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Abstract

Negatively charged DNA can be compacted by positively charged dendrimers and the degree

of compaction is a delicate balance between the strength of the electrostatic interaction and the

elasticity of DNA. We report various elastic properties of short double stranded DNA (dsDNA) and

the effect of dendrimer binding using fully atomistic molecular dynamics and numerical simulations.

In equilibrium at room temperature, the contour length distribution P (L) and end-to-end distance

distribution P (R) are nearly Gaussian, the former gives an estimate of the stretch modulus γ1 of

dsDNA in quantitative agreement with the literature value. The bend angle distribution P (θ) of the

dsDNA also has a Gaussian form and allows to extract a persistence length, Lp of 43 nm. When

the dsDNA is compacted by positively charged dendrimer, the stretch modulus stays invariant

but the effective bending rigidity estimated from the end-to-end distance distribution decreases

dramatically due to backbone charge neutralization of dsDNA by dendrimer. We support our

observations with numerical solutions of the worm-like-chain (WLC) model as well as using non-

equilibrium dsDNA stretching simulations. These results are helpful in understanding the dsDNA

elasticity at short length scales as well as how the elasticity is modulated when dsDNA binds to a

charged object such as a dendrimer or protein.
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I. INTRODUCTION

Many fundamental biological processes of life such as DNA replication, translation and

transcription involve interaction of DNA with proteins where the elasticity of DNA is crucial

as a short segment of DNA is tightly wound around proteins. The length scales involved in

such biological processes are less than the persistence length (50 nm) of dsDNA and are of

interest to study. The advancement of micromanipulation techniques in the last decades

allows to perform manipulation experiments with single molecule DNA to understand its

mechanical properties. Elastic properties of short DNA of few 10’s of base-pairs play a

significant role in many cellular processes [1–3]. Extensive experimental work has been

done on DNA elasticity in the decade [4–8], but most studies involve long DNA of more

than few hundreds of base-pairs in length. Many cellular processes involve unzipping of

local DNA base-pairs when proteins bind to DNA with specific interactions [9, 10]. Poly

amido amine (PAMAM) dendrimers are hyperbranched polymers and can be considered as

model proteins with many protein-like structural similarities [11–13]. PAMAM dendrimers

are positively charged at neutral and low pH [14] and can bind negatively charged DNA.

Earlier we have studied the interaction of DNA with a dendrimer [15, 16] at varying pH

conditions and showed that the binding energy of the DNA-dendrimer complex increases

with the size of the dendrimer [16]. In this paper we try to understand how the elasticity of

DNA is altered while complexed with a dendrimer, which can be viewed as a model protein.

The length scale of the binding area at the DNA binding site covered by typical proteins

spans few base-pairs, which is similar to the size of dendrimers.

The end-to-end distance (R) distributions (P (R)) of semi-flexible polymers in the context

of their elasticity have been studied in the past decade extensively [17–25]. Recently both

experiments and simulations have focused on the short length scales to study the elasticity

of short dsDNA [26–29]. Mazur [30–33] has studied the elastic properties of dsDNA using

atomistic simulations based on the probability distributions of end-to-end distance, bending

angle etc. To study the effect of dendrimer binding, recent studies [34, 35] using small

angle X-ray scattering revealed that dsDNA has different bending modes depending on

the dendrimer charge density. The case of a semi-flexible polymer interacting with an

oppositely charged sphere was treated as a simple model case of DNA wrapping around
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histones, forming nucleosome core particles (NCP). This study revealed how the wrapping

propensity is influenced by the ionic strength of the solution [9, 10] and how structures

very similar to chromatin appear [36]. Understanding short length scale elastic behavior of

dsDNA is important since the local bending and unzipping of dsDNA can occur when it

binds to proteins. The length scales over which protein binds to dsDNA in a DNA-protein

complex are in the nano meter scale, which is less than the persistence length of dsDNA.

However, models based on worm-like chain (WLC) largely fails to explain elastic behavior

of dsDNA on such short length scales.

