systems correspond to the case
where [Hg, Hgr] # 0 resulting in decoherence along with dissipation [5].

A class of observables that may be measured repeatedly with arbitrary precision, with the influence of the mea-
surement apparatus on the system being confined strictly to the conjugate observables, is called QND or back-action
evasive observables [6-9]. Such a measurement scheme was originally introduced in the context of the detection of
gravitational waves [10, 11]. The energy preserving measurements, referred to above, form an important class of such
a general QND measurement scheme.

The interest in the relevance of open system ideas to quantum information has increased in recent times because of
the impressive progress made, and the potential for future progress (cf. for example Ref. [12]), on the experimental
front in the manipulation of quantum states of matter towards quantum information processing and quantum com-
munication. Myatt et al. [13] and Turchette et al. [14] have performed a series of experiments in which they induced
decoherence and decay by coupling the atom (their system-S) to engineered reservoirs, in which the coupling to, and
the state of, the environment are controllable. An experiment reported in Ref. [15] demonstrated and completely
characterized a QND scheme for making a nondeterministic measurement of a single photon nondestructively using
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only linear optics and photo-detection of ancillary modes, to induce a strong nonlinearity at the single photon level.
The dynamics of decoherence in continuous atom-optical QND measurements has been studied in [16].

Quantum entanglement is the inherent property of a system to exhibit correlations, the physical basis being the non-
local nature of quantum mechanics [17], and hence is a property that is exclusively quantum in nature. Entanglement
plays a central role in quantum information theory [18], in quantum computation as in the Shor algorithm [19], and
quantum error correction [20]. A number of methods have been proposed for creating entanglement involving trapped
atoms [21-23].

An important issue is to study how quantum entanglement is affected by noise, which can be thought of as a
manifestation of an open system effect [24]. A recent experimental investigation of the dynamics of entanglement
with a continuous monitoring of the environment, i.e., via a realization of quantum trajectories [25], has been made
in [26]. Here we study the effect of noise on the entanglement generated between two spatially separated qubits,
by means of their interaction with the bath, which is taken to be in an initial squeezed-thermal state [5, 27]. This
is of relevance to evaluate the performance of two-qubit gates in practical quantum information processing systems.
The two qubits are intially uncorrelated. With the advent of time entanglement builds up between them via their
interaction with the bath but eventually gets destroyed because of the quantum to classical transition mediated by
the noise. In this paper we study the effect of noise generated by a QND S — R interaction. The issue of a dissipative
noise is taken up in a separate work.

Since we are dealing here with a two qubit system which very rapidly evolves into a mixed state, a study of
entanglement would necessarily involve a measure of entanglement for mixed states. Entanglement of a bipartite
system [28] in a pure state is unambigious and well defined. However, mixed state entanglement (MSE) is not so
well defined. Thus, although a number of criteria such as entanglement of formation [29-31] and negativity [32] exist,
there is a realization [29] that a single quantity is inadequate to describe MSE. This was the principal motivation
for the development of a new prescription of MSE [33] in which it is characterized not by a number, but as a
probability density function (PDF). This generalization provides an exhaustive and geometrical characterization of
entanglement : by exploring the entanglement content in the various subspaces spanning the two-qubit Hilbert space.
The known prescriptions such as concurrence and negativity emerge as particular elements in the set of parameters that
characterize the probability density function. We will study entanglement in the two-qubit system using concurrence
as well as the probability density function.

The plan of the paper is as follows. In Sections IT and III, we develop our open system model for the multi-
qubit dynamics under the influence of a QND S — R interaction. Section II develops the general dynamics for a
multi-qubit system, where the qubits are spatially separated and initially uncorrelated, and the bath is in a general
squeezed-thermal state. Section III specializes these considerations to the case of two qubits. In Section IV, we
point out some interesting symmetries obeyed by the two-qubit dynamics. Section V makes a brief application of
the model to practical quantum communication, in particular, in the realization of a quantum repeater [34, 35]. In
Section VI, we give a brief description of the recently developed entanglement measure of MSE [33]. Section VII
deals with the entanglement analysis of the two-qubit open system using the PDF as a measure of entanglement. We
also dwell upon the usual measure of MSE, concurrence. We deal with the scenarios where the two qubits effectively
interact via localized S — R interactions, called the localized (independent) decoherence model, as also when they
interact collectively with the bath, called the collective decoherence model. The usefulness of the PDF measure of
entanglement is that it allows us to demonstrate the existence of noise regimes where even though entanglement
vanishes, the state is still available for applications like NMR quantum computation, because of the presence of a
pseudo-pure component. In Section VIII, as an application of the PDF, we make a brief discussion of the temperature
dependent effective dynamics obeyed by the two-qubit open system in the collective decoherence regime. In Section
IX, we make our conclusions.

II. MULTI -QUBIT QND INTERACTION WITH A SQUEEZED THERMAL BATH

We consider the Hamiltonian, describing the QND interaction of L qubits with the bath as [5, 36, 37]

H = Hg+ Hr+ Hgsr

L
= Y henJT+ Y hwrbfbr + > BJI(gEbL + g1 br). (1)
n=1 k n,k

Here Hg, Hr and Hgp stand for the Hamiltonians of the system, reservoir and system-reservoir interaction, respec-
tively. bl, by, denote the creation and annihilation operators for the reservoir oscillator of frequency wy, g; stands
for the coupling constant (assumed to be position dependent) for the interaction of the oscillator field with the qubit



system and are taken to be

gr = gre (2)

where 7, is the qubit position. Since [Hg, Hsg| = 0, the Hamiltonian (1) is of QND type. In the parlance of quantum
information theory, the noise generated is called the phase damping noise [5, 38].

