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The phenomenon of intramolecular vibrational energy redistribu-

tion (IVR) is at the heart of chemical reaction dynamics. Statistical

rate theories, assuming instantaneous IVR, predict exponential

decay of the population with the properties of the transition state

essentially determining the mechanism. However, there is grow-

ing evidence that IVR competes with the reaction timescales,

resulting in deviations from the exponential rate law. Dynamics

cannot be ignored in such cases for understanding the reaction

mechanisms. Significant insights in this context have come from

the state space model of IVR, which predicts power law behavior

for the rates with the power law exponent, an effective state

space dimensionality, being a measure of the nature and extent of

the IVR dynamics. However, whether the effective IVR dimension-

ality can vary with time and whether the mechanism for the

variation is of purely quantum or classical origins are issues that

remain unresolved. Such multiple power law scalings can lead to

surprising mode specificity in the system, even above the threshold

for facile IVR. In this work, choosing the well-studied thiophosgene

molecule as an example, we establish the anisotropic and anom-

alous nature of the quantum IVR dynamics and show that multiple

power law scalings do manifest in the system. More importantly,

we show that the mechanism of the observed multiple power law

scaling has classical origins due to a combination of trapping near

resonance junctions in the network of classical nonlinear resonan-

ces at short to intermediate times and the influence of weak

higher-order resonances at relatively longer times.
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Understanding, quantifying, and manipulating chemical re-
actions have been holy grails of chemical physics for nearly

a century. In this continuing quest a fundamental and formidable
phenomenon that needs to be reckoned with is that of intra-
molecular vibrational energy redistribution (IVR) (1–5). Although
models of reaction rates like the Rice–Ramsperger–Kassel–Marcus
(RRKM) theory and transition state theory (TST) continue to be of
immense value in terms of their conceptual elegance and ease of
application, the deviations from these paradigms due to incomplete
IVR can lead to a deeper understanding of reaction dynamics and
control (6, 7). Recent studies in both gas (8, 9) and condensed
phases (10, 11) indicate that a detailed knowledge of the mechanism
of IVR is a prerequisite for formulating dynamically consistent rate
theories and, possibly, novel control strategies. Despite the chal-
lenges that arise due to the sheer complexity and richness of the
IVR process (1), significant advances have been made over the past
couple of decades, using a combination of innovative experimental
techniques (12, 13) and novel theoretical approaches (14, 15).
The present work focuses on one such novel theoretical ap-

proach, based on an analogy between IVR and the phenomenon
of Anderson localization, proposed in the seminal work of Logan
and Wolynes (16). The so-called state space model describes
IVR as a diffusive process in the zeroth-order quantum number
space (QNS) (also known as the state space) mediated by the
various anharmonic resonances coupling the zeroth-order states.
The initial (16) analogy was developed further in a series of
important studies (17–19), leading to the local random matrix
theory (LRMT) (20) and the equivalent Bose statistics triangle

rule (BSTR) (21)—models that have proved to be highly suc-
cessful in a wide variety of systems ranging from gas phase re-
action dynamics (4) to energy flow in proteins (22).

State Space Model of IVR

Consider a molecule with s-vibrational degrees of freedom (df).
At sufficiently low energies the Hamiltonian H0 describes
the system as a set of uncoupled oscillators with eigenstates
�

�vðbÞi≡
�

�v
ðbÞ
1 ; v

ðbÞ
2 ; . . . ; v

ðbÞ
s i. The quantity v

ðbÞ
j = 0; 1; 2; . . . is the vi-

brational quantum number associated with the jth-vibrational
mode. Strictly speaking, jv(b)〉 are the eigenstates of the best H0,
typically anharmonic and corresponding to nonlinear oscillators.
Note that the appropriate H0 can come from a perturbative
analysis of an ab initio surface, taking into account the experi-
mentally observed spectroscopic features, as is the case in the
present work (Eq. 5). Taking the vibrational quantum numbers as
the axes, one has the state space (Fig. 1A) of the molecule and the
dynamics of jv(b)〉, a point in the state space, are trivial underH0—

they do not move. However, with increasing energy, the dynamics
are dictated by the Hamiltonian H0 + V with V, consisting of
various terms that couple the modes with resonances being key,
leading to a nontrivial evolution of jv(b)〉 in the state space. This
evolution of jv(b)〉mediated by the various anharmonic resonances
that manifest locally in the state space is IVR.Depending upon the
location of jv(b)〉 and the type of resonances that manifest in the
QNS, one can have both classical and quantum mechanisms for
IVR. The latter mechanism, known as dynamical tunneling (23,
24), has been conjectured (25–27) to be important for polyatomic
molecules at low energies with sufficiently high density of states. In
the energy regimes and for the class of initial states of interest to
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the current work, however, we do not expect dynamical tunneling
to be dominant (SI Appendix, Figs. S1 and S4).
A striking prediction (17–19) of the state space model is that

at intermediate timescales the survival probability Pb(t) associ-
ated with jv(b)〉 exhibits power law scaling