With the advance of single molecule experimental techniques like optical tweezers,

magnetic tweezers and atomic force microscopy (AFM), it has become possible to study

structural details of single DNA (both dsDNA and ssDNA) under external force at

varying physiological conditions. Several experimental and theoretical groups have studied

[5, 8, 37–42] structural transformations of DNA by external force pulling at one end and

fixing the other end of the dsDNA. Single molecule experimental studies of DNA elasticity

are explained well by worm-like-chain model [8, 43] which assumes inextensibility, isotropic

bending rigidity of polymer in the thermodynamic limit (L/Lp → ∞; where Lp is the persis-

tence length) [5, 8]. WLC theory gives the average end-to-end distance of the polymer when

stretched with a force that involves the initial contour length and the persistence length as

fitting parameters. However, the WLC model fails to explain the force-extension behavior

in the large force limit and also for short length of polymers. For example, for short DNA

molecules the WLC model is inadequate to explain the elastic behavior and gives incorrect

estimate of persistence length [26, 44], an intrinsic property of the polymer that is expected

to be independent of the contour length. In a recent study [27], it has been shown that

shorter DNA is softer than measured by single-molecule experiments. It was also shown that

the variance in end-to-end distance has a quadratic dependence on the number of base-pairs

rather than a linear dependence, a result of linear elastic rod model [44]. These failures

of the WLC are mainly due to finite length effects, boundary conditions and rotational

fluctuations at the force attachment. Some of these corrections have been incorporated

into the WLC model and led to a more general model called FWLC (Finite WLC) in ref

[45]. The finite WLC model is able to predict force-extension for a wide range of forces for

polymers with lengths ranging from less than the persistence length to infinite chain limit
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[45]. It can also include the effect of formation of a single permanent kink in the polymer.

Several researchers have studied the force-extension behavior of polymers, single and double

stranded DNA with improvements to the standard WLC model [26, 45–50] but a com-

plete understanding of the elastic behavior at various length scales is not yet well established.

In this paper, we use numerical simulations to solve the WLC model and obtain the

end-to-end distance distribution as done earlier [19]. Supported by the WLC numerical

solution, we demonstrate that the full atomic description of dsDNA can give more insight

into the elasticity at short length scales and how the elastic properties of short dsDNA

change when binding to a dendrimer. From the equilibrium contour length and bending

angle distributions of 38 base-pair dsDNA, we calculate the stretch modulus and bending

persistence length of dsDNA. The variance of the end-to-end distance has a nearly quartic

dependence on the number of base-pairs of dsDNA which has its origin in bending

fluctuations. By stretching the bare dsDNA in solvent, we calculate the force-extension

curves. The stretch modulus calculated from zero and finite-force methods is in good

agreement with experiments.

II. METHODS

All atom molecular dynamics simulations of DNA in salt solution were carried out in

equilibrium as well as in non-equilibrium. The sequence of 12 base-pair DNA used in our

simulation is d(CGC GAA TTC GCG)2, and that for 38 base-pair DNA is d(GCC GCG

AGG TGT CAG GGA TTG CAG CCA GCA TCT CGT CG)2 and was taken from our

earlier works [41, 42, 51, 52]. To study the effect of dendrimer binding on the elasticity

of DNA, we have used the G3 PAMAM dendrimer and 38 base-pair dsDNA complex at

neutral pH as reported earlier [16]. In equilibrium, 38 base-pairs dsDNA and dendrimer

bound 38 base-pairs dsDNA were simulated separately in explicit solvent. We use ff03 force

field parameters of Duan et. al. [53] to describe the bonded and non-bonded interactions for

