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The effect of a number of mechanisms designed to suppress decoherence in open quantum systems
are studied with respect to their effectiveness at slowing down the loss of entanglement. The
effect of photonic band-gap materials and frequency modulation of the system-bath coupling are
along expected lines in this regard. However, other control schemes, like resonance fluorescence,
achieve quite the contrary: increasing the strength of the control kills entanglement off faster. The
effect of dynamic decoupling schemes on two qualitatively different system-bath interactions are
studied in depth. Dynamic decoupling control has the expected effect of slowing down the decay
of entanglement in a two-qubit system coupled to a harmonic oscillator bath under non-demolition
interaction. However, non-trivial phenomena are observed when a Josephson charge qubit, strongly
coupled to a random telegraph noise bath, is subject to decoupling pulses. The most striking of
these reflects the resonance fluorescence scenario in that an increase in the pulse strength decreases
decoherence but also speeds up the sudden death of entanglement. This demonstrates that the
behaviour of decoherence and entanglement in time can be qualitatively different in the strong-
coupling non-Markovian regime.

PACS numbers: 03.67.Pp, 03.65.Yz, 03.67.Bg

I. INTRODUCTION

Entanglement is one of the basic features that distin-
guish quantum systems from their classical counterparts,
and has its origins in the inherent non-locality of quan-
tum mechanics [1]. It is the most useful resource in quan-
tum information theory [2], and is indispensible for di-
verse quantum information tasks such as quantum com-
munication, teleportation, quantum error correction, su-
perdense coding, one-way communication etc. In closed
systems — that is, systems which are completely isolated
from their surroundings — entanglement remains con-
served under a local unitary evolution, and can change
only under non-local evolution. This makes these systems
ideal for quantum information tasks. Closed systems are,
however, a rarity in the natural world. More often than
not, quantum systems are open, that is, they are in con-
tact with the surrounding environment — a thermody-
namic reservoir, for example [3–5]. Quantum systems
are extremely fragile, and the dissipative effects of the
environment gives rise to the phenomenon of quantum
decoherence [6, 7]. As a result, the system undergoes an
asymptotic transition to classicality and hence loses all its
entanglement, which is a purely quantum phenomenon.
Nevertheless, this in itself is not a bad scenario, for if the
decoherence rate is low, then entanglement takes a long
time to completely disappear and such systems can func-
tion as useful quantum devices for sufficient periods of
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time. However, recent studies [8, 9] have uncovered sys-
tems where the rate of loss of entanglement is exponen-
tially higher than the decoherence rate. This results in a
finite time to classicality, and consequently, a finite time
to the total loss of entanglement — a phenomenon given
the name entanglement sudden death (ESD). Systems
that suffer from ESD are rendered unusable for quan-
tum tasks. Naturally then, ESD has dire implications
for the success of quantum tasks, and has become one of
the premier branches of quantum information study in
recent times. Some of us have recently investigated this
phenomenon for the case of n-qubit states at finite tem-
perature [10], as well as for spatially separated n-mode
Gaussian states coupled to local squeezed thermal baths
[11].

Given the obvious importance of ESD regarding the
success of quantum tasks, it is thus a worthwhile exer-
cise to investigate ways and means of controlling the rate
of loss of entanglement. Error-correcting codes [12–15]
and error-avoiding codes [16–18] ( which are also known
as decoherence-free subspaces) are such attempts. Open
loop decoherence control strategies [19–28] are another
class of widely used strategies used to this effect, where
the system of interest is subjected to external, suitably
designed, time-dependent drivings that are independent
of the system dynamics. The aim is to cause an effective
dynamic decoupling of the system from the ambient envi-
ronment. A comparative analysis of some of these meth-
ods has been made in [29]. An important generalization
of the dynamic decoupling scheme, presented recently in
[30], involves exploiting and merging the randomization
and deterministic strategies such as symmetrization, con-
catenation and cyclic permutation to an N qubit system.
Another mechanism known to slow down the process of
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decoherence is through manipulation of the density of
states. This has been put to use in photonic band-gap
materials, which is used to address questions related to
the phenomenon of localization of light [31–35].

In this paper, we analyze the evolution of entangle-
ment in two-qubit systems connected to local baths (or
reservoirs). A number of studies of entanglement in open
quantum systems have been made [36–38]. Here we ad-
dress the need to have a control on the resulting nonuni-
tary evolution, as motivated by the above discussion, and
study several methods of doing so. These include ma-
nipulation of the density of states in photonic crystals,
modulation of the frequency of the system-bath coupling
and modulation of external driving on two-qubit systems.
A significant part of the paper is devoted to the study
of control methods in two-qubit systems undergoing non-
Markovian evolution. The first of these is dynamic decou-
pling — which is an open-loop strategy — on a two-qubit
system one qubit of which is in contact with a harmonic
oscillator bath. This system undergoes a quantum non-
demolition interaction, where dephasing occurs without
the system getting damped. The second is a Josephson-
junction charge qubit subject to random telegraph (1/f)
noise due to charge impurities.

The surprising aspect of this study is that suppression
of decoherence due to a control procedure need not neces-
sarily mean preservation of entanglement. In fact, appli-
cation of resonance fluorescence or dynamical decoupling
on the Josephson junction charge qubit, undergoing non-
Markovian evolution, results in earlier ESD even though
decoherence gets suppressed.

The plan of the paper is as follows. In Section II,
we introduce the basic techniques and formalism used in
this paper, including the formal way of solving the Lind-
blad master equation. We also introduce the concept of
channel-state duality and the factorization law of entan-
glement decay, both of which will be used subsequently.
In Section III, we study the evolution of entanglement in
photonic band gap materials and the effect of the spe-
cial characteristics of such materials on ESD. The effect
of frequency modulation of the system-bath coupling on
ESD is studied in Section IV. This is followed by a study
of ESD of a two two-level system, one of which is driven
by an external resonant field which is in resonance with
the transition frequency. Finally, in section VI, we study
the effect of dynamic decoupling on the evolution of en-
tanglement and ESD. We pay particular attention to the
Bang-Bang strategy [19] with regard to the usual two-
qubit system under a QND interaction in section VI (A)
and also to a Josephson-junction charge qubit subjected
to random telegraph noise, and make comparisons in sec-
tion VI (B). We conclude our paper in section VII with
further discussions. Appendices A, B and C deal with
some of the explicit calculations.

II. PRELIMINARIES

An open quantum system, as defined in the introduc-
tion, is exposed to its environment, which is usually a
thermal reservoir. The dynamics of such a system is nat-
urally dictated by its interaction with its environment.
If H be the total Hamiltonian of an open system, then
H = HS + HR + HSR, where HS and HR are the sys-
tem and reservoir Hamiltonians respectively and HSR

is the interaction Hamiltonian. Open systems undergo
nonunitary evolution due to this interaction term, and,
depending on the type of the system-reservoir (SR) inter-
action, they can be broadly divided into two categories
— dissipative and non-dissipative. In the former, the sys-
tem Hamiltonian does not commute with the interaction
Hamiltonian, [HS , HSR] 6= 0, and dephasing occurs along
with dissipation and decoherence. In the latter however,
these two do commute — [HS , HSR] = 0 — and hence
the SR interaction is characterized by a class of energy-
preserving measurements where dephasing occurs with-
out damping the system [39, 40]. Such a non-dissipative
system, as well as the corresponding interaction, is called
a Quantum Non-Demolition (QND) system.

We are interested in the time evolution of open quan-
tum system, i.e., of the system state ρS . Let the initial
state of the system-bath combination be ρ(0), and let
the state at time t be ρ(t) = Uρ(0)U †, where U = e−iHt

is the time evolution operator. The state of the system
alone is obtained from ρ(t) by simply tracing out the
bath degrees of freedom: ρS(t) = TrR [ρ(t)], where TrR
implies a partial trace over the bath. The evolution of
the system-bath combination is unitary, and

ρ̇(t) = −i[H, ρ(t)] (1)

is the equation of motion. However, the evolution of
the system itself is nonunitary, and thus requires a more
general equation of motion which, after the application
of the Born, Markov and rotating wave approximations,
can be written as

ρ̇S(t) = −i[HS, ρS(t)]+ (2)
∑

j

γj

(

FjρS(t)F
†
j − 1

2

{

ρS(t), F
†
j Fj

}

)

.