The position dependence of the coupling of the qubits to the bath (2) helps to bring out the effect of entanglement
between qubits through the qubit separation: 7,,, = r; — r,. This allows for a discussion of the dynamics in two
regimes: (A). localized decoherence where k.rp,,, ~ ™= > 1 and (B). collective decoherence where k.17, ~ ™52 — 0.
The case (B) of collective decoherence would arise when the qubits are close enough for them to experience the same
environment, or when the bath has a long correlation length (set by the effective wavelength \) compared to the
interqubit separation 7, [36]. Our aim is to study the reduced dynamics of the qubit system. As in the case of a
single qubit QND interaction with bath [5, 37], the density matrix is evaluated in the system eigenbasis |i,) = | & 3)
(the possible eigenstates of JI* with eigenvalues j,, = :l:%) The system-plus-reservoir composite is closed and hence
obeys a unitary evolution given, in the interaction picture, by

p(t) = Ur(t)p(0)U; (1), (3)

where
Ur(t) = T G/M f; dt’HI(t/), (@)
with Hy(t) = e!Hs HHr/N [T gpe=(HstHR)U/M and T denotes time ordering. Also
p(0) = p*(0)pr(0), (5)
i.e., we assume separable initial conditions. Here
p*(0) = pi(0) @ p5(0) - -- @ p7.(0), (6)

is the initial state of the qubit system and the subscripts denote the individual qubits. In Eq. (5), pr(0) is the initial
density matrix of the reservoir which we take to be a broadband squeezed thermal bath [5, 37, 38] given by

pR(O) = S(a7 (I))pthST (a7 (I))v (7)
where
pih = H [1 _ e—Bhwk} o~ Bhwibl by (8)
k

is the density matrix of the thermal bath at temperature T, with 8 = 1/(kpT), kp being the Boltzmann constant,

and
B2 e DI,
S(ag, ®r) = exp |ax éce—zz@k _ l2c o210 ©)

is the squeezing operator with ay, ®j being the squeezing parameters [39)].

In order to obtain the reduced dynamics of the system , we trace over the reservoir variables. The matrix elements
of the reduced density matrix in the system eigenbasis are obtained for the localized and collective decoherence models
as:

A. Localized decoherence model

p{s:in ;jn} (t) = exp[l{(—){{czn;]n} (t) - Ai:cin ;jn} (t)}] exp[_FECin ;jn}(sq) (t)]pizn ;jn} (O) (10)

Here p?in)jn}(t) stands for (ir,ip_1,....,01|Trrp®(t)|jL, jr—-1,-..,71) and the symbol {in,j,} stands collectively for
i1, J1; %2, J2; -5 11, jr- The superscript lc is to indicate that these expressions are for the localized decoherence model
and the subscript sq indicates that the bath starts in a squeezed thermal initial state. As seen from the expressions



given below, GI{CM it and Al{cln .} are independent of the bath initial conditions and are given in the continuum limit
(assuming a quasi-continuous bath spectrum) by

00 L
Oy () =2 / dwl(@)S(w,t) Y (imin = jmjn) cos(wts), (1)
0 “(m#n)
o L
Al{cimjn}(t) = 2/dw[(w)C(w,t) Z imjn Sin(Wts). (12)
) (m#n)

In the above equations, I(w) is the bath spectral density given in terms of the system (qubits) and bath coupling
constant as I(w) = > 6(w — wg)g?, which for the Ohmic case considered here has the form
%

I(w) = Eweﬂ"/”c, (13)
T

where vy and w. are two bath parameters. Also

wt — sin(wt)

S(w,t) = 2 , (14)
and
Clw,t) = 1‘%25(“” (15)

In Egs. (11) and (12), wts = k.rmy, [36], where ¢, is the transit time introduced in order to express the system-bath
coupling in the frequency domain. Flsfl(t) in Eq. (10) is given as

7 Bhw
T inysa ) = / w) coth(—5=)
0
L L
% |eosh(20)C(w, ) S (im = jm)* +2 D (im = jun) i — ) cos(ots)}
m=1 m=1,n=2
(matn)
L
2 . 2 wt, . . N}
— —sin (?) s1nh(2a){ cos(w(t —2a))[ Y (im — Jm)” cos(Wteorr1)
w
m=1
L L
+ 2 Z ('Lm - jm)(ln - ]n) Cos(wtCOT‘TQ)] + SlIl t - 2CL Z Sln( tCOT?“l)
m=1,n=2 m=1
(matn)

L
+ 2 Z (Zm - ]m)(ln - ]n) Sin(wtCOTT‘Q)]} 9 (16)

m=1,n=2

(m#n)

where we have defined two new time scales wteorr1 = 2k.r, and witeorra = k.(ry + 74,) which are due to the non-
stationary effects introduced by the squeezed thermal bath. Here we have for simplicity taken the squeezed bath
parameters as

cosh (2a(w)) = cosh(2a), sinh (2a(w)) = sinh(2a),
P(w) = aw, (17)

where a is a constant depending upon the squeezed bath.