DNA and the TIP3P model [54] for water. We have used the DREIDING force field [55] to

describe the intermolecular interaction of the dendrimer. The box dimensions were chosen

in order to ensure a minimum of 10 Å solvation shell around the DNA structure during
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all simulations. The bare DNA system is neutralized with Na+ counterions and dendrimer

bound DNA is neutralized with Na+ as well as Cl− counterions to account for the negative

charge on DNA and positive charge on dendrimer. Total system size for equilibrium

simulations is 34783 atoms for bare DNA and 179234 atoms for dendrimer bound DNA

including water and counterions. For non-equilibrium stretching of 12 base-pair DNA and

38 base-pair DNA, both strands of one end of dsDNA were pulled with an external force

which increased linearly with time. The other end of the dsDNA was held fixed. During

pulling, we measure the extension of the dsDNA as a function of the applied force. For

the stretching simulations, we have added extra water along the pulling direction to ensure

solvation of DNA even in fully stretched condition. With this, the system size of 38 base-pair

bare DNA increases to 97326 atoms. The total number of atoms including water and

counterions for the stretching simulation of 12 base-pair DNA is 27858. The system energy

was minimized by 1000 steps of steepest descent minimization followed by 2000 steps of

conjugate gradient minimization. Translational center-of-mass motions were removed after

every 1000 steps. NPT-MD was used to get the correct solvent density corresponding to

experimental condition. The long range electrostatic interactions were calculated with the

Particle Mesh Ewald (PME) method [56]. A real space cut off of 9 Å was used both for the

long range electrostatic and short range van der Waals interactions. We have used periodic

boundary conditions in all three directions during the simulation. During the simulation,

bond lengths involving bonds to hydrogen atoms were constrained using SHAKE algorithm

[57]. For the equilibrium simulation we have simulated the bare dsDNA for 85 ns and

dendrimer bound dsDNA was simulated for 70 ns. For the stretching of dsDNA, we continue

the simulation until we get a fully stretched dsDNA. The time scale of the simulation at

which we get fully stretched DNA depends on the rate of pulling. For 12 base-pair DNA

we use a pulling rate of 10−5 pN/fs which requires about 40 ns and for 38 base-pair DNA

stretching we use 10−4 pN/fs which requires 10 ns to get the DNA in the fully stretched form.

From the MD trajectories of both the bare DNA and dendrimer bound DNA simulation,

we have calculated the helix axis, end-to-end distance and contour length using Curves

algorithm developed by Skelnar and Lavery[58]. All of these parameters are calculated as

a function of each base-pair step n. Using these parameters we have analyzed the contour

length distribution P (L), end-to-end distance distribution P (R), bending angle distribution
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P (θ), variance of end-to-end distance σ2
n and compared them with those obtained from

WLC model. The WLC model is solved numerically to get P (R) and force-extension curves

for polymers of any length ranging from highly flexible (L ≫ Lp) to highly stiff (L ≪ Lp)

polymers. Force-extension curves were also obtained from MD simulations with external

force.

III. RESULTS AND DISCUSSION

A. Equilibrium properties of dsDNA

1. Contour length distribution P (L)

In equilibrium at room temperature, the instantaneous contour length (L) of dsDNA has

thermal fluctuations around its mean contour length L0. The instantaneous contour length,

L is defined as the sum of all n base-pair rises, L =
∑n

i=0 hi, where hi is ith base-pair rise

as shown in Figure 1(a). A small instantaneous fluctuation (L − L0) in contour length

around its mean value L0 generates a restoring force F in the dsDNA that is proportional to

L−L0, such that F = −γ1 (L− L0) /L0, where γ1 is the stretch modulus of dsDNA. The free

energy due to this restoring force can be obtained by integrating the force F with respect

to contour length, E(L) = γ1
2L0

(L− L0)
2. Plugging E(L) into the Boltzmann factor e−βE(L),

for obtaining the probability of having a length L with energy E(L) and normalizing gives

P (L) =

√

γ1L0

2πkBT
e
−

γ1L0

2kBT
(L/L0−1)2

(1)

=⇒ ln P (L) = −
γ1L0

2kBT
(L/L0 − 1)2 + C (2)