This is a master equation in its Lindblad form. It can be
written in super operator form as

ρ̇S(t) = L[ρS(t)], (3)

and in matrix form, ρ̇S ij(t) =
∑

k, l

Lij,klρS kl(t), (4)

where L is the super operator acting on the system state
ρS(t) and is effectively a time-derivative, and L is the
matrix representation of L. In general, L is time inde-
pendent and the solution of the above equation can be
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written formally as

ρS(t) = Λ[ρS(0)] (5)

ρS ij(t) =
∑

k, l

Vij,klρS kl(0), (6)

where V = exp(Lt) is the matrix representation of the
time evolution map Λ. If the system is evolving under
unitary evolution w then the matrix V is simply w⊗w∗,
where w∗ represents the complex conjugate of w in a fixed
basis.
Channel-State Duality: A quantum channel is a con-

duit for the transmission of quantum as well as classical
information, and is essentially a completely positive map
between spaces of operators. Any such physical quantum
channel acting on a d-dimensional quantum state can be
mapped to a positive operator in d2 dimensions, and, if
the channel is trace-preserving, then the corresponding
positive operator will have unit trace. Similarly, a valid
density matrix in d2-dimensions can be mapped to a trace
preserving physical channel acting on d dimensional sys-
tems. Such a two-way mapping between a quantum state
and quantum channel is called channel-state duality.
The time evolution operator Λ is a physical quantum

channel represented by the matrix V . If M be a valid
density matrix corresponding to the map Λ, it is given
by [41, 42]

M = (I⊗ Λ)[|φ+〉〈φ+|], (7)

where |φ+〉 = 1√
d

∑d
i=1 |ii〉 is a maximally entangled state

in d⊗d Hilbert space. Here the channel is applied to one
side of the maximally entangled state.
We shall use the symbols V and M for the matrix rep-

resentation of the time evolution map Λ and a valid den-
sity matrix corresponding to it, respectively, throughout
the paper.
Factorization law of entanglement decay [43]: This law

says that the evolution of entanglement in a bipartite
entangled state under a local one-sided channel can be
fully characterized by its action on a maximally entan-
gled state. The amount of entanglement at any time t in
a given initially entangled two-qubit pure state |χ〉, un-
der the action of a one-sided quantum channel, is equal to
the product of the initial entanglement in the given state
and the entanglement in the state which we get by ap-
plying the channel on one side of a two-qubit maximally
entangled state. Mathematically this can be written as:

C ((I⊗ Λ)[|χ〉〈χ|]) = C (|χ〉〈χ|) C
(

(I⊗ Λ)[|φ+〉〈φ+|]
)

,

(8)

C(.) being the concurrence [44, 45]. Therefore, it is
enough to study the concurrence in the state obtained af-
ter the evolution of |φ+〉 state, i.e, concurrence in the ma-
trix M . We will make use of this factorization law in our
subsequent analysis. It can be easily extended to the case
where a local quantum channel acts on both the qubits.

It should be pointed out that through out the paper, we
consider the action of thermal bath as well as the action
of the controlling mechanisms on one of the two qubits
(say qubit B) of a two-qubit system A+B. Thus the cor-
responding action on any two-qubit initial state ρ

AB
(0)

is of the form (I ⊗ ΛB)(ρAB
(0)), where ΛB is the asso-

ciated quantum channel. In case where both the qubits
are exposed to individual thermal bath (with or without
individual control mechanism for each qubit), the corre-
sponding action will be of the form (ΛA ⊗ Λ′

B)(ρAB
(0)),

where ΛA is the associated quantum channel acting on
qubit A and Λ′

B is the associated quantum channel act-
ing on qubit B. This is the legitimate quantum operation
as the individual qubits are subject to local quantum ac-
tions under the associated quantum channels, which does
not care whether ρ

AB
(0) has any entanglement. But one

must guarantee that the individual qubits are subject to
the action under quantum channels, which is the case in
this paper for each of the control mechanisms described.

III. EVOLUTION OF ENTANGLEMENT IN

THE PRESENCE OF PHOTONIC CRYSTALS

In this section we consider a system of two level atoms
interacting with a periodic dielectric crystal, this partic-
ular structure of which gives rise to the photonic band
gap [31, 34, 46]. The effect of this on electromagnetic
waves is analogous to the effect semiconductor crystals
have on the propagation of electrons, and leads to in-
teresting phenomena like strong localization of light [33],
inhibition of spontaneous emission [34] and atom-photon
bound states [35, 47, 48]. The origin of such phenom-
ena can ultimately be traced to the photon density of
states changing at a rate comparable to the spontaneous
emission rates. The photon density of states are of course
estimated from the local photon mode density which con-
stitutes the reservoir. It is this photonic band gap that
suppresses decoherence [49].

Let us consider a two-qubit system, one qubit of which
is locally coupled to a photonic crystal reservoir kept at
zero temperature. In this case, entanglement dynamics
can be obtained by studying the qubit in contact with
the reservoir. We start with the following Hamiltonian:

H =
ω0

2
σz +

∑

k

ωka
†
kak +

∑

k

(gka
†
kσ− + g∗kakσ+), (9)

where ω0 is the natural frequency of the two level atom,
ωk is the energy of the kth mode and gk is the frequency
dependent coupling between the qubit and the photonic
crystal, the latter acting as the reservoir here. And also,
σ2 and σz , σ± = σx ± iσy are the Pauli matrices, with

ak and a†k being the annihilation and creation operators
for the kth mode. If we restrict the total atom-reservoir
system to the case of a single excitation [50], the evolution
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of a given state of the qubit ρ(0) is then given by [49]:

ρ(t) =

(

ρ11(0)|c(t)|2 ρ01(0)c(t)
ρ10(0)c

∗(t) ρ00(0) + ρ11(0)(1− |c(t)|2)

)

,

(10)

where

c(t) =ε
(

λ+e
iλ2

+t[1 + Φ(λ+e
iπ/4

√
t)]

−λ−eiλ
2
−
t[1 + Φ(λ−e

iπ/4
√
t)]
)

,

Φ(x) =
2√
π

∞
∑

k=0

2kx2k+1

(2k + 1)!!
is the error function ,

ε =
eiδt√
α2 − 4δ

,

λ± =
−α±

√
α2 − 4δ

2
,

α ≈ ω2
0d

2

8ωcǫ0(πA)3/2
.

Here δ = ω0 − ωc is the detuning of the atomic fre-
quency and ωc is the upper band-edge frequency. We
have made use of the following photon-dispersion rela-
tion near the band edge: ωk ≈ ωc + A(k − k0)

2, where
A ≈ ωc/k

2
0, d is the atomic dipole moment and ǫ0 is the

vacuum dielectric constant. ρ(t) in Eq. (10) is the equa-
tion of the system taking into account the influence of
the reservoir. This invokes a prescription for the reser-
voir spectral density, which depends upon the frequency
dependent system-reservoir coupling gk, and is codified
in the form of the function c(t), above.
The dynamics ρ(0) → ρ(t), given by Eq. (10), is guar-

anteed to be described by a quantum channel Λpc (say)
whose matrix representation is

Vpc =







|c(t)|2 0 0 0
0 c(t) 0 0
0 0 c∗(t) 0

1− |c(t)|2 0 0 1






. (11)

Channel-state duality, explained earlier in Section II, en-
sures that there exists a two-qubit density matrix Mpc

for every single-qubit channel Vpc. This matrix Mpc can
be written as

Mpc = (I⊗ Λpc)(|Φ+〉〈Φ+|)

=
1

2







|c(t)|2 0 0 c(t)
0 0 0 0
0 0 1− |c(t)|2 0

c∗(t) 0 0 1






, (12)

where |Φ+〉 = 1√
2
(|00〉+ |11〉) is a two-qubit maximally

entangled state. The concurrence ofMpc is |c(t)|2, where
c(t) is a complex-valued function of the detuning param-
eter δ and time t. If we assume that δ = ∆α2, c(t) can
then be written in the following simplified form:

c(t) =
ei∆τ

√
1− 4∆

1

2

(

d+e
id2

+τ [1 + Φ(d+e
iπ/4

√
τ)]

−d−eid
2
−
τ [1 + Φ(d−e

iπ/4
√
τ )]
)