B. Collective decoherence model

The reduced density matrix is given by

Plin gy (1) = expli{OF ;3 (1) = A 5 (N exp[=T5 ey P, 5,3 (0)- (18)

The superscript col is to indicate that these expressions are for the collective decoherence model and the subscript sq
indicates that the bath starts in a squeezed thermal initial state. As in the case of localized decoherence, @' and
A°°! are independent of the bath initial conditions and are given in the continuum limit (assuming a quasi-continuous
bath spectrum) by

o0 L L
ol(t) /dw[ w, t) l(z im)? = (> Jm)?]| (19)

0 m=1 m=1
A(t) = 0. (20)
The bath spectral density I(w) is as in Eq. (13). In Eq. (18), ?1)711 i sa) (t) is

(im _jm)]2

] =

1

3
I

I‘?(;}u]n}(ﬁq)( ) = /dwl(w) coth(@) lcosh(Qa)C(w,t)[
0

L
2 t
- = sin2(%) sinh(2a){ cos(w(t — 2(1))[7”2:1(2',” — Jm)? cos(Wteorr1)
L L
+ 2 Z (i = Jm) (in — Jn) cOS(Wteorr2)] + sin(w(t — 2a)) Z — Gm)? sin(Wteorr1)
m=1,n=2 m=1
(mtn)

+ 203" (i = )i — ) sin(leorr2)] | (21)

m=1,n=2

All the other terms are as defined above. On comparing Eq. (21) with (16), we find that the terms proportional to
sinh(2«), arising from the non-stationarity of the squeezed bath, are same while the terms proportional to cosh(2a)
differ from each other. For the collective decoherence model, wty, = k.7, = 0, but the two time-scales coming from
the non-stationary components of the squeezed thermal bath, i.e., wteorr1 = 2k.1y, and wteopre = k(1 + 7,) are
both non-zero, indicative of correlations induced between the qubits by the bath squeezing. For the case of zero bath
squeezing, both the Eqs. (21) and (16) reduce to their corresponding values for the case of a thermal bath [36].

III. TWO QUBIT INTERACTION

Here we specialize the general considerations of the previous section to the case of two qubits.

A. Localized decoherence model

The reduced density matrix is a specialization of Eq. (10) to the case of two qubits, say a and b. Here p?in i }(t)
would be pf; jb}(t) which represents (iq,is|Trrp* ()|ja, jb), where the states |iq) or |iy) have eigenvalues 3. We will
collectively represent the two-particle index ab by a single 4-level index according to the following scheme:

1 1 0 11 1 1 1 11

27 2 7 272 27 2 T 272
Thus there will be sixteen elements of the density matrix, which we enumerate below. They are seen to satisfy the
symmetries

= 3.

P32(t) = p33(t) = po1(t) = pio(t), (22)



where * in the superscript indicates complex conjugation, and of course the first and last equality follow from the

hermiticity of the density operator. In the Eqgs. (22), @{{‘;n jn}(t)’ A{{Czn jn}(t) can be obtained from the Eqgs. (11),

(12), respectively, and I‘{[Cin Jnd(sq (1) from Eq. (16) and are given by

sq)

Ol (1) = Ol (1) = / dwT(w)S(w, ) cos(wts), (23)

0
A5 () = Al (1) = —/dw](w)C(w, t) sin(wts), (24)

0
912C3(t) = Gllco(t) = _9]3C2(t) = _chl (1), (25)
A (1) = Ai5(t) = —A(1) = —AG (1), (26)

and
I‘:‘S‘;(t) = /dw[(w) coth(ﬁ%) [cosh(2a)C(w, t) — % siHQ(%t) sinh(2a){ cos(w(t — 2a)) cos(wtg))wl)

+ sin(w(t — 2a)) sin(wtgi)rrl)}} , (27)

for all the above combinations. In the above equations, wt, stands for k - rq; while wtgzdr

the above cases, the correlation time wteorr2 = k.(rq + 75) is absent. It can be seen that

pzsza(t) = pzsza(o)v (a =0,1,2, 3)7 (28)

from which follows that the population remains unchanged. This is a consequence of QND nature of the S — R
interaction. Also,

1 = 2k - rp. Interestingly, for

p31(t) = p15(t) = pia(t),

P50(t) = po3(t) = pos(t), (29)
i.e., these components are purely real. In Eqs. (29), ©'(t), A'°(¢) and 'S (¢) are given by
Ol (t) =0 = Al°(1), (30)

and

F;Zgo(t) = F;Z,og(t):

= 7dwl(w) coth(@) 2 cosh(2a)C(w, t)[1 + cos(wts)] — % sin2(%t) sinh(2«)
0
X { cos(w(t — 2a))[cos(2k - 74) + cos(2k - 1) + 2cos(k - [ra + 7b))]
+ sin(w(t — 2a))[sin(2k - ra) + sin(2k - 7p) + 2sin(k - [ra + rb])]H , (31)
F;Z,Ql(t) = Fé((:],12(t)
= /Oodwl(w) coth(@) 2 cosh(2a)C(w, t)[1 — cos(wts)] — % sin2(%t) sinh(2«)

x { cos(w(t — 2a))[cos(2k - 74) + cos(2k - 13) — 2cos(k - [ra + 75])]

+ sin(w(t — 2a))[sin(2k - 4) + sin(2k - ) — 2sin(k - [ra + rb])]H . (32)



Thus we see that the Eqs. (31), (32), depend on both 2k -7, and 2k-ry,, and wteerr2 which is as defined above. Further,

p31(t) = p13(t) = poa(t) = p3p(t), (33)

where * in the superscript indicates complex conjugation. In Eqgs. (33), ©'°(¢), A'°(t) are

Of (t) = 05 (t) = /dw[(w)S(w, t) cos(wts), (34)

0
A () = Al (t) = /de(w)C(w, t) sin(wts), (35)

0
911C3(t) = 912C0(t) = _Glgcl(t) = _chz(t)a (36)
AT () = AG (1) = —A5 (1) = —Ag(0), (37)

and
I‘Lﬁl(t) = /dw[(w) coth(@) [cosh(2a)C(w, t) — % sin2(%t) sinh(2a){ cos(w(t — 2a)) cos(wtg)rrl)
0

+ sin(w(t — 2a)) sm(mggrl)}] , (38)

for all the above combinations. In the above equations, wty stands for k - 74, while wtg)zdﬂ = 2k - r,. Interestingly,

for the above cases, the correlation time wteorra = k.(1q + 73) is absent. The Eqgs. (22), (28), (29) and (33) cover all
the density matrices for the two-qubit localized decoherence model. It can be shown from these results that with the
increase in temperature, as also evolution time ¢ and bath squeezing «, the system becomes more mixed and hence
looses its purity.