We have analyzed equilibrium simulation trajectories for studying fluctuations in the

contour length of the dsDNA. Contour length distributions P (L) are shown in Figure 1(b)

for bare and dendrimer bound DNA. The contour length distribution for bare and dendrimer

bound DNA is very sharp with a small width. It means that DNA is stiff with small

variance in contour length. By fitting P (L) to a Gaussian, we obtain the stretch modulus

γ1 to be 955 pN for bare DNA and 959 pN for dendrimer bound DNA. The calculated value

of the stretch modulus for bare dsDNA is in good agreement with experimental reports
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[4–6] and simulations [41, 42]. We can see that the dendrimer bound DNA is significantly

bent around dendrimer compared to bare DNA which is almost straight. But the bending

of DNA around dendrimer does not alter the stretch modulus since the contour length is

almost independent of the degree of DNA bending. We have also calculated the end-to-end

distance distribution, P (R) to estimate the degree of bending of DNA around dendrimer.

P (R) and snapshots of bare DNA and dendrimer bound DNA are shown in Figures 1(c),

1(d) and 1(e), respectively. Note that due to the bending of dsDNA, the width of the

end-to-end distribution of dendrimer bound DNA is very large compared to the width of

the distribution for the bare DNA.

To calculate the bending persistence length Lp as well as the bending modulus κ, we

calculate the distribution of bending angle P (θ). The bending angle θ is defined as the

angle between tangents t(s) and t(s′). Similar to the contour length fluctuations, small

fluctuation in θ can be approximated to be of Gaussian nature and can be written as

P (θ) =

√

κ

2π|s1 − sn|avkBT
e
− κ

2|s1−sn|avkBT
θ2

(3)

=⇒ ln P (θ) = −
Lp

|s1 − sn|av
(1− cos θ) + C (4)

where |s1 − sn|av is the average contour length (L0),
κ

kBT
= Lp and κ is the bending modulus

of DNA. From the simulation trajectories of 38 base-pair DNA, we have analyzed P (L) and

P (θ) for different base-pair lengths n between 1 to 38 base-pairs as shown in Figures 2(a)

and 2(b), respectively. P (L) for all base-pair lengths is Gaussian (Figure 2(a)). lnP (θ)

versus (1− cos θ) is plotted in Figure 2(b). lnP (θ) is linear in (1− cos θ) and from the fit,

we obtain the persistence length, Lp to be 43 nm which is close compared to the standard

experimental value of 50 nm. The bending modulus κ of bare DNA obtained from our

simulation is 1.76 × 104 pN Å2.

Do the stretch modulus and persistence length calculated from our atomistic MD

simulation conform to the idea that DNA can be treated as an isotropic elastic rod? To

probe this we note that for the isotropic elastic rod model, the stretch modulus γ1 is related

to the persistence length as follows: Lp = γ1r
2/4kBT , where r is the radius of DNA. Using

r = 1 nm and Lp = 43 nm, we estimate γ1 for bare DNA to be 705 pN as compared to γ1

= 955 pN from contour length distribution. Conversely, for an effective radius of r=0.86
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nm, the isotropic elastic rod model works perfectly. For dendrimer bound DNA, we find

an effective persistence length of Lp = 6.3 nm from our analysis of end-to-end distance

distribution, and again using elastic rod formula we estimate γ1 of dendrimer bound DNA

to be 103 pN. This is very small compared to the value of 959 pN obtained from contour

length distribution. This implies that dendrimer bound DNA is more flexible than bare

DNA. Dendrimer is a flexible molecule with positive charges on the primary amine groups

on the periphery. The branches are mobile making the positive charges moving along the

negative charges. When positively charged dendrimer binds to negatively charged DNA,

charge neutralization happens reducing the phosphate-phosphate repulsion in the DNA

backbone and the stiffness of DNA is much reduced. This also causes DNA to bend around

dendrimer. We expect similar situations to arise when proteins bind to DNA which will be

the subject of future study.