,

where d± = −1 ±
√
1− 4∆ and τ = α2t. Therefore, we

need to see the effect of α on entanglement inMpc. Since
the entanglement in Mpc is |c(t)|2, it is now a function of
δ and τ . Invoking the factorization law of entanglement
decay, it is sufficient to study entanglement in Mpc in
order to understand the nature of evolution of entangle-
ment in the two-qubit system.
We show the evolution of entanglement in Mpc for dif-

ferent values of ∆ in FIGS. 1(a), 1(b). The insets of the
figures depict the evolution of entanglement – computed
using concurrence (see appendix A) – for the usual case
of zero band gap, while the main panels show the evolu-
tion of entanglement for increasing influence of the band
gap. In FIG. 1(a), the system is within a gap in the pho-
tonic spectrum, indicated by the negative value of ∆ and
hence also δ, as a result of which coherence is preserved
and the decay of entanglement is arrested. This feature
is further highlighted in FIG. 1(b), which is also for the
case of negative ∆ of higher order of magnitude than that
in FIG. 1(a), and as a result there is a greater persistence
of entanglement. Thus we find that with the increase of
the influence of the photonic band gap on the evolution,
entanglement is preserved longer. From Eq. (12), it can
be seen that, following the arguments of the previous sec-
tion, there is no ESD in this case, a feature corroborated
by the FIGS. 1 provided we choose the initial two-qubit
state as a pure entangled state. Since the evolution of
the off-diagonal elements of a single-qubit density opera-
tor is governed by c(t), the behaviour of the dynamics of
coherence is similar to the entanglement dynamics.
Apart from these, Fig. 1 shows another interesting

phenomenon – the temporally damped oscillations in the
entanglement. This phenomenon is a signature of the
emergence of non-Markovian characteristics in the evo-
lution and implies that the action of detuning changes
the character of the dynamics itself, turning it non-
Markovian from a Markovian one.

IV. FREQUENCY MODULATION

Agarwal and coworkers [25–27] introduced an open-
loop control strategy which involved modulation of the
system-bath coupling, with the proviso that the fre-
quency modulation (to be introduced below) should be
carried out at a time scale which is faster than the cor-
relation time scale of the heat bath. The technique of
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(a)(Color online) Entanglement (concurrence) of M as a
function of τ = α2t for detuning parameter ∆ = −0.1. In
this plot the behaviour of entanglement is different from
the one in the case for ∆ = 0 (see inset). Here (i.e, when
∆ = −0.1) entanglement is seen to converge to a non-zero

value at large τ .

0 50 100 150 200
10

−2

10
−1

10
0

α2
t

C
o
n
c
u
rr

e
n
c
e
 (

lo
g

1
0
 s

c
a
le

)

 

 

∆ = −0.25

0 50 100
10

−2

10
−1

10
0

α2
t

C
o
n
c
u
rr

e
n
c
e

(l
o
g

1
0
 s

c
a
le

)

 

 

∆ = 0

(b)(Color online)Entanglement (concurrence) of M as a
function of τ = α2t for detuning parameter ∆ = −0.25.
This plot shows that higher the magnitude of detuning ,

larger will be the asymptotic value of entanglement.

FIG. 1: Evolution of entanglement in photonic band gap crys-
tals at zero temperature.

frequency modulation has been used earlier to demon-
strate the existence of population trapping states in a
two-level system [51]. Raghavan et al. [52] showed the
connection between trapping in a two-level system un-
der the action of frequency-modulated fields in quantum
optics and dynamic localization of charges moving in a
crystal under the action of a time-periodic electric field.

Consider the Hamiltonian given in Eq. (9). Frequency
modulation essentially involves a modification of the cou-
pling gk — the modulated coupling is gk exp{−im sinνt},
where m is the amplitude and ν is the frequency of the
modulation. The decay of the excited state population
can be significantly arrested by choosing m such that
J0(m) = 0, where J0 are the Bessel functions of order
zero. The resulting master equation in the interaction
picture, when applied to the evolution of a two-level sys-

tem, is [25–27]:

∂ρ

∂t
=− 2(κ− i∆)J2

1 (m)

(κ− i∆)2 + ν2
{

C−+
0 (σ+σ−ρ− σ−ρσ+)

+C+−
0 (ρσ−σ+ − σ+ρσ−)

}

+ h.c, ∆ = (ω0 − ω).

(13)

Here σ± are the Pauli matrices. We have used the Bessel
function expansion e−im sin(νt) =

∑l=∞
l=−∞ Jl(m)e−ilνt,

where J1(m) is the Bessel function of order one. Ad-
ditionally, the modified bath correlation functions are
assumed to have the forms C−+(t) = C−+

0 e−κteiωt and
C+−(−t) = C−+

0 e−κteiωt, where κ is the bath correlation
frequency. Now, we have

∂ρ

∂t
=Lfm[ρ], (14)

⇒ ρ(t) = exp(Lfmt)ρ(0), (15)

⇒ ρ(t)ij =
∑

kl

{exp(Lfmt)}ij,klρ(0)kl

=
∑

kl

{Vfm(t)}ij,klρ(0)kl, (16)

where Vfm(t) = exp(Lfmt) and Lfm is the matrix rep-
resentation of Lfm. We obtain the matrices Lfm and
Vfm using Eq. (13) and the dynamics turns out to be
completely positive. Invoking channel-state duality and
the factorization law of entanglement decay, the time to
ESD (tESD) is

tESD = − 1

2Re(α)T
log(X−) (17)

where α =
2(κ−i∆)J2

1 (m)
(κ−i∆)2+ν2 , T = C−+

0 + C+−
0 and X− =

1
2

[

(

2 + T 2

C−+

0
C−+

0

)

−
√

(

2 + T 2

C−+

0
C−+

0

)2

− 4

]

. Detailed

calculations are given in Appendix B. From FIG. 2, it
can be seen that a higher frequency of modulation sus-
tains entanglement longer. This result is not altogether
surprising, for a higher degree of modulation is natu-
rally expected to filter out the influence of the bath and
increase the coherence which ultimately results in entan-
glement sustaining for a longer period of time. And hence
the behaviour of the coherence dynamics and entangle-
ment dynamics are qualitatively similar.

V. RESONANCE FLUORESCENCE

In the previous section, we focused on the increase in
the time to ESD by increasing the degree of frequency
modulation of the system-bath coupling. In this section,
we study a system where a two-level atomic transition is
driven by an external coherent single-mode field which
is in resonance with the transition itself. We shall show
that, in this situation, an increase in the Rabi frequency
— which plays the role of the modulator — produces the
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FIG. 2: (Color online) In this plot we have time of ESD, i.e,
the time at which a maximally entangled initial state loses
all its entanglement and become separable when exposed to
a bath, against the frequency of modulation ν. In this case
we have kept the value of m to be the first zero of the Bessel
function J0, i.e, m = 2.4048. Also, at ν = 0 the value of
tESD is 1.4. The value of the other parameters are: κ = 0.1,
∆ = 0.1, C+−

0 = C−+

0 = 0.1.

opposite effect by speeding up ESD. The behavior of such
driven systems has been well studied in the literature and
has found many applications. In contrast to the situation
here, Lam and Savage [53] have investigated a two-level
atom driven by polychromatic light. The phenomenon
of tunneling in a symmetric double-well potential per-
turbed by a monochromatic driving force was analyzed
by Grossmann et al., [54], while photon-assisted tunnel-
ing in a strongly driven double-barrier tunneling diode
has been studied by Wagner [55].
The analysis of the said driven system begins with its

Hamiltonian which, when written in the interaction pic-
ture, isHSR = −E(t)·D(t). HereE(t) = εe−iω0t+ε∗eiω0t

is the electric field strength of the driving mode (treated
classically), ω0 is the atomic transition frequency and
D(t) is the dipole moment operator in the interaction
picture. The driven two-level system is coupled to a
thermal reservoir of radiation modes. If γ0 be the spon-
taneous rate due to coupling with the thermal reservoir
and N = N(ω0) be the Planck distribution at the atomic
transition frequency ω0, the evolution of this composite
system is given by the following master equation [5]:

d

dt
ρ(t) =

iΩ

2
[σ+ + σ−, ρ(t)]

+
γ0(N + 1)

2
[2σ−ρ(t)σ+ − σ+σ−ρ(t)− ρ(t)σ+σ−]

+
γ0(N)