PbðtÞ≡

�

�

�

�

D

vðbÞ
�

�

�v
ðbÞðtÞ

E

�

�

�

�

2

∼ σb + ð1− σbÞ

�

1+
2t

τDb

�−Db=2

: [1]

In the above, Db is the effective dimension of the QNS explored
by jv(b)〉; σb, the dilution factor, is the long time limit of Pb(t); and
τ is a timescale associated with an exponential fall-off of Pb(t).
Note that σ−1b yields the total number of zeroth-order states that
participate in the IVR dynamics of jv(b)〉. In the limit of Db = s,
and for large s, the scaling in Eq. 1 is essentially exponential, in
accordance with the RRKM expectation. However, and surpris-
ingly, the finding (28, 29) that Db is significantly smaller than
the full dimensionality of the QNS even for fairly large mole-
cules and at significant levels of excitation suggests that corre-
lated intermediate time dynamics might be a generic feature of
IVR. Consequently, Db is a more appropriate descriptor of the
IVR dynamics than a simple IVR rate extracted from an expo-
nential fit. This observation, apart from being important for
coherent control strategies, raises issues related to the mecha-
nistic origins of Db being much less than s and to a priori predict
Db for specific initial states. A smoothed version of Eq. 1, ex-
tensively used in this work, is the temporal autocorrelation
function (30)

CbðTÞ=
1

T

Z

T

0

PbðtÞdt; [2]

studied earlier in various contexts. It can be shown that, given
Eq. 1, to leading order CbðTÞ∼T−δb=2 with δb = Db for 0 < Db < 2
(SI Appendix).
Wong and Gruebele provided a perturbative estimate (31)

Db ≈
Δ ln

P

iL
2
ib

Δ lnQ
; [3]

with the sum restricted to states ji〉 at a distance Q from jv(b)〉;
i.e., jv(i) − v

(b)j ≤ Q. The quantity
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is the number of zeroth-order states locally coupled to jb〉 and
signals the onset of facile IVR for Nloc ≥ 1. Although Eq. 3 ignores
contributions from dynamical tunneling, suitably averaged versions
do correlate well withDb. Generically, Eq. 3 predicts slower IVR for
states located at the edge of the QNS (overtone modes) compared
with states in the interior (combination modes) of the QNS.
There are two crucial questions that we address in this work.

First, can certain initial states exhibit multiple power law be-
havior, not accounted for by Eq. 3, over different timescales?
That is, can Db vary during the course of evolution (3)? And
second, is the nature of the diffusion in the QNS normal or
anomalous? The two questions are related because anisotropic ex-
ploration results from different sets of anharmonic resonances being
active in different regions of the QNS. Thus, degenerate jv(b)〉 lo-
cated at different regions of the QNS can undergo vastly different
IVR dynamics, some of them potentially exhibiting anomalous
behavior, resulting in strong mode specificity and a changing Db.
As highlighted in the current work, such mode specificity can
occur even above the threshold for facile IVR and severely
impacts the observations made above in the context of edge vs.
interior state dynamics.

State Space–Phase Space Correspondence

Our approach toward answering the questions above involves
a detailed classical-quantum correspondence study to establish
strong links (Fig. 1) between IVR seen as diffusion in the QNS
and IVR manifesting as transport in the classical phase space
(32). Indeed, an attractive feature of the state space model is the
close classical–quantum correspondence that it affords, allowing
one to assess the importance of quantum effects in the IVR
dynamics. Valuable insights into the mechanism of IVR have
already come from classical–quantum correspondence studies
(14, 33) of systems with 2 df in terms of the role of various phase
space structures including the chaotic sea, robust Kolmogorov–
Arnold–Moser (KAM) barriers, and partial barriers like cantori.
However, obtaining similar detailed insights for systems with s ≥ 3,
even classically, presents technical and conceptual challenges
(32, 34) that need to be overcome before addressing the more
subtle issue of whether the classical IVR mechanisms survive
quantization. For instance, KAM tori are no longer barriers to
transport and there are no obvious generalizations of the notion
of cantori. Moreover, an understanding of “stickiness,” arising from
trajectories spending long times near regular regions, leading to
significant dynamical correlations, remains in its infancy (35). The
present work is a first step toward bringing the valuable insights
afforded by the classical–quantum correspondence approach to
systems with s ≥ 3 and a key ingredient of our study is the con-
struction, visualization, and interpretation of the dynamics on the
classical resonance network, also known as the Arnold web (36).
Starting with the pioneering work of Martens et al. (37), several
studies (38–46) have amply demonstrated the power of such
an approach.
To set the stage for the rest of this paper, we refer to Fig. 1B,