2. Correlations in fluctuations of dsDNA base-pairs

Mathew-Fenn et. al. [27] have studied DNA flexibility at short length scales using the

variance in the end-to-end distance obtained using small angle X-ray scattering techniques.

They have tethered clusters of gold atoms to 3′ thiol linker of DNA ends and measured the

distributions of end-to-end distance for various DNA length of base-pairs ranging from 10

to 35. By fitting P (R) to a Gaussian form, they observe that the variance σ2
n is quadratic

with the number of base-pairs n in DNA. Motivated by this study, we also calculate the

correlations in fluctuations of P (R) for dsDNA base-pairs. Here, we ask how the room

temperature fluctuations of individual base-pairs are correlated with the neighboring base-

pairs in dsDNA by looking at the variance σ2
n in the end-to-end distance, R of dsDNA. We

write,

σ2
n = 〈(Rn −Rn0)

2〉 (5)

where Rn is the end-to-end distance of n base-pairs and Rn0 is its average value. We

have shown σ2
n as a function of number of the base-pairs n in Figure 3 for bare DNA

and dendrimer bound DNA, respectively. The inset shows end-to-end distance which

is proportional to n. We fit the simulation data to σ2
n = an + bn4, which describes the
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data very well. Fitting parameters are a = 0.02359 Å
2
, b = 0.00000356 Å

2
for bare DNA

and a = −0.07891 Å
2
, b = 0.0000291 Å

2
for dendrimer bound DNA. The quartic term

is due to bending fluctuations, while the linear term accounts for the possible presence

of stretching fluctuations. Our results on σ2
n are thus only partially consistent with

Mathew-Fenn et. al. [27]. Here it is worth mentioning that this issue of cooperative

base-pair fluctuation and its relevance in the context of quadratic dependence of the

variance of the end-to-end distance has been discussed in the literature extensively in

last few years [29–33]. Mazur attributed this quadratic dependence to the incomplete

subtraction of the bending contribution from the end-to-end distance variance. Becker and

Everaers [59] attributed this to subtle linker leverage effect and concluded that when the

linker effect is subtracted from the variance data, the dependence will be linear. However,

recent work by Noy and Golestanian [60] shows that indeed the quadratic dependence exists

even after the bending contribution is removed. They attribute this to different modes of

deformation in the DNA structure. Our results seem not to be in line with the results by

Noy and Golestanian [60]. More efforts are needed for a complete understanding of this issue.

3. Worm-like chain model (WLC)

The worm-like chain (WLC) model (or Kratky-Porod model) for the force-extension

relation was proposed to explain the elasticity of polymers [8, 43]. Disadvantage is that

analytical results can be obtained only in the asymptotic limits. By solving WLC model

with the help of numerical evaluation, we show that the model can be applied to polymers

of small L0 (< Lp) to a good approximation. We apply this method to study the elasticity

of dsDNA. The results are then compared to the results obtained from MD simulations of

38 base-pair dsDNA whose length is about 0.25 Lp. We also try to connect the effect of a

dendrimer binding on the elasticity of dsDNA.

At room temperature, fluctuations in dsDNA are induced by thermal agitations. The

worm-like chain model assumes that the polymer is a continuous chain with energy given by

Ĥ =
κ

2

L0
∫

0

(

dt̂(s)

ds

)2

ds (6)
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where t̂(s) is the tangent vector at s on the space curve as shown in the schematic in Figure

4(a), with s changing from 0 to L0, contour length of the polymer and κ is the bending

modulus of the polymer. The persistence length of the polymer is defined as Lp = κ
kBT

,

where kB is the Boltzmann constant.