2
[2σ+ρ(t)σ− − σ−σ+ρ(t)− ρ(t)σ−σ+] ,

(18)

where Ω = 2ε ·d∗ is the Rabi frequency and d is the tran-
sition matrix element of the dipole operator. The term
− (Ω/2) [σ+ + σ−] characterizes the interaction between
the atom and the external driving field in the rotating

wave approximation. As usual, σ± are the atomic rais-
ing and lowering operators, respectively.
Let us consider two identical qubits and, as before,

assume that one of them interacts locally with a ther-
mal bath and is subject to monochromatic driving by an
external coherent field. The master equation (Eq. 18)
yields the corresponding matrices Vrf and Mrf (where
the subscript rf stands for resonance fluorescence) giv-
ing rise to a completely positive map:

Vrf =







a1 a2 a∗2 a4
b1 b2 b3 b4
b∗1 b∗3 b∗2 b∗4
d1 −a2 −a∗2 d4






, (19)

Mrf =
1

2







a1 a2 b1 b2
a∗2 a4 b3 b4
b∗1 b∗3 d1 −a2
b∗2 b∗4 −a∗2 d4






, (20)

where

a1 + a4 =1 +

(

1−X3

(

cos(µt)− γ

4µ
sin(µt)

))

S3

+
iΩ

µ
X3 sin(µt) (S− + S+) ,

a1 − a4 =X3

[

cos(µt) − γ

4µ
sin(µt)

]

,

a2 =
iΩ

µ
X3 sin(µt),

b1 + b4 =−X2(S+ + S−)−
iΩ

µ
X3 sin(µt)S3

+X3

(

cos(µt) +
γ

4µ
sin(µt)

)

(S− − S+),

b1 − b4 =
iΩ

µ
X3 sin(µt),

b2,3 =
1

2
X2 ±X3

(

cos(µt) +
γ

4µ
sin(µt)

)

,

d1 + d4 =2− (a1 + a4),

d1 − d4 =− (a1 − a4),

X =e−
γt
4 ,

S+ =− iΩγ0
γ2 + 2Ω2

,

S− =S∗
+,

S3 =− γ0γ

γ2 + 2Ω2
,

γ =γ0(2N + 1),

µ =
√

Ω2 − (γ/4)2.

Using these, we plot, in FIG. (3), concurrence vs the time
to ESD for different values of the Rabi frequency Ω and
observe that tESD decreases for an increase in Ω. This
is contrary to the result derived in the previous section,
where an increase in the modulation frequency ν delayed
the loss of entanglement. The decrease in tESD does
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FIG. 3: (Color online) Entanglement (concurrence) of Mrf

as a function of time for different values of Rabi frequency Ω,
varying from 0 to 0.5: 0 (the last curve on the right hand side)
corresponding to pure damping and 0.5 (first curve on the
left hand side) corresponding to the underdamped case, i.e.,
it covers both the overdamped as well as the underdamped
cases. In the inset one can see that as we increase the Ω the
tESD seem to converge at t = 17.0. Here γ = 0.1.
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FIG. 4: (Color online) The plot for the evolution of coherence
for a single qubit when the initial state of the qubit is |ψ〉 =
|0〉 in the presence of thermal bath. We can see that the
coherence increases as the Rabi frequency Ω is increased.

not however continue indefinitely, but rather saturates
to a certain value for large values of the Rabi frequency.
This is an interesting result, further analysis of which
will be carried out in a future work. Figure (4) depicts
an increase in the single-qubit coherence with an increase
in the Rabi frequency Ω, bringing out the fact that here
coherence and entanglement behave in a different fashion.
This puts into perspective the fact that coherence, a local
property, need not be monotonic with entanglement, a
non-local property of quantum correlations.

Let us now consider the situation where the system,
consisting of the excited two-level atom, is at zero tem-
perature. Let us also consider the evolution of entan-
glement for two cases demarcated by the relation be-
tween the Rabi frequency and the spontaneous rate of

coupling with the thermal reservoir. For the under-
damped case when Ω > γ0/4, the quantity µ is real (since
N = 0 at temperature T = 0) and hence both the up-
per level occupation and coherence exhibit exponentially
damped oscillations. Conversely, in the overdamped case,
Ω < γ0

4 ⇒ µ is purely imaginary and both these quanti-
ties decay monotonically to their stationary values. The
evolution of entanglement, however, works in an opposite
way . Entanglement decays faster for the underdamped
case than for overdamping, where the tESD is higher.
One possible reason for this could be the relative posi-
tions of the three Lorentzian peaks of the inelastic part of
the resonance fluorescence spectrum. The central peak is
at ω = ω0 and the rest are at ω = ω0±µ [5] for the under-
damped case, whereas all three peaks are at ω = ω0 for
the overdamped case. This indicates that the decay of en-
tanglement in the underdamped should be closely depen-
dent on the quantity µ. This in turn depends on both the
dissipation parameter γ and the Rabi frequency, the lat-
ter in itself a function of the driving strength of the exter-
nal field and the dipole transition matrix elements. Thus,
in the underdamped case, there exists greater avenues for
the decay of quantum coherences as well as entanglement
than the overdamped case. Phenomenologically, for the
underdamped case (Ω > γ0/4), the two-level atom in-
teracts with the external monochromatic field multiple
times before spontaneously radiating a photon (see, for
example, chapter 10 of ref. [56]). Such numerous inter-
actions allows quantum correlations to develop between
the two atomic levels and the quantized levels of the field.
The phenomenon of monogamy of entanglement [57] thus
ensures that the amount of quantum correlation between
the two qubits will decrease. Additionally, it can be seen
that at a higher Rabi frequency, Ω dominates the dissi-
pation and thus causes a saturation of the time to ESD,
as shown in FIG. 3.

VI. DYNAMIC DECOUPLING AND THE

EFFECT ON ESD

As discussed earlier, open-loop control strategies in-
volve the application of suitably tailored control fields
on the system of interest, with the aim of achieving dy-
namic decoupling of the system from the environment
[19, 22, 24–27]. Bang-Bang control is a particular form
of such decoupling where the decoupling interactions are
switched on and off at a rate faster than the rate of inter-
action set by the environment. The application of suit-
able radio frequency (RF) pulses, applied fast enough,
averages out unwanted effects of the environment and
suppresses decoherence. In this section, we compare the
effect of Bang-Bang decoupling on the evolution of en-
tanglement, using channel-state duality and factorization
law of entanglement decay, in systems connected to two
different types of baths. One bath type is composed of
infinitely many harmonic oscillators at a finite tempera-
ture T and couples locally to a two-level atom acting as
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the qubit, while the other adds random telegraph noise
to a Josephson-junction charge qubit. It has been shown
for the former case that all two-qubit states shows ESD
at non-zero T [10].

A. Bang-Bang decoupling when the bath consists

of harmonic oscillators

1. Quantum Non-Demolition Interaction

Let us consider the interaction of a qubit with a bath of
harmonic oscillators where the system Hamiltonian com-
mutes with the interaction Hamiltonian so that there is
no exchange of energy between the system and the bath
— this is quantum non-demolition dynamics [39, 40].
The only effect of the bath will be on the coherence el-
ements of the qubit evolution, which will decay in time
at the rate γ. The total Hamiltonian for the system plus
bath is:

H0 = Hq +HB +HI ; (21)

Hq = ω0σz ,

HB =
∑

k

ωkb
†
kbk,

HI =
∑

k

σz(gkb
†
k + g∗kbk).