B. Collective decoherence model

The reduced density matrix is a specialization of Eq. (18) to the case of two qubits, say a and b. The notations
are as before.

P2(t) = p23(t) = pa () = pi5(t), (39)

where * in the superscript indicates complex conjugation. In the Eqgs. (39), ©!(t), A®!(t) (= 0) are obtained from
the Egs. (19), (20), respectively and T'<°!(¢) from Eq. (21). They are given by

(1) = O (1) = / AT ()8 (w, 1), (40)
0
O3 (t) = 53 (1) = —O (1) = —OL (1), (41)

and I‘ggl(t) is as in Eq. (27) for all the cases in Eq. (39), with wtcorr1 and wieorro as defined there. As before,

pzsza(t) - pzsza(o)v (a =0,1,2, 3) (42)

This is indicative of QND nature of the S — R interaction which preserves the population. Also,

P31 (t) = p15(t) = pia (D),
P30(t) = po3(t) = pia (1) (43)



In the Eqs. (43), ©!(t), A«!(t) and T\ (t) are given by

O%!(t) = 0 = A«(t), (44)
and
Tslo(t) = Togos(t)
_ 7dw1( )coth(ﬁz ) 4cosh(2a)0(w,t)—%sinQ(%t)sinh@oa)
o
X { cos(w(t — 2a))[cos(2k - 1) + cos(2k - 13) + 2 cos(k - [ra + 7b])]
+ sin(w(t - 20))[Sin(2k o) +sin(2k - 7) + 2sin(k - [ra + 1)) ] (45)

1—‘53321(15) = ngllz (t)

= 2/ coth ﬁl;w.)) sin2(%t) sinh(2a)
X [cos(w(t —2a))[cos(2k - rq) + cos(2k - 1) — 2 cos(k - [rq + 75))]
+ sin(w(t — 2a))[sin(2k - r4) + sin(2k - 1) — 2sin(k - [rq + 75))]] - (46)

It is interesting to note from Eqgs. (43), (44) and (46), that for the case of a purely thermal bath with zero bath
squeezing, F§S}21(t) = Fgg}m(t) = 0, thereby implying that for these cases, the corresponding density matrix elements
do not decay even though they are interacting with the bath. Also, since in a QND S — R interaction, the diagonal
terms p1,1 and p2o do not change, this implies that any state «|1) + 3|2) in the subspace span {|1),]2)} remains
invariant, thereby leading to a decoherence-free subspace. Further,

p31(t) = p13(t) = poo(t) = p35(t), (47)

where * in the superscript indicates complex conjugation. In Eq. (47), ©°!(t), A<!(t) (= 0) are

057 (t) = O3 (t) = / dwl(w)S(w, ), (48)
0
(__)col( ) @col( ) _@col( ) _@col( ) (49)

and IEN(t) is as in Eq. (27), with 2k - r, — 2k - 7. The Egs. (39), (42), (43) and (47) cover all the density matrices
for the two-qubit collective decoherence model. As with the localized case, it can be seen that with the increase in
temperature, as also evolution time ¢ and bath squeezing «, the system becomes more mixed and hence looses its
purity.

IV. SYMMETRIES IN THE DYNAMICAL SYSTEM

In this section we consider the two qubit evolution, developed in the previous section from the point of view of
some fundamental symmetries. This enables us to view the dynamics from a fresh perspective and is also interesting
from its own point of view.

Employing the two-particle index notation used in the previous section, we find that the transformation connecting
the initial and final density operations can be given by the following operation

Pab(t) = Lap(t)pan(0). (50)

The non-trivial aspect of the dynamics that this relation represents is that here £ represents, not a matrix, but a
two-dimensional array, and the multiplication is done element-wise.



The most general array £ that satisfies this property, following only from the hermiticity of p(0) and p(t) is:

1 C1 Co C3
i 1 ¢eq s
* *

5 ci 1 cs
* * *

c3 c5 cg 1

L= (51)

However, further constraints on the structure of £ appear because the dynamical evolution due to QND interaction
respects spin-flip symmetry (see Eq. (56) below), which is for example (given for clarity, in the single-qubit notation):

L1

2

=L

1.1 111 1. (52)
272 272 20 2

=

)

This has the effect that cs and ¢4 are real, which we denote by 1 and rs respectively. Further co = ¢ and ¢; = ¢f.
These are seen by noting that:

3 = Leg=L,,=Lye=L;,=c3,
ca = Lsa=L,=Las=LS,=cy,
2 = Lea=L,,=Lys=L5, = c5,
a1 = Les =L, =Lga=L,, = cg, (53)

where the first and third equalities in each equation follow from hermiticity. Accordingly, Eq. (51) can be rewritten
as:

1 C1 Co T1
* *
g 1 rm

L= cs ro 1 i |’ (54)
T C2 C1 1
Consider the operator £ corresponding to L; 1., defined by:
L= Lisli)kl, (G h=0,1,23). (55)
gk
The spin-flip symmetry can be represented by
it =L, S=0,00,. (56)

Since ¥ = (—io,) ® (i0,), the above spin-flip symmetry may be described as a rotational symmetry, with angle 7/2
(resp. 3mw/2) in the first (resp. second) qubit coordinate about the z-axis.