The numerical solution of the WLC model is described in detail by Samuel and Sinha

[19]. Here we give a brief outline of the method. Suppose that we apply a force on the WLC

polymer at one end in the z-direction. The new Hamiltonian can be written as,

Ĥ =

L0
∫

0

[

κ

2

(

dt̂(s)

ds

)2

− ftz

]

ds. (7)

Substituting κ = LpkBT and changing variable to τ = s/Lp, we obtain the dimensionless

Hamiltonian as,

=⇒
Ĥ

kBT
=

L0/Lp
∫

0

[

1

2

(

dt̂(τ)

dτ

)2

−
Lpf

kBT
tz

]

dτ . (8)

Now we use β = L0/Lp and f̃ = Lpf

kBT
to obtain the partition function as,

Z(f̃) = N

∫

D[t̂(τ)]e
−

β∫

0

dτ [ 1
2
( dt̂
dτ

)2−f̃ t̂z ]
(9)

here β = L0/Lp is analogous to the inverse temperature. Proper choice of the basis set

is crucial for the numerical evaluation of Z. In 3D, the natural choice are the spherical

harmonics |l〉 = Yl,0(θ, φ) which are angular part of the normalized eigenfunctions of −∇2/2.

To compute Z(f̃) = 〈0|e−
∇

2

2
−f̃ cos θ|0〉, we have used the following basis set to include force

f̃

〈l|Ĥ|l′〉 =
l(l + 1)

2
δl,l′ −

f̃(l + 1)
√

(2l + 1)(2l + 3)
(δl+1,l′ + δl′,l+1) . (10)

By calculating Z(f̃) numerically to a desired accuracy, we can calculate various properties of

the system. The end-to-end distance distribution is calculated using, P (R) = −2Rdp(R)
dR

[19],

where p(R) is the inverse Fourier transform (by working with imaginary f̃) of the partition

function Z(f̃). The resulting expression for P (R) is given by

P (R) =
2R

π

∞
∫

0

dk k Z(ik) sin kR (11)
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where Z(ik) is the partition function under the effect of an imaginary force f̃ = ik. We also

calculate the force f̃ versus extension ǫ behavior and the free energy G(f̃), of the system as

follows,

ǫ = −
dG(f̃)

df
(12)

and

G(f̃) = −
1

β
lnZ(f̃) (13)

Where the extension ǫ is the ratio of the end-to-end distance to the fixed contour length

of DNA, i.e., ǫ = R/L0. These quantities can be measured experimentally giving a direct

validation of the model. P (R) and ǫ are plotted in Figure 4. P (R) for various values of β

as a function of R/L0 is plotted in Figure 4(a). For flexible polymers, β ≫ 1 and for stiff

polymers, β ≪ 1 while for semi-flexible polymers β has intermediate values. In Figure 4(a),

P (R) has a peak at low values of R/L0 for flexible polymers where as the peak appears at

large values of R/L0 for semi-flexible or stiff polymers. This is due to the difference in the

energy cost for bending. The energy cost for bending is less for flexible polymers compared

to semi-flexible polymers. Flexible polymers are in coiled form since L0 ≫ Lp where as

semi-flexible polymers have length comparable to Lp. We plot P (R) of bare DNA and

dendrimer bound DNA in Figure 4(a) for comparison. Bare DNA has peak at R/L0 = 0.95

and dendrimer bound DNA has peak at R/L0 = 0.84 indicating the more flexible nature

of DNA when bound to dendrimer. Comparing the peak position and height, bare DNA

has persistence length Lp about 41.9 nm which is quantitatively in good agreement with

the value of 43 nm that was calculated from P (θ) shown in Figure 2(b). By a similar

comparison of MD data and the WLC calculation, dendrimer bound DNA is characterized

by an effective persistence length Lp about 6.3 nm implying that the dendrimer bound DNA

is 7 times more flexible than the bare DNA. However, the shape of P (R) for dendrimer

bound DNA is not well correlated with WLC results. This is due to the fact that the WLC

model does not include the interaction of dendrimer. Moreover in MD simulations we have

also solvent and counterion effects included which are not included in WLC model.

