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Abstract. The paper presents a theoretical model to compute the end depth of

a free overfall in steeply sloping rough rectangular channels. A momentum

equation based on the Boussinesq approximation is applied to obtain the

equation of the end depth. The effect of streamline curvature at the free surface

is utilized to develop the differential equation for the flow profile upstream of

the free overfall of a wide rectangular channel. As direct solutions for the end

depth and flow profile cannot be obtained owing to implicit forms of the

developed equations, an auto-recursive search scheme is evolved to solve these

equations simultaneously. A method for estimation of discharge from the

known end depth and Nikuradse equivalent sand roughness is also presented.

Results from the present model correspond satisfactorily with experimental

observations except for some higher roughnesses.

Keywords. Brink depth; end depth; free overfall; one-dimensional flow; open

channel flow; steady flow.

1. Introduction

In free overfalls, a significant feature of the flow is a departure from the hydrostatic

pressure distribution caused by the pronounced accelerated downflow in the vicinity of the

brink. Pioneering experimental investigations on free overfall were carried out by Rouse

(1936) to determine the end-depth ratio (EDR� end depth=critical depth), which was

determined to be 0.715 in mildly sloping rectangular channels. Since then numerous

investigations on free overfall in channels of various shapes have been reported (Fathy &

Shaarawi 1954; Diskin 1961; Smith 1962; Rajaratnam & Muralidhar 1964, 1968, 1970;

Clarke 1965; Markland 1965; Anderson 1967; Strelkoff & Moayeri 1970; Baure & Graf

1971; Ali & Sykes 1972; Kraijenhoff & Dommerholt 1977; Chow & Han 1979; Naghdi &

Rubin 1981; Hager 1983; Keller & Fong 1989; Ferro 1992, 1999; Montes 1992; Marchi

1993; Gupta et al 1993; Murty 1994; Anastasiadou-Partheniou & Hatzigiannakis 1995;

Clausnitzer & Hager 1997; Davis et al 1998, 1999; Dey 1998). The effect of bottom

roughness on rectangular free overfalls was experimentally studied by Delleur et al (1956)
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and Rajaratnam et al (1976). Mathematical solutions of the roughness effect on rectangular

and circular overfalls were put forward by Dey (1998) for mildly sloping channels. It is

important to point out that most of the theoretical analyses of free overfall require an

empirical pressure coefficient and a simplification based on the pseudo-uniform flow

concept, where the frictional resistance is balanced by the component of gravity force in

positively sloping channels. This assumption is questionable when the frictional resistance

is substantial. However, a theoretical solution has yet to be achieved for the roughness

effect on free overfall in steeply sloping rectangular channels.

This paper presents a momentum approach based on the Boussinesq assumption to

analyse the rectangular overfall in steeply sloping rough rectangular channels. This method

eliminates the need for an empirical pressure coefficient and the simplification based on the

pseudo-uniform flow concept. The present study is an extension of the work of Dey

(1998a) on steeply sloping rough rectangular channels.

2. Governing equations

The one-dimensional momentum equation between the sections at x � ÿL (upstream

section having hydrostatic pressure) and x � ÿx for a steeply sloping rough rectangular

channel (figure 1) can be written as,

Po ÿ Pÿ �Fb�x�ÿL
x�ÿx �W sin � � �Q��V ÿ �oVo�; �1�

where P � pressure force, Fb � frictional resistance, W � gravity force of fluid between

sections at x � ÿL and x � ÿx, � � inclination of the channel bed with the horizontal, � �
mass density of fluid, Q � discharge, � � Boussinesq coefficient, and V � mean flow

velocity. Subscript o refers to the section at x � ÿL . As � varies from 1.01 to 1.12 in

straight channels (Chow 1959), for simplicity � � �o � 1 is assumed in this analysis.

In a curvilinear flow with constant vertical acceleration ay, the intensity of pressure p at

any depth y is obtained from the integration of the Euler equation, that is

ÿ @

@y
� p� �gy� � �ay; �2�

where g � gravitational constant. According to the Boussinesq theory, the curvature of

streamline is assumed to vary linearly with depth (Jaeger 1957) owing to the small

Figure 1. Definition sketch of a free overfall.
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curvature in the present case. Thus, the radius of curvature r of a streamline at y is

1

r
� y

h

� � 1

rs

� �

; �3�

where h � flow depth, and rs � radius of curvature of the free surface. As the free surface

curvature is small, the radius of curvature of the free surface can be approximated as

1=rs � d2h=dx2. Assuming the flow velocity at any depth being the mean velocity V, the

vertical acceleration ay is equal to ky. Here, k is expressed as

k � ay=y � �V2=h��d2h=dx2�: �4�

Using ay � ky, (2) is integrated within y � y to y � h to derive the equation for the pressure

distribution as

p � �g�hÿ y� � 0:5�k�h2 ÿ y2�: �5�
Hence, the above equation does not require any pressure coefficient being determined

empirically. The pressure force P at x � ÿx for a rectangular channel is

P � t

Z h

0

pdy � �th2
g

2
� k

h

3

� �

; �6�

where t � channel width. At x � ÿL , the well-known hydrostatic pressure force Po is