highlighting two of the important features that distinguish s ≥ 3
systems from s < 3 systems. First, the resonances are not iso-
lated and their associated chaotic layers form a connected
network with the possibility of slow transport along the
resonances, a phenomenon known as Arnold diffusion. Second,
there exist resonance junctions wherein, owing to the exploration
of different resonances, a sudden change in the character of the
dynamics can occur. Presently, we do not study Arnold diffusion
because, apart from the fact that we are not in the near-integrable
limit, the timescale necessary for observing it is exceedingly long

0

n
3

n
2

Ω

Ω

3

2

Ω

Ω

1

1

?

Trap

I

E

I

EH = E

v1

v2

v3

A B

Fig. 1. (A) Schematic of the state space (v1, v2, v3) for a 3-df system. Two

different initial states I and E evolve in the state space due to anharmonic

resonant couplings. (B) Frequency ratio space, a representation of the Arnold

web or the network of classical nonlinear resonances (lines), corresponding to A.

The Ωj are the nonlinear frequencies. Points in B labeled I and E correspond to

those in A and evolve on the Arnold web. This work seeks to understand the

correspondence between A and B and the influence of resonance junctions

(shaded region in B) on the energy flow dynamics.
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compared with the quantum power law timescale. In addition,
one expects (26, 47, 48) quantum localization of Arnold diffusion
for s = 3. However, the focus of the current work is on the in-
fluence of the resonance junctions because, in the so-called
Nekhoroshev regime, one expects the junctions to slow the dy-
namics down and hence act as a sort of local trap (49–51). Al-
though the regimes of interest studied here are strictly not in the
Nekhoroshev regime, our numerical studies show that some of
the intriguing quantum results can be unambiguously linked to
the slowing down of the dynamics near the resonance junctions.
We emphasize that our focus on the local dynamics near the
junction implies that Arnold diffusion, if existent, is not domi-
nant because the maximum extent of Arnold diffusion can be
observed only away from the junctions (50, 52).

Results and Discussion

Model System and Hamiltonian. We use an effective Hamiltonian
for SCCl2, sufficiently accurate for energies of interest (53), ob-
tained (54) by applying canonical Van Vleck perturbation theory
to the ab initio Hamiltonian. The resulting Hamiltonian H =

H0 + Vres is expressed as

H =

X

6

i=1

ωi

�

vi +
1

2

�

+

X

6

i≤ j

xij

�

vi +
1

2

��

vj +
1

2

�

+Vres; [5]

with the zeroth-order anharmonic part H0 characterized by the
normal mode frequencies {ωi} and anharmonicities {xij}. The off-
diagonal term Vres = V + V† consists of six dominant anharmonic
resonances coupling the zeroth-order modes with

V = k526a5a
†

2a
†

6 + k156a1a
†

5a
†

6 + k125a1a2a
†2
5 +   k36a

2
3a

†2
6

+ k231a2a
2
3a

†

1 + k261a2a
2
6a

†

1;
[6]

where ai, a
†
i , and vi = a†i ai are the mode annihilation, creation,

and occupation operators, respectively. The various parameter
values (SI Appendix, Tables S1 and S2) are taken from an earlier
work (54) and note that the first three resonances are much
larger than the last three resonances. Due to the existence (54)
of three conserved quantities (polyads)