Force-extension curves calculated from WLC model are plotted in Figure 4(b) and com-

pared with the interpolation formula of Marko-Siggia [8]. Note that the interpolation formula
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for force-extension curve given by Marko-Siggia [8],

fLp

kBT
= ǫ+

1

4 (1− ǫ)2
−

1

4
(14)

is asymptotically valid for long polymers for small and large force limits. For stiff polymers,

the force required to stretch is higher compared to flexible polymers. The Marko-Siggia [8]

formula works well for large β over a wide range of forces. With the inclusion of the DNA

intrinsic elasticity via stretch modulus γ1, Odijk [61] proposed the following interpolation

formula,

ǫ =
R

L0

=

[

1−

√

kBT

4fLp

+
f

γ1

]

(15)

which is valid for large β. Eqn. 15 is used to fit the force-extension curves obtained from

MD simulations which is discussed in the next section.

B. A note from non-equilibrium stretching

From the stretching behavior, we can also estimate the elastic properties of DNA. For

this, we have applied external force on one end of the DNA with the force applied on the O3′

and O5′ atoms of the two strands of the dsDNA respectively while keeping the other end

(O5′ of one strand and O3′ of the other strand) fixed in order to mimic the single molecule

stretching experiments in atomic force microscopy (AFM) or optical or magnetic tweezers.

We have employed a time varying force ensemble where the force on DNA is increased with

time and measured the extension as a function of the momentary pulling force. The total

energy function of the system under the action of external force is given by

V (rN) = Vo(r
N) + Vext(t) (16)

where Vo(r
N) is the classical empirical potential describing the bonded and non-bonded

interactions and Vext(t) is the potential under the action of external force used to stretch

DNA which is given by

Vext(t) = (R(0)−R(t))f(t) (17)

In the above equation, R(0) = R0 is the end-to-end vector distance at time 0, R(t) is the

end-to-end vector distance at time t and f(t) is the time dependent force that acts along
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end-to-end vector. We have used the force rates of 10−4 pN/fs and 10−5 pN/fs to stretch

DNA of 38 base-pairs and 12 base-pairs, respectively since computational cost increases

with the rate of forcing and system size. However, the obtained force-extension curve

strongly depends on the rate of force applied.

Earlier we have studied the pulling rate dependence of the dsDNA stretching [41, 42].

Force-extension curves for 12 base-pair DNA at 10−5 pN/fs and 38 base-pair DNA at 10−4

pN/fs DNA are shown in Figure 5. With higher pulling rate the plateau in force-extension

curve was observed at higher pulling force as expected. The end-to-end distance R is

measured as the average end-to-end O3′-O5′ atom distance of two strands when the force

is zero. In the initial stage, as the force is increasing, the length of DNA increases linearly

with the force [41, 42]. This is followed by a highly nonlinear regime called overstretching

region where DNA gets stretched suddenly about 1.7 times its initial length with a very

small increment in applied force. Our goal here is to understand how well the theoretical

framework we have discussed so far helps in understanding the force-extension curves of

DNA. We use γ1 = 955 pN and Lp = 43 nm calculated from the equilibrium contour length

and angle distributions to fit force-extension curves with Eqns. 14 and 15. Fitting is done

with contour length L0 as the fitting parameter. In Figure 5 we fit the force-extension

curves to Eqns. 14, 15 and obtain contour length L0 of 12.98 nm and 12.84, respectively

for 38 base-pair DNA. Similarly fitting of Eqns. 14 and 15 gives 4.28 nm and 4.3 nm,

respectively for 12 base-pair DNA. It is observed that the enthalpic elasticity included

in Eqn. 15 by introducing f/γ1 describes the simulation data very well for small forces

since the contour length of DNA is much less than Lp. All of these formulas describe the

force-extension curves quite well for small forces before the overstretching region. But

they fail to explain the force-extension curve in overstretching region. The force response

in the overstretching transition can be fitted by models that include the cooperative

base-stretching transition [62], which however is not pursued in this paper. From this

analysis, we get good agreement between Eqns.14, 15 and our MD results for small forces

till the overstretching region. Hence we conclude that the non-equilibrium force-extension

curves also support the observations made from equilibrium fluctuation analysis. Note that

the equilibrium simulations are performed at Na+ concentration of 275 mM for bare DNA

and non-equilibrium simulations are performed at Na+ concentration of 130 mM. Since
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Eqns.14 and 15 ignore counterions and solvent effects which are properly treated in our MD

simulations, there could be minor mismatch in the fits shown in Figure 5.