Po � �gt�h2o=2�: �7�

The frictional resistance Fb for a channel reach within x � ÿL to x � ÿx is expressed by

�Fb�x�ÿL
x�ÿx � t

Z ÿL

ÿx

�dx; �8�

where � � boundary shear stress of the channel. It is given by

� � � f=8��V2; �9�
where f � friction factor. Depending on the shape (facets) of the rough elements, the

roughness parameters may be numerous. However, all the roughness parameters can be

substituted by a single parameter, termed the Nikuradse equivalent sand roughness ",
considering the effect of roughness on the flow being solely in the form of increased

frictional resistance. According to Schlichting (1960), the Nikuradse equivalent sand

roughness can be expressed as

" � � exp�3:4---0:4C�; �10�
where � � roughness height, C � constant for velocity profile that is

�u=u�� ÿ 5:75 log�h=��, u � velocity profile at y, and u� � shear velocity. The ASCE

Task Force (1963) reported that for open channel roughness similar to that encountered in

pipes, resistance equations similar to those of pipe flows are adequate for the estimation of

f . Here, f is determined from the von Karman resistance formula for a complete rough

regime as

f � �2:344ÿ 2 log�"=h��ÿ2: �11�
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The gravity force of fluid between sections at x � ÿL and x � ÿx is given by

W � �gt

Z ÿL

ÿx

hdx: �12�

The continuity equation between sections at x � ÿL and x � ÿx is

Q � thoVo � thV : �13�
Using (6)±(9) and (11)±(13), and incorporating the upstream Froude number of flow Fo into

(1), yields

1

2
�1ÿ ĥ2� ÿ k

h

3g
ĥ2 ÿ F2o

8

Z ÿL̂

ÿx̂

dx̂

ĥ2�2:344ÿ 2 log�"̂=ĥ��2

� S

�1� S2�1=2
Z ÿL̂

ÿx̂

ĥdx̂ � � F2o
1

ĥ
ÿ 1

� �

; �14�

where ĥ � h=ho, L̂ � L=ho, x̂ � x=ho, "̂ � "=ho, S � bed slope of the channel (� tanÿ1 �),
and

Fo � Q=�tg0:5h1:5�: �15�

3. The end-depth ratio

The end-depth ratio (EDR), that is the ratio of end depth (he) to critical depth (hc), is

computed for a rectangular channel using the preceding equations. According to Anderson

(1967), the free surface profile is a continuous falling surface upstream and downstream of

the end section. To be more explicit, the free surface of the flow passes through the end

section having a parabolic trajectory of a gravity fall. Hence, the change of slope of the free

surface at the end section (x � 0), as was assumed by Anderson (1967), is

d2h

dx2

� �

x�0

� ÿ g

V2
e

; �16�

where subscript e refers to the end section (x � 0). Using (16), k at the end section obtained

from (4) is

ke � ÿg=he: �17�
On applying (14) to the end section (ĥ � ĥe) and replacing ke in (14), a generalized

equation for EDR is derived as

ĥ3e ÿ 3ĥe�2�F2o ÿ 2Î1 � 2Î2 � 1� � 6�F2o � 0; �18�

where ĥe � he=ho, and

Î1 �
F2o
8

Z ÿL̂

0

dx̂

ĥ2�2:344ÿ 2 log�"̂=ĥ��2
; �19�

Î2 �
S

�1� S2�1=2
Z ÿL̂

0

ĥdx̂: �20�
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In supercritical flows (which occur in steeply sloping channels i.e. S > Sc, where Sc �
critical slope), hc does not exist within the flow situation upstream of the end section,

because hc is always greater than ho. Hence, he is dependent on Fo, which is a function of S.

Therefore, he can be expressed as a function of S. Fo in (15) is divided by the expression of

the critical Froude number of flow to get the following relationship:

Fo � �hc=ho�1:5: �21�

Froude number is incorporated into the Manning formula, which is then divided by the

critical Froude number, to get

Fo � Ŝ9=20 �22�

where Ŝ � S=Sc. The expression of Sc for a wide rectangular channel is

Sc � q2n2=h10=3c �in SI units�; �23�

where q � discharge per unit width, and n � Manning roughness coefficient. It has been

shown (Rajaratnam et al 1976) that for a wide range of relative roughness, the following

relationship holds:

n � "1=6=8
���

g
p �in SI units�: �24�

The above equation, which is applicable for a uniform flow, is incorporated into (23) as a

critical flow condition to obtain

Sc �
1

64
~"1=3; �25�

where ~" � "=hc. Using (22) and (25) into (18), yields

ĥ3e ÿ 3ĥe�2�Ŝ9=10 ÿ 2Î1 � 2Î2 � 1� � 6�Ŝ9=10 � 0: �26�

In the above equation, Î1 and Î2 can be expressed as

Î1 �
Ŝ9=10

8

Z ÿL̂

0

dx̂

ĥ2�2:344ÿ 2 log�~"Ŝ3=10=ĥ��2
; �27�

Î2 � Ŝ
4096

~"2=3
� Ŝ2

� �ÿ1=2Z ÿL̂

0

ĥ dx̂: �28�

The end-depth ratio (EDR), ~he�� he=hc�, can be determined using the equation given below

~he � ĥe=Ŝ
3=10: �29�

As the variation of h with x is not known, Î1 and Î2 cannot be evaluated. Thus, the solution

of (26) is not possible at this stage.