V. AN APPLICATION TO QUANTUM COMMUNICATION: QUANTUM REPEATERS

We now make an application of the two-qubit reduced dynamics obtained from QND system-reservoir interaction to
a quantum repeater [34], used for quantum communication over long distances. The efficiency of quantum communi-
cation over long distances is reduced due to the effect of noise, which can be considered as a natural open system effect.
For distances much longer than the coherence length of a noisy quantum channel, the fidelity of transmission is usually
so low that standard purification methods are not applicable. In a quantum repeater set-up, the channel is divided
into shorter segments that are purified separately and then connected by the method of entanglement swapping, which
is the quantum teleportation [40] of entanglement. This method can be much more efficient than schemes based on
quantum error correction, as it makes explicit use of two-way classical communication. The quantum repeater system
allows entanglement purification over arbitrary long channels and tolerates errors on the percent level. It requires a
polynomial overhead in time, and an overhead in local resources that grows only logarithmically with the length of
the channel.

Here we consider the effect of noise, introduced by imperfect local operations that constitute the protocols of
entanglement swapping and purification [35], on such a compound channel, and how it can be kept below a certain
threshold. The noise process studied is the one obtained from the two-qubit reduced dynamics via a QND interaction,
instead of the depolarizing noise considered in [34]. A detailed study of the effect of the two-qubit noise on the
performance of a quantum repeater is underway and will be reported elsewhere. Here we treat this problem in a
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FIG. 1: Fidelity (with respect to the Bell state |00) — [11)) as a function of time for a two-qubit system interacting with its
environment via a QND interaction. The bold curve corresponds to a finite temperature and no squeezing (7' = 4, « = 0); the
small-dashed curve corresponds to zero temperature but finite squeezing (7" = 0, & = 2); the large-dashed curve corresponds to
finite temperature and squeezing (7' = 4, « = 2). For sufficiently large time, the fidelity approaches 1/ V2 7 0.707.

simplified fashion, and study the applicability and efficiency of entanglement purification protocols in the situation of
imperfect local operations.

A quantum repeater involves the two tasks of entanglement swapping, involving Bell-state measurements, and
entanglement purification, involving CNOT gates. The Bell-state measurement may be equivalently replaced by a
CNOT followed by a projective single-qubit measurement. In entanglement swapping, two distant parties initially not
sharing entanglement with each other, but sharing entanglement separately with a third party, become entangled by
virtue of a multi-partite measurement by the third party on the latter’s two halves of entanglement. Entanglement
purification involves two parties employing local operations and classical communication (LOCC) to improve the
fidelity F' of Einstein-Podolsky-Rosen (EPR) pairs they share, with respect to a maximally entangled state. The local
operations involve two-qubit gates such as the CNOT operation, followed by single qubit measurement, and a possible
discarding of an EPR pair. Provided F > 0.5, and at the cost of losing shared (impure) entanglement, the two parties
can increase the fidelity of the remaining shared entanglement to

F2+[(1-F)/3)?

F = o pra P 3 £ (59— F)

(57)

where F and F’ are, respectively, the input and output fidelities (with respect to a Bell state) of the entanglement
purification protocol proposed by Bennett et al. [35].

We consider two repeaters in a realistic situation where they are well separated and hence lie in the localized
regime of our model. If they initially share a Bell state 1)) = (1/3/2)(|00) — [11)) = (1/v2)(]g) — |e)), a QND
interaction will asymptotically drive the state to the maximally mixed state with support in span{|g),|e}}, i.e.,

pr = (1/2)(lg){(g] + le){e|]). The asymptotic fidelity is given by F = +/{(¢|p,|¢p) = % ~ 0.707, a pattern evident
from Figure 1. A similar result of course can be given for the other Bell states. Since this value exceeds 0.5, pairs
of qubits that start out in a maximally entangled state can always be distilled via the quantum repeater scheme. In
all the figures in this article, we consider the initial state to be an equal superposition state, which can be obtained
by applying H ® H on the state |0) = | — %, —%>, where H is the Hadamard transformation. The figure shows that
environmental squeezing, like temperature, impairs fidelity, and can thus not be used to counter thermal effects. This
concurrent behavior of squeezing and temperature for QND type of interactions is mirrored also in phase diffusion

[37] and the evolution of geometric phase [38].

VI. CHARACTERIZATION OF MIXED STATE ENTANGLEMENT THROUGH A PROBABILITY
DENSITY FUNCTION

As mentioned in the introduction, it is important to determine the entanglement in the two qubit system, if it is
to be of utility in quantum information processing. There is, however, no straightforward way of determining the
entanglement when the system is in a mixed state since, as is well known, entanglement, as an observable, cannot be
represented by a linear hermitian operator. Indeed, it is impossible to capture the information on the entanglement
in a mixed state by a single parameter [29], notwithstanding the fact that useful benchmarks such as concurrence and
negativity exist . Thus , for instance, negativity and concurrence are not relative monotones.
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For this reason, we employ a recently proposed description of MSE via a probability density function. We also
determine the concurrence (negativity for a state can never exceed its concurrence), and show it along with the PDF,
for comparison, and to display the extent to which it captures the information on the entanglement in the state.