Here the system Hamiltonian Hq commutes with the in-
teraction Hamiltonian HI and the evolution of such a
system is called pure dephasing. For simplicity we will
work in the interaction picture where the density matrix
of the system plus bath and the interaction Hamiltonian
transform as:

ρ̃(t) = ei(Hq+HB)tρ(t)e−i(Hq+HB)t, (22)

H̃(t) = σz
∑

k

(gkb
†
ke

iωkt + g∗kbke
−iωkt). (23)

From here we can write the total time evolution operator
for the system plus bath as

Ũ(t0, t) = T exp

{

−i
∫ t

t0

dsH̃(s)

}

= exp

{

σz
2

∑

k

[b†ke
iωkt0ξk(t− t0)− bke

−iωkt0ξ∗k(t− t0)

}

,

(24)

where ξk(t) = 2gk
ωk

(1 − exp(iωkt)). We are interested in
calculating

ρ̃01(t) = 〈0|TrB
{

Ũ(t0, t)ρ̃(t0)Ũ
†(t0, t)

}

|1〉. (25)

Assuming that the bath and the qubit were uncorrelated
in the beginning and that the bath is in a thermal state,
we have [19]:

ρ̃01(t) = ρ̃01(t0)e
−γ(t0,t), (26)

π π ππ

τ τ τ

FIG. 5: Sketch of the pulse sequence used in bang-bang de-
coupling procedure.

where

γ(t0, t) =
∑

k

|ξk(t− t0)|2
2

coth
(ωk

2T

)

. (27)

The matrix representation of the evolution operator
VQND (which corresponds to a completely positive map)
can be written from here as:

VQND =









1 0 0 0
0 e−γ(t0,t) 0 0
0 0 e−γ(t0,t) 0
0 0 0 1









. (28)

The evolution of maximally entangled state |φ+〉 =

(|00〉+ |11〉)/
√
2 provides sufficient information concern-

ing the evolution of entanglement. The evolution of one
subsystem in state |φ+〉 gives rise to the density matrix:

MQND =
1

2









1 0 0 e−γ(t0,t)

0 0 0 0
0 0 0 0

e−γ(t0,t) 0 0 1









. (29)

The concurrence in the state M is directly proportional
to e−γ(t0,t).

2. Dephasing under Bang-Bang dynamics

The function of Bang-Bang decoupling is to hit the
system of interest with a sequence of fast radio-frequency
pulses with the aim of slowing down decoherence (see
FIG. 5). Adding the radio frequency term to the system-
plus-bath Hamiltonian H0 (Eq. (21)), we get

H(t) = H0 +HRF (ω0, t), (30)

HRF (t) =

np
∑

n=1

U (n)(t){cos[ω0(t− t(n)p )]σx + sin[ω0(t− t(n)p )]σy},

(31)

where t
(n)
p = t0 + n∆t, n = 1, 2, · · · , np, and

U (n)(t) =

{

U t
(n)
p ≤ t ≤ t

(n)
p + τp

0 elsewhere.
(32)

The term HRF acts only on the system of interest which
here is the qubit. It represents a sequence of np identical
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pulses, each of duration τp, applied at instants t = t
(n)
p .

The separation between the pulses is τ = ∆t. The decay
rate for this pulsed sequence evolution is [19]:

γp(N,∆t) =
∑

k

|ηk(N,ωk∆t)|2
2

coth
(ωk

2T

)

, (33)

where

|ηk(N,ωk∆t)|2 = 4(1− cos(ωk∆t))
2

×
(

N +

N−1
∑

n=0

2n cos[2(N − n)ωk∆t]

)

.

(34)

In [19] it has also been shown that |ηk|2 ≤ |ξk|2 which
implies that decoherence is suppressed. Also, it is evident
that a lower value of η implies a lower value of γ. Con-
sequently, we can conclude that Bang-Bang decoupling
(which corresponds to a new completely positive map,
i.e, a modification of the map corresponding to Eq. (28)
due to the RF pulses) slows down entanglement decay.

B. Josephson Junction qubit

Although solid state nanodevices satisfy the require-
ments of large scale integrability and flexibility in de-
sign, they are subject to various kinds of low-energy ex-
citations in the environment and suffer from decoherence
problems. There have been a number of proposals in
this context about the implementation of quantum com-
puters using superconducting nanocircuits [58, 59]. Ex-
periments highlighting the quantum properties of such
devices have already been performed [60, 61]. Here the
concept of a Josephson-junction qubit comes into promi-
nence. A charge-Josephson qubit is a superconducting is-
land connected to a circuit via a Josephson junction and a
capacitor. The computational states are associated with
charge Q in the island and are mixed by Josephson tun-
neling. For temperatures much lower than the Josephson
energy, kBT ≪ Ej [62–65], we have the Hamiltonian

HQ =
ǫ

2
σz −

Ej

2
σx, (35)

with the charging energy EC dominating the Josephson
energy. Here, ǫ ≡ ǫ(V ) = 4EC(1 − C2V/e), C2 is the
capacitance of the capacitor connected to the island and
V is the external gate voltage (see Fig. 6).
Fluctuating background charges (BCs) (charge impu-

rities) are an important source of decoherence in the
operation of Josephson charge qubits. These are be-
lieved to originate in random traps for single electrons
in dielectric materials surrounding the superconducting
island. At low frequencies, these fluctuations cause the
1/f noise which is also known as random telegraph noise,
and is directly observed in single electron tunneling de-
vices [66, 67]. This has also been studied in the context of

�����
�����
�����
�����

V

C 2

E j

FIG. 6: (Color online) Schematic diagram for Josephson-
junction charge qubit

fractional statistics in the Quantum Hall Effect [68]. This
noise, arising out of decoherence, is modeled [64, 65] by
considering each of the BCs as a localized impurity level
connected to a fermionic band, i.e., the quantum impu-
rity is described by the Fano Anderson model. This is
the quantum analogue of the classical model of N inde-
pendent, randomly activated bistable processes. For a
single impurity, the total Hamiltonian is:

H = HQ − v

2
b†bσz +HI , (36)

where

HI = ǫcb
†b+

∑

k

[

Tkc
†
kb+ h.c.

]

+
∑

k

ǫkc
†
kck. (37)

Here HI describes the BC Hamiltonian, b represents the
impurity charge in the localized level ǫc, ck the electron in
the band with energy ǫk, and HQ is as in Eq. (35). The
impurity electron may tunnel to the band with amplitude
Tk. The BC produces an extra bias v for the qubit via
the coupling term (v/2)b†bσz. An important scale is the
switching rate γ = 2πρ(ǫc)|T |2, where ρ(ǫc) is the density
of states of the band. It is assumed that we are working
in the the relaxation regime of the BC where the tunnel-
ing rate to all fermionic bands are approximately same,
hence Tk gets replaced by T , above. The fraction v/γ
determines whether the operational regime of the qubit
is weak (v/γ ≪ 1) or strong (v/γ > 1). Studying the
single BC case is important, since it has been shown [64]
that the effect of multiple BCs can be trivially extended
from that of a single BC. For multiple strongly coupled
BCs producing 1/f noise, the effect of a large number of
slow fluctuators is minimal and pronounced features of
discrete dynamics such as saturation and transient be-
havior are seen. There are two special operational points
for the qubit related to Eq. (35): (a) ǫ = 0, corresponding
to charge degeneracy and (b) Ej = 0, for the case of pure
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dephasing [69, 70], where tunneling can be neglected. We
will consider this case later in detail and make a compar-
ison of ESD, for the case of pure dephasing, between the
harmonic oscillator and 1/f baths.

The general procedure for studying the effect of the
BC on the dynamics of the qubit is to calculate the uni-
tary evolution of the entire system plus bath and then
trace out the bath degree of freedom. Thus, ρQ(t) =
trE{W (t)}, W (t) being the the full density matrix. In
the weak coupling limit a master equation for ρQ(t) can
be written [71]. The results in the standard weak cou-
pling approach are obtained at lowest order in the cou-
pling v, but it has been pointed out that higher orders
are important for a 1/f noise [62–64].

The failure of the standard weak coupling approach is
due to the fact that the 1/f environment includes fluctu-
ators which are very slow on the time scale of the reduced
dynamics. To circumvent this problem one considers an-
other approach in which a part of the bath is treated on
the same footing as the system [65]. We study the evo-
lution of this new system and later trace out the extra
part which belongs to the bath, i.e., ρ(t) = Trfb{W (t)}.
We then obtain ρQ(t) from ρ(t) as ρQ(t) = Trb{ρ(t)},
where the subscript fb stands for fermionic band. In
that context we split the Hamiltonian (36) into a sys-

tem Hamiltonian H0 = HQ − v

2
b†bσz + ǫcb

†b and en-

vironment Hamiltonian HE =
∑

k ǫkc
†
kck coupled by

V =
∑

k

[

Tkc
†
kb+ h.c.

]

. The eigenstates of H0 are prod-

uct states of the form |θ〉|n〉, e.g,

|a〉 = |θ+〉|0〉,
|b〉 = |θ−〉|0〉,
|c〉 = |θ′+〉|1〉,
|d〉 = |θ′−〉|1〉,

with corresponding energies

−Ω

2
,
Ω

2
, − Ω′

2
+ ǫc,

Ω′

2
+ ǫc.