4. The flow profile

The effect of streamline curvature at the free surface of the rectangular overfall is used to

compute the flow profile upstream of a drop structure. Using (4), (13) and (15) in (14), one
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gets

ĥ�d2ĥ=dx̂� � 3ĥ��Ŝ9=10 ÿ ~I1 � ~I2 � 0:5� ÿ 1:5ĥ3 ÿ 3�Ŝ9=10; �30�
where

~I1 �
Ŝ9=10

8

Z ÿL̂

ÿx̂

dx̂

ĥ2�2:344ÿ 2 log�~"Ŝ3=10=ĥ��2
; �31�

~I2 � Ŝ
4096

~"2=3
� Ŝ2

� �ÿ1=2Z ÿL̂

ÿx̂

ĥdx̂: �32�

Equation (30) is a second-order differential equation, which can be solved numerically by

the second-order Runge±Kutta method (Conte & de Boor 1987) reducing it into two first-

order differential equations. The required boundary conditions are dĥ=dx̂ ! 0 as ĥ ! 1

and ĥ � ĥe at x̂ � 0.

5. The discharge

The concept of free overfall is used to estimate the discharge from the known values of ~he
and ~"e. The equation of discharge in non-dimensional form is obtained from (15) as

Q̂ � 1=~"1:5; �33�
where Q̂ � Q=tg0:5"1:5, ~" � "̂e~he, and "̂e � "=he.

6. Computational scheme and results

The following steps were evolved for computation of the end depth, flow profile and

discharge using the preceding equations. The computational scheme requires the values of
~" and Ŝ as input data.

(a) Assuming Î1 � Î2 � 0 initially, ĥe is computed numerically from (26) using the Muller

method (Conte & de Boor 1987).

Figure 2. Variation of ~he with ~" for different Ŝ.
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(b) Using the known ĥe and ~I1 � ~I2 � 0, (30) is solved by the Runge±Kutta method

(McCormick & Salvadori 1964) to determine the variation of ĥ with x̂.

(c) ~I1 and ~I2 for different values of x̂ are evaluated from (31) and (32) by the Simpson's

rule (Conte & de Boor 1987) for given values of ~" and Ŝ using the computed variation

of ĥ with x̂. ~I1 and ~I2 at x̂ � ÿL̂ are equal to Î1 and Î2 respectively.

(d) A new ĥe due to finite Î1 and Î2 is computed from (26).

(e) Using new ĥe;~I1 and ~I2 for different values of x̂, the values of ĥ for different x̂ are

computed from (30). Steps (c) to (e) are repeated until two consecutive values of ĥe are

found to be equal. ~he and Q̂ are computed from (29) and (33), respectively. Step (e)

produces the data for the flow profile.

The above algorithm is known as an auto-recursive search scheme.

The variation of EDR ~he with ~" for different values of Ŝ is shown in figure 2. It is

apparent that ~he is almost independent of ~" for higher Ŝ. Nevertheless, ~he decreases slightly

Figure 3. Non-dimensional free surface profiles for F2o � 2 (i.e. Ŝ � 1:87) and
different ~".

Figure 4. The dependency of 1=Q̂ on "̂e for different Ŝ.

End depth in steeply sloping rough rectangular channels 7



with increase in ~" for lower Ŝ. Figure 3 presents the computed non-dimensional free surface

profiles for F2o � 2 (i.e. Ŝ � 1:87) and different values of ~". The dependency of 1=Q̂ on "̂e
for different values of Ŝ is presented in figure 4. The experimental data of Rajaratnam et al

(1976), summarized in table 1, agree satisfactorily with the computed results for most of

the runs. However, for some higher values of "̂e, ~he differs significantly. This is probably
experimental scatter.

7. Concluding remarks

The free overfall in steeply sloping rectangular channels (rough and wide) has been

theoretically modelled to compute the end-depth ratio (EDR) and the flow profile. An auto-

recursive search scheme has been evolved for solving the developed implicit equations

simultaneously. A method has also been presented to estimate the discharge from the

known end depth and Nikuradse equivalent sand roughness. The computational results

compare satisfactorily with the experimental observations.

The author is grateful to Bimalundu Dey for his helpful suggestions during the preparation

of the manuscript.
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