Here we briefly recapitulate the characterization of mixed state entanglement (MSE) through a PDF as developed
in [33]. The basic idea is to express the PDF of entanglement of a given system density matrix (in this case, a
two-qubit) in terms of a weighted sum over the PDF’s of projection operators spanning the full Hilbert space of the
system density matrix. Consider first a system in a state which is a projection operator of dimension d. The pure
states correspond to d = 1, and the completely mixed states to d = 4. The PDF of a system in a state which is a
projection operator p = ﬁHM of rank M is defined as:

Puy (€)= L dﬂffli(? =4

where f dH,, is the volume measure for Hy,,, which is the subspace spanned by IIj;. The volume measure is
determined by the invariant Haar measure associated with the group of automorphisms of f dH,,, modulo the
stabilizer group of the reference state generating Hr,,. Thus for a one dimensional projection operator, representing
a pure state, the group of automorphisms consists of only the identity element and the PDF is simply given by the
Dirac delta. Indeed, if p = II; = |¢) (3|, the PDF has the form P,(£) = (€ — &) thereby resulting in the description
of pure state entanglement, as expected, by a single number. The entanglement density of a system in a general mixed
state p is given by resolving it in terms of nested projection operators with appropriate weights as

p = ()\1 — )\2)]:[1 + (/\2 — )\3)H2 + o ()\N,1 — /\N)HNfl + AnIly

N
M=1

(58)

where the projections are II; = Z;Ai1 [t;) (], with M = 1,2,..., N and the eigenvalues A\; > X2 > ..., ie., the
eigenvalues are arranged in a non-increasing fashion. Thus the PDF for the entanglement of p is given by

N
Po(€) = ) wuPu, (£), (60)
M=1

where the weights of the respective projections Pry,, (£) are given by was = Ay /A1. For a two qubit system, the density
matrix would be represented as a nested sum over four projection operators, Iy, I, I3, II4 corresponding to one,
two, three and four dimensional projections, respectively, with II; corresponding to a pure state and I14 corresponding
to a a uniformly mixed state, is a multiple of the identity operator. The most interesting structure is present in Ils,
the two-dimensional projection, which is characterized by three parameters, viz. E.usp, the entanglement at which
the PDF diverges, Enaz, the maximum entanglement allowed and Pa(Epnaz), the PDF corresponding to &,4.- The
three dimensional projection Il is characterized by the parameter £, which parametrizes a discontunity in the
entanglement density function curve. By virtue of the convexity of the sum over the nested projections (59), it can
be seen that the concurrence of any state p is given by the inequality C, < (A1 — A2)Crr, + (A2 — A3)Cr,. Thus while
the concurrence for a three and four dimensional projection is identically zero, through the PDF one is able to make
a statement about the entanglement content of states which span these spaces. Also, as pointed out in [33], in the
case of NMR quantum computation, concurrence and negativity are zero, whereas the PDF is able to elucidate the
role of entanglement utilized by the NMR operations. These features as well as the fact that the PDF (60) enables us
to study entanglement of a physical state by exploiting the richness inherent in the subspaces spanned by the system
Hilbert space makes the PDF an attractive statistical and geometric characterization of entanglement. We provide
an explicit illustration of this in the next section.

VII. ENTANGLEMENT ANALYSIS

In this section, we will study the development of entanglement in the two qubit system, both for the localized as
well as the collective decoherence model. Recall that concurrence [30] is defined as

€ = max(0, VA = vd2 = v/As — /M), (61)

where \; are the eigenvalues of the matrix
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FIG. 2: Concurrence C (61) as a function of time of evolution ¢t at 7' = 5.0 and bath squeezing parameter o (17) equal to 0, 0.5,
1.0, corresponding to the bold, dashed and dotted curves, respectively. Figure (a) refers to the localized decoherence model
and (b) the collective decoherence model.

with p = 0y ® oyp*oy ® 0y and oy is the usual Pauli matrix. C is zero for unentangled states and one for maximally
entangled states. In the above expression, it is implicitly assumed that p is expressed in a seperable basis.

In figure (2 (a)), we plot the concurrence (61) with respect to time for the case of the localized decoherence model,
while figure (2 (b)) depicts the temporal behavior of concurrence for the collective decoherence model, for different
bath squeezing parameters. In all figures in this article, kri2 is set equal to 1.1 for the localized decoherence model
and 0.05 for the collective model. It is clearly seen from the figures that the two qubit system is initially unentangled,
but with time there is a build up of entanglement between them as a result of their interaction with the bath. Also the
entanglement builds up more quickly in the collective decoherence model when compared to the localized model. This
is expected as the effective interaction between the two qubits is stronger in the collective case. Another interesting
feature that can be inferred from figure (2 (a)) is the phenomena of entanglement birth and death [41] in the localized
decoherence model. Figure (2 (b)) exhibits entanglement death followed by revival, in the collective decoherence
model. It is clear from the figures that bath squeezing retards the dynamical generation of entanglement. However,
interestingly, it is observed that the disentanglement time is the same for different bath squeezing parameters, as in
figure (2 (b)), while it varies for the independent decoherence model, figure (2 (a)). This indicates a kind of robustness
of the phenomena of disentanglement with respect to bath squeezing, in the collective regime.

There have been a number of investigations in the phenomena of entanglement sudden death and revival. In [42]
a study of entanglement sudden death and revival was made between two isolated atoms each in its own lossless
Jaynes-Cummings cavity, while in [43] the evolution of entanglement was studied via information exchange between
subsystems rather than decoherence. Thus these studies revealed features of the dynamics of entanglement generation
in the absence of decoherence. In another study [44] was revealed the interesting effect that irreversible spontaneous
decay, due to interaction with a vacuum bath, can have on the revival of entanglement between two qubits with the
collective decoherence regime being most conducive to the revival of entanglement. Even though this work involved
a dissipative system-bath interaction, this conclusion is supported here, for QND interactions, as the generation of
entanglement is seen to be much more effective in the collective regime when compared to the independent one. The
effect of non-Markovian influences, due to a dissipative interaction, on the dynamics of entanglement between two
qubits was studied in [45] for the localized decoherence model and in [46] for the collective regime. Here our study
concentrates on QND interactions and localized as well as collective regimes are treated under a common footing.