K = v1 + v2 + v5; L= 2v1 + v3 + v5 + v6; M = v4; [7]

the system has effectively 3 df (s = 3). The Hamiltonian in Eq. 5
is diagonalized in the zeroth-order number basis {vi} to obtain
the eigenstates and eigenvalues. Hereafter, we refer to a specific
resonance by indicating the modes involved in the resonance.
For example, 526 stands for the first resonance in Eq. 6 above.
The classical limit Hamiltonian corresponding to Eq. 5 can be

obtained using the Heisenberg correspondence

ak↔
ffiffiffiffi

Ik
p

e−iϕk; a†k↔
ffiffiffiffi

Ik
p

eiϕk; [8]

with (I, ϕ) being the action-angle variables of the zeroth-order
Hamiltonian. The resulting Hamiltonian,

HðI;ϕÞ=
X

6

k=1

ωkIk +
X

6

k≤ l=1

xklIkIl +VresðI;ϕÞ; [9]

is a nonlinear, nonintegrable Hamiltonian. As in the quantum case,
existence of the classical analog of (K, L, M) can be used to trans-
form the s = 6 system in Eq. 9 to a reduced s = 3 Hamiltonian (SI
Appendix, SI Text). The reduced system helps in interpreting the
dynamics which, nevertheless, are determined by numerically
solving the Hamiltonian’s equation of motion corresponding to
the full H(I, ϕ).

Quantum Dynamics: Anisotropic Dynamics in State Space and Multiple

Power Law Scaling. We study the IVR dynamics of a set of near-
degenerate states (see SI Appendix, Table S3 for a summary of
the relevant properties), with (K, L, M) = (7, 14, 0), spanning a
15-cm−1 (∼0.5 THz) range centered around E0 = 7;868 cm−1

(∼236 THz). The states have varying degrees of mode occupancies
and hence differing edgeness parameters (53) eb (SI Appendix,
Table S3), with eb = 1 being a pure edge state and eb = 0 being
a pure interior state. Our choice of the energy range is motivated
by several previous observations. First, E0 is close to the threshold
for facile IVR and thus poses a challenge for classical–quantum
correspondence studies. Second, an earlier study (54) on the dy-
namical assignment of the eigenstates indicates extensive mixing
around E0. Third, as shown in Fig. 2B (Inset), the states are rather
typical and comprise the majority (53) of the feature states
in SCCl2.
Fig. 2 summarizes the quantum IVR dynamics for the near-

degenerate states. Fig. 2B shows that although δb increases withNloc

on the average, there is considerable variation in the δb values. For
instance, a state with Nloc ∼ 5 has δb ∼ 0.9 whereas another state
with Nloc ∼ 2 exhibits δb ∼ 1.7, which implies fairly rich and complex
state space dynamics due to the sensitivity to specific resonances
(29). Our computations show that during the course of the IVR
dynamics typically two power law timescales are evident, with
the latter corresponding to a slower timescale, and thus the δb in
Fig. 2B represent only an average fit. Assuming δb to be corre-
lated with the number of locally active resonances in the state
space, Fig. 2B suggests that some of the states with Nloc � 1 are
evolving either toward the edge of the QNS or to regions in the
QNS having fewer active resonances with the possibility of
intermediate regime quantum beats (3), i.e., recurrences in
Pb(t). The former case would confirm the anisotropic diffusion
scenario (18) whereas the latter case would require one to identify
the mechanism for evolution into the low-diffusion regions of
the QNS.
We now focus on two of the states jE〉 = j1, 6, 2, 0, 0, 10〉 (E0

∼

7,865.6 cm−1, eb ∼ 0.52) and jI〉 = j4, 1, 1, 0, 2, 3〉 (E0
∼

7,865.9 cm−1, eb ∼ 0.33)—representative examples for multiple
power law scaling and nontrivial IVR dynamics, nontrivial be-
cause despite Nloc(jI〉) ∼ 2.5Nloc(jE〉), jE〉 explores more of the
state space than jI〉, as evident from Fig. 2 C and D. Thus, in the
QNS, jE〉 and jI〉 are more appropriately classified as “edge-like”
and “interior-like” states, respectively. Note that there do exist
other sets of states (SI Appendix, SI Text and Figs. S5 and S6)
exhibiting multiple power law scaling. The details of the classical–
quantum correspondence, however, can be different for each
case (SI Appendix, SI Text). Fig. 2A shows that both jE〉 and jI〉
exhibit power law behavior at intermediate timescales and un-
dergo extensive fragmentation with about 20 states participating
in the IVR (SI Appendix, Table S3). However, a striking feature
in Fig. 2A is the slowing down of the IVR from jI〉 around 0.7 ps,
much before the long-time dilution regime related to the Hei-
senberg timescale τH ≡ (2πc〈ΔE〉)−1 ∼ 2 ps with 〈ΔE〉 being the
mean level spacing. Note that jE〉 also exhibits a similar slowing
down but the effect is much more clear in the case of jI〉, as
evident from Fig. 2 C and D. A crucial observation is that the
second timescale for jI〉 nearly disappears upon removing the 125
resonance (see Fig. 4A) with the effect being minimal on jE〉.
Although a previous study (29) has shown that in the regime
0.8 < Nloc < 8 one expects the IVR dynamics to be sensitive to
specific resonances in the QNS, the restricted nature of IVR
from jI〉 upon increasing the strength of the 125 resonance is
a puzzling result.
How does one explain the puzzling result noted above? Is it