IV. CONCLUSION

We have calculated various elastic properties of a dsDNA from equilibrium fluctuation

analysis and numerical solution to WLC model. The distribution of equilibrium contour

length P (L) and bending angle P (θ) are fit to Gaussian to calculate the stretch modulus

γ1 and persistence length Lp of DNA, respectively. The stretch modulus obtained from

this equilibrium distribution is compared to the value obtained from the non-equilibrium

stretching simulations. We also study how the elasticity of DNA is affected by protein

binding with DNA, considering dendrimer as a model protein. We find that the DNA

becomes 7-8 times flexible with respect to the fluctuations in the end-to-end distance when

dendrimer binds to it. In the presence of dendrimer, the stretch modulus γ1 of the DNA

is 959 pN and the effective persistence length Lp is 6.3 nm compared to γ1 = 955 pN and

Lp = 43 nm for bare DNA. The calculated elastic parameters are in good agreement with

the experimental calculations. Further by performing numerical calculations to solve WLC

model, we calculate end-to-end distance distribution and force-extension curves of DNA for

various lengths ranging from highly flexible to highly stiff polymers. We find good corre-

lation with the equilibrium results. Force-extension curves for 12 base-pair DNA at 10−5

pN/fs and 38 base-pair DNA at 10−4 pN/fs were obtained. The non-equilibrium stretching

simulations are compatible with the results obtained from equilibrium simulations. These

results are helpful in understanding DNA elasticity at small length scales and the effect of

protein interaction with DNA which is abundant in many cellular phenomena.
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FIG. 1: Equilibrium MD simulations: (a) Schematic showing the base-pair rise h and contour

length L. (b) Contour length and (c) end-to-end distance distribution for 38 base-pair bare DNA

and dendrimer bound DNA. Fitting P (L) to a Gaussian gives a stretch modulus γ1 of 955 pN for

bare DNA and 959 pN for dendrimer bound DNA. Representative snapshots of 38 base-pair (d)

bare DNA and (e) dendrimer bound DNA. We can see from plot of P (R) and snapshots that the

bare DNA is almost straight with less bending fluctuations, where as dendrimer bound DNA has

large bending fluctuations. Color code: adenine - cyan, guanine - pink, thymine - white, cytosine

- green, helix axis - red and dendrimer - orange.
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FIG. 2: Results for bare DNA: (a) Semi-log plot of contour length distribution P (L) for various

base-pair lengths. For all base-pair lengths, P (L) is Gaussian and hence ln P (L) is linear in

(L/L0 − 1)2. (b) Semi-log plot of bending angle distribution P (θ) for various base-pair lengths.

The persistence length Lp calculated from the slope for 37 base-pair is 43 nm which is close to

experimental findings.
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FIG. 4: Solution of WLC model using numerical calculations: (a) P (R) for various β values,
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model with P (R) that is obtained from MD results for DNA and dendrimer bound DNA. P (R) for

dendrimer bound DNA is deviating from the WLC result since WLC model does not consider the

dendrimer effect. (b) Force-extension curves for various β values. Analytical results of Marko-

Siggia [8] is in good agreement with force-extension curve obtained by numerical simulation for

large β.
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FIG. 5: Non-equilibrium stretching of DNA using MD: Force-extension curve for 12 base-pair

dsDNA at pulling rate of 10−5 pN/fs and 38 base-pair dsDNA at pulling rate of 10−4 pN/fs. We fit

the force-extension curves obtained from MD simulations to Eqns. (14) and (15) with L0 as fitting

parameter and using γ1 = 955 pN and Lp = 43 nm which are obtained from equilibrium P (L) and

P (θ), respectively.
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