Here |θ±〉,|θ′±〉 are the two eigenstates of σn̂, σn̂′ respec-
tively, the directions n̂, n̂′ being specified by the polar
angles θ with φ = 0 and θ′ with φ′ = 0. The two level

splittings are Ω =
√

ǫ2 + E2
j and Ω′ =

√

(ǫ + v)2 + E2
j ,

and cos(θ) = ǫ/Ω, sin(θ) = Ej/Ω, cos(θ′) = (ǫ +
v)/Ω′, sin(θ′) = Ej/Ω

′. Here b†b|0〉 = 0 and b†b|1〉 = |1〉.
The master equation for the reduced density matrix

ρ(t) in the Schrödinger representation and in the basis of
the eigenstates of H0 reads:

dρij(t)

dt
= −iωijρij(t) +

∑

mn

Rij,mnρmn(t), (38)

where ωij is the difference of the energies (ωab = Ω/2 −
(−Ω/2), etc.) and Rij,mn are the elements of the Redfield

tensor [71] where i, j = {a, b, c, d}. These are given by

Rij,mn =

∫ ∞

0

dτ

{

c>njmi(τ)e
iωmiτ + c<njmi(τ)e

iωjnτ

−δnj
∑

k

c>ikmk(τ)e
iωmkτ − δim

∑

k

c<nkjk(τ)e
iωknτ

}

,

(39)

where

c
≷
ijkl(t) = [〈i|b|j〉〈l|b†|k〉+ 〈i|b†|j〉〈l|b|k〉]iG≷(t). (40)

Here iG>(ω) = γ/(1− e−βω) is the Fourier transform
of G>(t) and G<(ω) = G>(−ω), therefore, G<(t) =
G>(−t). This problem has a very interesting symme-
try: the diagonal and off diagonal elements do not mix
if the initial state ρ(0) is a diagonal density matrix in
the BC. Therefore, we can divide the Redfield tensor ele-
ments in two parts, one corresponding to population (di-
agonal elements) and other corresponding to coherence
(off diagonal elements).

The Rii,nn elements which affect the population are:

Rii,nn =

∫ ∞

0

{

χiniG
>(τ)eiωniτ + χiniG

<(τ)e−iωniτ
}

= χin

[

iG>(ωni))
]

. (41)

Here n 6= i and χin = (|〈n|b|i〉|2 + |〈n|b†|i〉|2), and

Rii,ii = −
∑

k

χik

[

iG>(ωik)
]

. (42)

Now we calculate the elements which are responsible
for the coherence part. In the adiabatic regime we have
γ ∼ Ω − Ω′ ≪ Ω and Ω′, i.e., where the BCs are not
static and the mixing of ρab and ρcd in Eq. (38), as well
as their conjugates cannot be neglected. Hence the non-
zero elements of R tensor – which affect coherence – are
the following:

Rab,ab = −γ
2

[

1− c2δ − s2δ′ + i(c2w + s2w′)
]

,

Rcd,cd = −γ
2

[

1 + c2δ + s2δ′ + i(c2w − s2w′)
]

,

Rab,cd =
c2γ

2
[1 + δ − iw] ,

Rcd,ab =
c2γ

2
[1− δ − iw] .
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Here

c = cos[(θ − θ′)/2],

s = sin[(θ − θ′)/2],

δ = tca + tdb,

δ′ = tda + tcb,

w = wca − wcb,

w′ = wda − wcb,

tij =
1

2
tanh

(

βωij

2

)

,

wij = − 1

π
Re

{

ψ

(

π + iβωij

2π

)}

,

and ψ(z) is the digamma function.

Now we can construct the explicit form of the matrix
R = [Rij,mn]

R =























































R1,1 0 0 0 0 R1,2 0 0 0 0 R1,3 0 0 0 0 R1,4

0 z− 0 0 0 0 0 0 0 0 0 y+ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 z∗− 0 0 0 0 0 0 0 0 0 y∗+ 0

R2,1 0 0 0 0 R2,2 0 0 0 0 R2,3 0 0 0 0 R2,4

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

R3,1 0 0 0 0 R3,2 0 0 0 0 R3,3 0 0 0 0 R3,4

0 y− 0 0 0 0 0 0 0 0 0 z+ 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 y∗− 0 0 0 0 0 0 0 0 0 z∗+ 0

R4,1 0 0 0 0 R4,2 0 0 0 0 R4,3 0 0 0 0 R4,4























































, (43)

where

z− = −γ
2

[

1− c2δ − s2δ′ + i(c2w + s2w′)
]

,

z+ = −γ
2

[

1 + c2δ + s2δ′ + i(c2w − s2w′)
]

,

y+ =
c2γ

2
[1 + δ − iw] ,

y− =
c2γ

2
[1− δ − iw] ,

Ri,j = Rii,jj .

Channel-state duality implies that the exponential of
the matrix R is the matrix representation of the evolution
channel after neglecting the term −iωijρij(t) in Eq. (38).
Therefore, we have V = exp(Rt) which gives us the evo-
lution for the qubit plus the charge impurity. From here
we can find the evolution map Vs acting on the qubit
(see Appendix C for more details) which corresponds to
a completely positive map.

The two parameters ǫ and Ej in the Hamiltonian for
the charge Josephson qubit HQ, given in Eq. (35), play
a crucial role in the decoherence properties of the sys-
tem. For example, if Ej = 0, the system Hamiltonian
HQ commutes with the interaction Hamiltonian. This
situation, as mentioned earlier, is called non-demolition
evolution or pure dephasing. In this case there is no en-
ergy exchange between system and bath. On the other
hand when we have ǫ = 0, the system Hamiltonian does
not commute with the interaction Hamiltonan. There-
fore, the two situations are qualitatively different. We
present, in FIG. 7 a plot of entanglement in the phase
space of ǫ and Ej by evolving a maximally entangled
state of two qubits with the bath (of charge impurities)
acting only on one qubit. The qubit is evolved for a fixed
time t and the entanglement is calculated for different
values of ǫ and Ej . FIG. 7 shows that the entanglement
in the system increases with an increase in Ej when ǫ
is held fixed, but decreases with an increase in ǫ when
Ej is held fixed. This is counterintuitive because dis-
sipation increases with the increase in the value of Ej .
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FIG. 7: (Color online) Contour of the entanglement after time
t = 5 for all values of Ej and ǫ (Josephson junction Hamilto-
nian parameters). The temperature in this case is equal to 0,
γ = 1, κ = v/γ = 0.45.
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FIG. 8: (Color online) Evolution of entanglement for the pure
dephasing case, i.e, Ej = 0. We can see that whereas entan-
glement decay is exponential for the 1/f noise, it slows down
for a bath of harmonic oscillators (inset) at zero temperature.

FIG. 8 compares the time-evolution of entanglement for
the harmonic oscillator bath with the charge-impurities
bath, both under pure dephasing. While entanglement
decay is exponential for the case of 1/f noise, it is slower
for a bath of harmonic oscillators. We compare, in FIG.
9, the time-evolution of entanglement for various values
of Josephson energy (Ej) starting with the pure dephas-
ing case given by Ej = 0. We see that the entanglement
remaining in the system increases with an increase in the
value of Josephson energy. This is consistent with FIG.
7.
Decoherence produced by background charges depends

qualitatively on the ratio κ = v/γ, where κ≪ 1 denotes
the weak-coupling regime and κ > 1 is the strong cou-
pling regime. The latter gives rise to qualitatively new
properties. We find that (see FIG. 10(b)), for κ > 1,
the time-evolution of entanglement does not depend on
κ. This is in contrast to the weak coupling regime, where
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FIG. 9: (Color online) Evolution of entanglement for 1/f
(telegraph) noise at zero temperature. Here different curves
represent the evolution of entanglement for different values of
Ej (from 0 to 1), with the curve at the bottom corresponding
to Ej = 0 and that at the top to Ej = 1, while ǫ is fixed and
equal to 1.

the time-evolution of entanglement does depend on κ, as
seen in FIG. 10(a), where an increase in κ leads to a
decrease in entanglement. Naturally, decoherence due to
the bath forces entanglement to decay with time for both
cases.