Now we take up the issue of entanglement from the perspective of the PDF as in Eq. (60). In figures (3 (a)) and
(b), we plot the weights w1, wa, w3 and wy (60) of the entanglement densities of the projection operators of the various
subspaces which span the two qubit Hilbert space with respect to T for the localized and collective decoherence models,
respectively. As can be seen from both the figures , with increase in temperature 7', the weight wy, depicting the pure
state component monotonically decreases, while the other weights start from zero at 7' = 0 and increase. Eventually,
the weight w, depicting a maximally mixed state would be expected to dominate, though for the parameter range
used in the plots, this feature is not seen. This feature of the dynamics of the reduced two-qubit system, specially in
the case of the collective decoherence model, has an interesting application which will be discussed in detail in Section
VIII where it will be seen to obey an effective temperature dependent Hamiltonian, bringing out the persistence of
entanglement even at finite temperatures. In the case of the collective decoherence model, the weights ws and w3 have
a greater growth than that for the localized decoherence model, depicting the greater entanglement development in
the collective model as is also borne out by the concurrence plots in figure (2).
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FIG. 3: The weights (60) as a function of 7', with an evolution time ¢ = 5 and bath squeezing parameter « (17) equal to 0.2.
Figure (a) refers to the localized decoherence model and (b) the collective decoherence model. In both the figures, the bold
curve corresponds to the weight w1, while the large-dashed, small-dashed and dotted curves correspond to the weights w2, w3
and wa, respectively.

As explained in Section VI, the characterization of MSE for a two qubit system via the PDF involves the distri-
bution functions of four projection operators, Iy, Ily, II3, II; corresponding to one, two, three and four dimensional
projections, respectively. These will be represented here as Pi1(E), P2(E), Ps(E) and Pa(E), respectively. Also, as
discussed above, P4(€) would be universal for the two qubit density matrices and would involve the Haar measure on
SU(4) [33, 47].

Consideration of the P»(€) and P3(€) density functions for some representative states of the two qubit system, both
for the localized as well as collective decoherence models, enables us to compare the entanglement in the respective
subspaces of the system Hilbert space. The details of these density functions for different parameters, pertaining to
the two-qubit reduced dynamics, have been presented in [48].

Figures (4 (a)) and (b) give the full density function P(&) for the localized and collective decoherence models,
respectively, with a bath evolution time ¢ = 10.0 and 7" = 50.0. For these conditions, the value of concurrence (61)
is 0, which would indicate a complete breakdown of entanglement. This would be expected as with the increase in
the bath temperature T, the effect of entanglement would be destroyed quickly. This is partially borne out by the
fact that for this case Cr, = 0. However, as seen from figure (4 (b)), the PDF for the full density function still
exhibits a rich entanglement structure, coming principally from the contributions from the one and three dimensional
projections. In contrast, figure (4 (a)), for the localized decoherence model, exhibits the Haar measure on SU(4) and
thus represents a maximally mixed state.

Figures (5) represents the full density function P(€) for the localized decoherence model with an evolution time
t = 10.0, T = 20.0 and bath squeezing parameter « equal to 0.2, figure (a), and equal to 0 in figure (b). This case
is interesting since it is analogous to that discussed in [33] for NMR quantum computation where concurrence would
be zero, and the excess of entangled states over the unpolarized background (exhibited by the uniform distribution
coming from the density function Il4, related to the fourth dimensional projection) is exploited as a resource allowing
for non-trivial gate operations, thus depicting pseudopure states over the four dimensional background, with the excess
being the “deviation density matrix”. A comparison of the two figures shows that the generation of entanglement is
greater for the case of zero bath squeezing, as in figure (b), when compared to the case of finite bath squeezing, figure

(a).

VIII. EFFECTIVE TEMPERATURE DEPENDENT DYNAMICS IN THE COLLECTIVE
DECOHERENCE MODEL: A BRIEF DISCUSSION

In a QND S — R interaction, the reduced density matrix of the system does not approach a unique distribution
asymptotically [5]. It turns out that the PDF for the full density function (for the collective decoherence model)
exhibits a rich entanglement structure, coming principally from the contributions from the one and three dimensional
projections which carry equal weights. This feature is seen to persist for higher temperatures and evolution times, for
the collective decoherence model, with the weights of the subspaces spanned by the four projection operators of the
PDF remaining intact. From this emerges the fact that for the collective decoherence model, studied here, as the effect
of the bath on the system increases, the PDF instead of becoming uniform, as expected, gets distributed between
the subspaces spanned by the one and three dimensional projection operators suggesting a tendency of the system
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FIG. 4: The full density function P(£) (60) with respect to the entanglement £ for an evolution time ¢ = 10.0, 7" = 50.0
and bath squeezing parameter « equal to 0.2. Figure (a) refers to the localized decoherence model and (b) to the collective
decoherence model.
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FIG. 5: The full density function P (&) (60) with respect to the entanglement £ for the localized decoherence model with an
evolution time ¢ = 10.0, 7" = 20.0 and bath squeezing parameter o equal to 0.2 (figure (a)) and 0 (figure (b)).

to resist randomization. We may ask if the description of the mixed state entanglement in terms of the probability
density function which we employ here can throw, as a nontrivial application, light on the effective dynamics of the
two qubit system. It has been seen in earlier studies that such a state of affairs would be encountered if the effect of
the bath is not a counterpart of the collision term (in a Boltzmann equation), but is more like a Vlasov term, causing
long range mean field contributions [49]. We analyse our system in detail below.