a purely quantum effect? In the following sections, motivated
by the fact that the classical analog of Cb(T) corresponds well
with the quantum results (SI Appendix, Fig. S1), i.e., slower
rate of exploration of the phase space by jI〉, we answer the
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questions by following the IVR dynamics in terms of the
nonlinear mode frequencies (37, 43) and reveal significant
differences for the two states in terms of the transport be-
havior on the Arnold web.

Classical Dynamics: Anisotropic IVR on the Resonance Network. The
anharmonic mode frequencies of SCCl2, Ω

0(I) ≡ ∂H0(I)/∂I in
the absence of the resonant couplings, are constant in time.
However, in the presence of the resonances Vres(I, ϕ) the
modes get coupled, actions I are no longer conserved, and the
nonlinear frequencies Ω ≡ Ω0(I) + ∇IVres(I, ϕ) vary with time,
exhibiting several mode–mode frequency lockings. Such resonant
lockings, key to the observed IVR, are expressed as a condition r ·

Ω(t) = 0 with r = (r1, r2, . . . , r6) being a resonance vector with
mutually prime integer components. In the present case this can be
rewritten as

αΩ1rðtÞ+ βΩ2rðtÞ+ γΩ3rðtÞ= 0; [10]

in terms of the nonlinear frequencies Ωr(t) of the reduced Ham-
iltonian with (α, β, γ) being integers related to (r1, r2, . . . , r6). The
width of the resonances decreases rapidly with increasing orders,
defined by jαj + jβj + jγj.
A useful way (37, 43) of visualizing the resonance network is

to construct the frequency ratio space (FRS) (f1, f2) ≡ (Ω1r/Ω3r,
Ω2r/Ω3r) in which the resonance lines can be written down as
(assuming Ω3r ≠ 0)

f2 =−
α

β
f1 −

γ

β
: [11]

Fig. 3A shows the resonance network constructed by restricting
(jαj + jβj + jγj) ≤ 5 over the dynamical range of (f1, f2) at E

0
=

7;868 cm−1. Such a “static” web highlights the possible resonances
and their connectivity that can manifest at the energy of interest.
The various near-degenerate states, shown in Fig. 3B, are located
near (f1, f2) = (0, 0), a multiplicity two junction because it is at the
confluence of two independent resonances, 156 (f1 = 0) and 526
(f2 = 0). An infinity of resonances emanate from (f1, f2) = (0, 0) and,
in particular, the 125 resonance corresponds to f1 + f2 = 0. Several

other such junctions, unique to systems with ≥3 df, are clearly seen
in Fig. 3A and trajectories can diffuse from one junction to another,
leading to large-scale transport (55).
Although Fig. 3A indicates all possible resonances up to a

certain order, it is crucial to know the dynamically relevant
regions of the web (39). Such regions can be determined by
a joint time-frequency analysis of the classical dynamics.
Specifically, the dynamical function zkðtÞ=

ffiffiffiffiffiffiffiffiffiffiffiffi

2IkðtÞ
p

exp½iϕkðtÞ�
for a trajectory with initial conditions (I0, ϕ0) such that
HðI0;ϕ0Þ=E

0
is subjected to a continuous wavelet transform and

the dominant mode frequencies at specific times are obtained
(41). Several trajectories are run at the energy of interest and
a density plot is generated by recording the number of visits of
the trajectories to different regions in the frequency ratio space
(see SI Appendix, SI Text and Figs. S7 and S8 for details on the
construction of the density plots).
The computed dynamical FRS at E

0
≈ 7;868 cm−1 is shown in

Fig. 3B and the following observations can be made upon com-
paring to the theoretical web in Fig. 3A:

i) The classical IVR dynamics are highly anisotropic with the
dominant density being quasi one dimensional along a high-
order resonance f2 = f1 − 1/2 (dashed line in Fig. 3A) and
parallel to the 261 (f2 = f1) and the 231 (f2 = f1 − 2) weak
resonances.