1. Evolution operator with Bang-Bang interaction

The Josephson charge qubit in contact with a 1/f bath
is now subject to fast pulses, under the Bang-Bang dy-
namical decoupling scheme. The Hamiltonian for this
radio frequency pulse is the same as in Eq. (31). If the
time for which a pulse is active is π, then the evolution
operator for the pulse may be written as Vp = I ⊗ iσx
where 2Uτp = ±π. The total evolution can therefore be
written as

Vtotal = (VpVS(τ))
2N (44)

where 2Nτ = t. Since the RF pulses act on the system
for very short amounts of time, the evolution of the sys-
tem can safely be assumed to be governed only by the
dynamical map Vp for the time period during which the
pulse is operating. As can be seen from the FIGS. 11
to 13 and FIG. 16 the system exhibits the ESD on the
application of bang-bang pulses.
Let us consider the case where Ej = ǫ = 1. Let us also

fix the pulse strength to be U = 50π and ensure that
the pulses act for very short times. As defined earlier,
the ratio of the BC bias v and the switching rate γ de-
fines the weak and strong coupling regimes, the former

designated by
v

γ
≪ 1 and the latter by

v

γ
> 1. In FIG.

11, we plot the time-evolution of entanglement, with the
coupling strength as parameter. For weak coupling, we
find that tESD initially increases with coupling strength.
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(a)(Color online) Plot of the entanglement (concurrence)
as a function of time (t) for different values of coupling

strength κ = v/γ, in the weak coupling regime, i.e, κ ≪ 1.
Here the range of κ is from 0.05 to 0.5, with 0.05

corresponding to the uppermost curve, and 0.5 to the
lowest (bottom) one. We can see that as we increase κ,

entanglement decreases.
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(b)(Color online) Plot of the entanglement (concurrence)
as a function of time (t) for different values of coupling
strength κ = v/γ, in the strong coupling regime, i.e,

κ > 1. Here the range of κ is from 5.05 to 5.5. We can see
that in the strong coupling region all the curves converge.

FIG. 10: Evolution of entanglement with respect to time, for
different coupling strengths and temperature T = 0, Ej =
1 = ǫ.

This continues till a turning point is reached at
v

γ
= 0.38

when tESD ≃ 880. After this, with increase in coupling
strength, tESD starts to decrease. As a result, a kink
appears in the corresponding entanglement vs time plot,
see Figs. 11, 12. The receding of tESD with increase in
coupling strength continues well into the strong coupling

regime, i.e. for 5.05 <
v

γ
< 5.5. It, however, does not

go to zero, but rather chooses to saturate at the thresh-
old value of tESD ≃ 10, see FIG. 13. The “turning”
and the “saturation” features are well captured in FIG.

16, where we plot tESD against
v

γ
and keep the pulse

strength and durations fixed. The saturation behavior is
consistent with what one expects of 1/f noise. We ob-

serve a crossover phenomenon around
v

γ
≃ 0.38, where

the value of tESD rises sharply, only to fall back again
even quicker. The crossover phenomena is a signature
of the transient behavior exhibited by the system in go-
ing from the weak to the strong coupling regime. As
discussed in the beginning of this subsection, saturation
and transient behavior are characteristic of 1/f noise.

A SQUID (superconducting quantum interference de-
vice) is obtained by quantizing what is mathematically
equivalent to a forced damped pendulum, and hence
a forced damped oscillator for a small superconduct-
ing phase [72]. Under the conditions kBT ≪ Ej and
EC ≫ Ej , and neglecting the damping as well as the bi-
asing terms, the Hamiltonian of Eq. (35) is obtained. In-
cluding the biasing provided by the BCs as well as the dis-
sipation due to the bath, this problem could be thought of
being analogous to that of resonance flourescence, where
the dissipative system is biased by an external field. In
the present case, the biasing is embodied by the param-
eter v, due to the BC, and through it by κ, while for
resonance flourescence the biasing is from the external
field and is quantified by the Rabi frequency Ω. Due to
the action of the Bang-Bang pulses, the dissipative effect
of the system (γ) is reduced and this suggests an analogy
between the Josephson junction charge qubit under the
action of Bang-Bang pulses and the underdamped regime
of resonance flourescence. Indeed, with increase in value
of κ, increase in ESD takes place and finally saturates for
the case of strong coupling (large κ), in consonance with
a similar pattern in the case of resonance flourescence in
the underdamped regime, where ESD is seen to increase
with increase in Ω till a saturation is achieved.

The evolution of coherence with respect to time, for
the Josephson charge qubit subjected to 1/f noise, is
shown in FIGS. 14, 15, for the weak and strong coupling
regimes, respectively. Both show an improvement in the
coherence with the application of the bang-bang decou-
pling pulses, in contrast to the corresponding behavior of
entanglement, thereby reiterating that coherence is not
synonymous with entanglement.

In FIG. 17, we plot the behavior of tESD with Ej and
find that, as we increase Ej and thus move away from
the pure dephasing situation, the time to ESD keeps in-
creasing. As discussed earlier, this is a counterintuitive
result because dissipation increases with Ej . This may
be explained by invoking the results of FIG. 7: as Ej

increases, ǫ kept fixed, entanglement increases, which in
turn implies increase in time to ESD.

VII. CONCLUSIONS

The importance of the sustenance of entanglement in
quantum systems cannot be overstated. In this paper, we
have studied a variety of control procedures aimed at do-
ing exactly that. Most of these are designed to suppress
decoherence at the level of single qubits. A majority of
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FIG. 11: (Color online) Effect of bang-bang decoupling on
entanglement, in the weak coupling regime. If we compare
this plot with FIG. (10(a)), with the curves corresponding to
the same values of κ, we see that the bang-bang decoupling
causes entanglement to disappear faster in time for a fixed
value of the coupling strength. Here the parameters are same
as in FIG. (10(a)) and the pulse strength is U = 50π with
time for which the pulse was activated is τp = 0.01. In the
inset we have the evolution of entanglement for very small
range (0.01 to 0.1) of coupling κ. The thickest curve is the
one corresponding to κ = 0.38. This curve is important in
the sense that it has the largest tESD.

FIG. 12: (Color online) Entanglement evolution for the cou-
pling parameter range 0.3 < κ < 0.4, with the uppermost
curve corresponding to κ = 0.3 and the lowest (bottom) curve
corresponding to 0.4. One can see from this plot the forma-
tion and disappearance of the kink.

the systems considered in this paper are qubits coupled
with harmonic oscillator baths at finite temperature T ,
the couplings being either of dissipative or of the dephas-
ing type. The time-evolution of entanglement when such
a bath acts on one side of the two-qubit maximally en-
tangled state is known [10]. In the commonly occuring
dissipative case, entanglement decays asymptotically at

FIG. 13: (Color online) Effect of bang-bang decoupling on
entanglement in the strong coupling region. Here again we can
see the effect of bang-bang decoupling on the entanglement if
we compare this plot with FIG.(10(b)). Here the parameters
are same as in FIG. (10(b)) and the pulse strength is U = 50π
with the pulse duration τ = 0.01.
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FIG. 14: (Color online) Plot for the evolution of coherence in
the case of Telegraph noise in weak coupling region, i.e, κ < 1.
Here all the parameters has the value same as in FIGS. 12 and
11 and κ = 0.38.

zero temperature, whereas it shows a sudden death at fi-
nite non-zero temperatures. Squeezing in the initial bath
states increases the time to ESD.
The aim of most control procedures is to suppress de-

coherence. For the case of photonic crystals, the design
allows the system to conserve coherence when it is within
the photonic band gap. Modulating the frequency of the
system-bath coupling aims to suppress decoherence by
shifting the system out of the spectral influence of the
bath. In both these cases it is found that the suppres-
sion of decoherence is accompanied by a corresponding
increase in tESD.
However, it will be erroneous to näıvely suppose that

this is the norm. Exactly the opposite phenomenon is ob-
served for the case of resonance fluorescence, where the
coupling between the bath and a two-level atomic system
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Control Procedure Decoherence suppression Entanglement decay suppression

Photonic Crystals X X

Frequency Modulation X X

Resonance Fluorescence X ×
DD in EMF bath X X

DD in Telegraph noise X ×

TABLE I: Summary of the results.
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FIG. 15: (Color online) Plot for the evolution of coherence
in the case of Telegraph noise in strong coupling region, i.e,
κ ≥ 1. Here the value of all the parameters are same as in
Fig. 13 and κ = 5.38.