Indeed, from the numerical results, it is not difficult to see that the effect of the bath can be mapped to a T dependent
effective hamiltonian whose energy eigenvalues scale with temperature. The eigenstates are given by the standard Bell
states with the ground state being |By) = %(|Ol> +110)) while the orthogonal singlet state (|By) = \%(|Ol> —[10)))

is the highest energy state, and is practically decoupled (with no population). The next excited state is degenerate,
with two Bell states (|Bs) = %(|OO> —|11)), |Bs) = %(|00) +]11))) spanning the two dimensional subspace. Thus

it follows that the effective temperature dependent hamiltonian is given by

4

Her =Y Ei(B)|Bi)(Bil,

i=1

where |By), |B2)(Ba| + |Bs)(Bs| = |00)(00]| 4+ |11)(11] and | By4) are the Bell states, as defined above, with eigenvalues
A1 = 0.5, Ay = A3 = 0.25 and Ay =~ 0, respectively. Since the Bell states are completely entangled, the effective
hamiltonian has no linear terms in the qubit polarizations and has the form

= 2L (G + 20012, (63)

in writing which the singlet term has been dropped, as it is energetically very far separated from the other three levels.
The above analysis places in perspective the surprising result that although the system is evolving, through the effective

(1~ (-0 1 oo — o 0o2)) +

Hepy ~
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Hamiltonian, the entanglement density function remains practically restricted to the 3-dimensional subspace, with a
large contribution from a Bell state, as the signal with the 3-dimensional background acting as noise. The restriction
of the effective dynamics from four to three levels is also seen in the case of two qubit evolution via a dissipative
S — R interaction with a thermal bath initially at T = 0 [50], for the collective decoherence model. However, there
the reason for it is simply given by the fact that for the above conditions, the coupling term connecting one of the
levels to the others goes to zero, thereby reducing the dynamics to that between three levels.

An interesting analog of the discussion in this Section comes in the work presented in [51]. There it was shown by
the authors that for the scenario where there exists a system consisting of three subsystems with the first and the third
interacting with each other via their interactions with the mediating second subsystem, a signature of entanglement
between the first and the third subsystems is the degeneracy in the ground state of the system. Here we have a similar
situation with the two qubits interacting with a bath which in turn mediates the inter-qubit interaction. From our
effective Hamiltonian H. sy, we see that the first excited state (not the ground state), spanned by the Bell states | Bz)
and |Bs), is degenerate and the system exhibits a strong entanglement even at finite temperatures. Another work
by the same authors [52], studied the persistence of mixed state entanglement at finite 7. This would be important
as quantum effects can be expected to dominate in regions where entanglement is nonzero. They considered the
transverse Ising model and studied the two-site entanglement, using concurrence as the entanglement measure, and
found appreciable entanglement in the system at finite 7" above the ground state energy gap, one of their motivations
being the influence of nearby critical points to the finite 7" entanglement. The persistence of entanglement in a two-
qubit system interacting with the bath via a purely dephasing interaction (QND) would suggest a broad applicability
of these concepts, thereby highlighting the interconnection of ideas of quantum information to quantum statistical
mechanics.

IX. CONCLUSIONS

In this article, we have analyzed in detail the dynamics of entanglement in a two-qubit system interacting with its
environment via a purely dephasing QND S — R interaction. The system and reservoir are initially assumed to be
separable with the reservoir being in an initial squeezed thermal state. Since the resulting dynamics becomes mixed,
in order to analyze the ensuing entanglement, we have made use of a recently introduced measure of mixed state
entanglement via a PDF. This enables us to give a statistical and geometrical characterization of entanglement.

After developing the general dynamics of N qubits interacting with their bath (reservoir) via a QND S — R
interaction, we specialized to the two-qubit case for applications. Due to the position dependent coupling of the qubits
with the bath, the dynamics could be naturally divided into a localized and collective decoherence regime, where in
the collective decoherence regime, the qubits are close enough to feel the bath collectively. We analyzed the open
system dynamics of the two qubits, both for the localized as well as the collective regimes and saw that in the collective
regime, there emerges the possibility of a decoherence-free subspace for the case of zero bath squeezing. Interestingly,
the dynamics was found to obey a non-trivial spin-flip symmetry operation. The existence of the nontrivial spin-
flip symmetry would explain the emergence of a decoherence-free subspace (DFS) [53], thereby providing a concrete
instance of a DFS. We made an application of the two-qubit system to a simplified model of a quantum repeater,
which can be adapted for quantum communication over long distances.

We then made an analysis of the two-qubit entanglement for different bath parameters. We analyzed both concur-
rence as well as the PDF by finding the entanglement content of the various subspaces that span the two-qubit Hilbert
space. The analysis of concurrence revealed the interesting feature of so called entanglement birth and death in the
localized decoherence model, while the collective model saw a subsequent revival of entanglement. Reservoir squeezing
was seen to hinder the generation of entanglement, though the process of disentanglement, as seen from concurrence,
was robust, in the collective regime, against the effects of squeezed bath. Although the PDF agrees qualitatively in
its predictions with concurrence, it is able to extract more information out of the system as a result of its statistical-
geometrical nature. Thus we were able to consider an example analogous to NMR quantum computation, wherein
the concurrence would be zero, and the excess of entangled states over the unpolarized background is exploited as
a resource allowing for non-trivial quantum information processing. For the collective decoherence model the PDF
for the full density function exhibits a rich entanglement structure, coming principally from the contributions from
the one and three dimensional projections which carry equal weights thereby suggesting a tendency of the system
to resist randomization. This feature is seen to persist even for higher temperatures and evolution times with the
weights of the subspaces spanned by the four projection operators of the PDF remaining intact. The probability
density description of entanglement sheds light on the underlying dynamics thereby enabling us to give an effective
T dependent dynamics in the collective decoherence regime. A comparison of this with some related works suggests
the applicability of quantum information theoretic ideas to quantum statistical mechanical systems.
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