FIG. 16: (Color online) tESD is plotted as a function of cou-
pling strength κ. Here we can see that there is a clear dis-
tinction between the strong and the weak coupling region. As
we increase κ the tESD tends to freeze and asymptotic value
of tESD is around 10. The parameters used are as in the
previous plots.
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FIG. 17: (Color online) tESD is plotted as a function of Ej .
This shows that as we go away from pure dephasing (i.e, Ej =
0) the tESD increases. The parameters used are same as in
the previous plots.

forced by an external resonant field, is modulated. It is
seen that an increase in the external field frequency Ω,
the Rabi frequency, results in a faster decay of entangle-
ment (FIG. 3). A further non-trivial effect observed is
the saturation in the time to ESD: tESD does not go be-
low a threshold value no matter what the Rabi frequency.
A possible explanation of this phenomenon would be to
observe that the sudden death time stops being depen-

dent on the Rabi frequency at Ω =
γ0
4
; strikingly, this

happens to be the boundary between the overdamped

Ω <
γ0
4

and underdamped Ω >
γ0
4

regimes.

In dynamical decoupling schemes RF pulses, applied at
short time-intervals, smooth out unwanted effects due to
environmental interactions. We discuss two qualitatively
different system-bath models: the first being the usual

qubit and harmonic oscillator bath pair with pure de-
phasing or QND interaction; and the second being a bath
of charge impurities, simulating 1/f (telegraph) noise,
acting on a Josephson-junction charge qubit. Entangle-
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ment decays to zero asymptotically in both these models.
The application of fast RF pulses to the former manages
to speed up the rate of the still-asymptotic loss of entan-
glement, whereas the same RF pulses applied to the latter
kills off entanglement in finite time and thus shows ESD.
A very interesting phenomenon, observed in the strong
coupling regime, is the decrease in the time to ESD with
increasing pulse strengths. This is extremely counterin-
tuitive, and brings into perspective the fact that, in the
non-Markovian strong coupling regime, the dynamics of
entanglement can be different than that of decoherence.
This feature gets further highlighted by the behavior of
coherence with time, both for the case of resonance fluo-
rescence and Josephson-junction charge qubit subjected
to 1/f noise. Here coherence – which is a local property
– is seen to vary in a non-monotonic fashion with entan-
glement which happens to be a non-local property of the
system. A summary of our results is presented in tabu-
lar form in Table I. This, thus, calls for the need to have
careful and exhaustive studies of entanglement in these
regimes.
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Appendix A: Calculation for concurrence

Concurrence is a measure for entanglement of forma-
tion for a mixed state of two-qubit system given by
Hill et al. [44, 45]. Concurrence is defined as C =
max(0, λ1 − λ2 − λ3 − λ4), where {λi} are the square
root of the eigenvalues of the matrix R = ρρ̃. Here

ρ̃ = (σ2 ⊗ σ2) ρ
∗ (σ2 ⊗ σ2) and the complex conjugate is

taken in the standard basis.
For some simple density matrices we can calculate the

concurrence very easily. For example, consider the ma-
trix

M =
1

2







1 0 0 e−γt

0 0 0 0
0 0 0 0

e−γt 0 0 1






. (A1)

The R matrix will be:

R =MM̃ (A2)

and

M̃ = σ2 ⊗ σ2M
∗σ2 ⊗ σ2 (A3)

=
1

2







1 0 0 e−γt

0 0 0 0
0 0 0 0

e−γt 0 0 1






. (A4)

R =
1

4







1 + e−2γt 0 0 2e−γt

0 0 0 0
0 0 0 0

2e−γt 0 0 1 + e−2γt






. (A5)

The set {λi} is equal to {(1 + e−γt)/2, (1 − e−γt)/2}.
The concurrence for this state is C = e−γt.

Appendix B: Calculation of Vfm and Mfm for

Frequency modulation

In the case of Frequency modulation, from Eq. (13) we
can write the Lfm and thus the Vfm = exp(Lfmt) matrix
as:

Lfm =









−2Re(α)C−+
0 0 0 2Re(α)C+−

0

0 −α(C−+
0 + C+−

0 ) 0 0

0 0 −α∗(C−+
0 + C+−

0 ) 0
2Re(α)C−+

0 0 0 −2Re(α)C+−
0









, (B1)

Vfm =









1
T

(

C−+
0 e−2Re(α)Tt + C+−

0

)

0 0 1
T

(

C+−
0 (1− e−2Re(α)Tt)

)

0 e−αTt 0 0
0 0 e−α∗Tt 0

1
T

(

C−+
0 (1− e−2Re(α)Tt)

)

0 0 1
T

(

C+−
0 e−2Re(α)Tt + C−+

0

)









, (B2)

where α =
2(κ−i∆)J2

1 (m)
(κ−i∆)2+ν2 and T = C−+

0 +C+−
0 . IfMfm =

(I⊗ V )(|φ+〉〈φ+|), then we have

Mfm =









M11 0 0 e−αTt

0 M22 0 0
0 0 M33 0

e−α∗Tt 0 0 M44









, (B3)

where

M11 =
1

T

(

C−+
0 e−2Re(α)Tt + C+−

0

)

, (B4)

M22 =
1

T

(

C+−
0 (1− e−2Re(α)Tt)

)

, (B5)

M33 =
1

T

(

C−+
0 (1− e−2Re(α)Tt)

)

, (B6)

M44 =
1

T

(

C+−
0 e−2Re(α)Tt + C−+

0

)

. (B7)
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If Mfm is separable at some time t, the factorization law
for entanglement decay [43] allows us to assert that all
states will show ESD. The state Mfm is separable if only
if it is positive under partial transposition, i.e,

1 +X2 − 2X − T 2

C−+
0 C−+

0

X ≥ 0, (B8)

, where X = exp(−2Re(α)T t). Therefore, Mfm is sep-
arable when LHS of Eq. B8 is zero. The roots of the
above equation are

X± =
1

2





(

2 +
T 2

C−+
0 C−+

0

)

±
√

(

2 +
T 2

C−+
0 C−+

0

)2

− 4



 .

(B9)

The negative root is less than unity (X− ≤ 1), implying
that there exists, always, a finite and positive time tESD

at which the system loses all its entanglement. This is
given by

tESD = − 1

2Re(α)T
log(X−). (B10)

The modulation factor ν appears in the numerator of
Eq. B10 and, therefore, it can be expected that a higher
frequency of modulation should sustain entanglement
longer. This is confirmed in the plot of tESD against
ν (FIG. 2). This result is not altogether surprising, for a
higher degree of modulation is naturally expected to in-
crease the coherence by filtering out the influence of the
bath, which ultimately results in entanglement sustaining
for a longer period of time.

Appendix C: Calculation for the evolution map Vs

acting on the qubit from the evolution map of the

qubit plus charge-impurity in the case of telegraph

noise

The matrix representation of the evolution map for
qubit plus charge-impurity V is given by exp(Rt) whereR

is given in Eq. (43). This map is in the basis {|θ±〉|i〉}⊗
{|θ±〉|j〉}. To make it computationally easier we need
to write it in the basis {|θ±〉|θ±〉} ⊗ {|i〉|j〉}, since the
matrix representation of the map acting on the qubit is
in the basis {|θ±〉|θ±〉}. To change the basis we need the
assistance of a unitary matrix (in this case permutation
matrix) P which is defined as:

P (|a〉|b〉|c〉|d〉) = |a〉|c〉|b〉|d〉; (C1)

|a〉|b〉|c〉|d〉 =
(

a1
a2

)

⊗
(

b1
b2

)

⊗
(

c1
c2

)

⊗
(

d1
d2

)

,

(C2)

|a〉|c〉|b〉|d〉 =
(

a1
a2

)

⊗
(

c1
c2

)

⊗
(

b1
b2

)

⊗
(

d1
d2

)

.

(C3)

⇒ P = I⊗ p⊗ I, (C4)

where

p =







1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1






.

After conjugating the matrix V by P we get:

Ṽ = PV PT . (C5)

We can write this 16 × 16 matrix Ṽ as a 4 × 4 matrix,
where each of the element itself is a 4 × 4 matrix Zij

where i, j ∈ {1, 2, 3, 4}. Then the map Vs acting on qubit
is simply Vs ij = Tr(Zij). From here we can get the corre-
spondingM matrix. It is not easy to solve it analytically
in the present case. Therefore, we use numerical meth-
ods to calculate the evolution operator and entanglement
evolution for a system of qubits.
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