ii) The large density near (f1, f2) = (0, 0) implies that the dy-
namics are strongly influenced by the overlap and interplay
of the primary 526, 156, and 125 resonances The importance
of this junction, in agreement with an earlier quantum study
(56), is elaborated below.

iii) The lack of density near the 231 resonance suggests an approx-
imate dynamical decoupling of the a1-symmetry Cl−C−Cl bend
(ν3). Interestingly, the quantum expectation value 〈v3(t)〉 for
both the states corroborates the classical observation.

iv) The enhanced density near (f1, f2) ∼ (−1.9, −2.5), far from
the primary junction and in a sparse region of the web at
this order, implies that higher-order induced resonances
are crucial for the long-time IVR dynamics. In particular,
the nondiagonal anharmonic terms in Eq. 5 play a signif-
icant role.
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Fig. 2. Summary of the quantum IVR dynamics for SCCl2 with polyads (K, L, M) = (7, 14, 0). (A) Time-smoothed survival probabilities for jE〉 = j1, 6, 2, 0, 0, 10〉

(black) and jI〉 = j4, 1, 1, 0, 2, 3〉 (red) showing substantial slowing down of IVR for jI〉 starting around T ∼ 0.7 ps (red arrow). Horizontal lines indicate the long

time limit. (Inset) Extensive fragmentation of both jE〉 and jI〉 due to the various anharmonic resonances. (B) Power law exponents δb (for Eq. 2) vs. local

number of coupled states Nloc (blue squares) and dilution factor σ (red circles) for the near-degenerate states. (Inset) Edgeness parameter eb vs. σb for the 17

states of interest with jE〉 and jI〉 belonging to the leftmost cluster. (C and D) Spread of the initial excitation as a function of time and state space distance Q for

jE〉 and jI〉, respectively.
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Classical–Quantum Correspondence: Anomalous Diffusion and Origin

of Multiple Power Law Scaling. According to the LRMT model
(17, 18), the microcanonically averaged survival probability at
intermediate times is expected to scale as

hPðtÞi∼

�

t−1 threshold  IVR
t−df=α facile  IVR;

[12]

with df being an effective dimensionality and α characterizing the
nature of the diffusion in the state space. Averaging over the
17 near-degenerate states in our case yields 〈P(t)〉 ∼ t−1.4 and hence
the system is in the facile IVR regime. Assuming normal diffu-
sion (α = 2) yields df ∼ 2.8, consistent with an earlier work (56)
and close to the full dimensionality s = 3 of the QNS. Note that
the exponent, extracted over the initial 0.5 ps of the dynamics, is
an upper limit because 〈P(t)〉 exhibits a complicated behavior
with beats for 0.5 < t < 2 ps.
The assumption of normal diffusion, however, requires closer

scrutiny because the observed decoupling of the ν3 bend mode
suggests a value of df < 3. To this end we performed classical and
quantum computations (SI Appendix, Fig. S2) of the mean
squared displacements 〈(vk(t) − vk(0))

2〉 for both the states. The
results clearly show anomalous behavior in both classical and
quantum dynamics with early time ballistic and hyperdiffusive
behavior followed by subdiffusive behavior for most of the modes.
Consequently, assuming max(df) ∼ 2 due to the decoupling of the
bend mode, we deduce α ∼ 1.4 and hence an overall anomalous
(subdiffusive) state space dynamics at E

0
≈ 7;868 cm−1. An earlier

work (44) has implicated sparse regions of the Arnold web with
subdiffusive behavior and a recent study shows that tight-binding
lattices can exhibit transient quantum hyperdiffusion (57). Hence,
the enhanced density around (−1.9, −2.5) in Fig. 3B, where the
Arnold web is sparse compared with that near (0, 0), combined
with the mean squared displacement results clearly establish the
subdiffusive nature of the IVR dynamics.
Fig. 3B represents the dynamics at E

0
= 7;868 cm−1. However,

to compare the dynamics of jE〉 and jI〉, we construct their re-
spective FRS by constraining the zeroth-order actions appro-
priately. In Fig. 3 C and D the dynamical FRSs of jE〉 and jI〉 for
the two timescales of interest, motivated by Fig. 2A, are shown
(see SI Appendix, Fig. S3 for the unnormalized data). Re-
markably, Fig. 3D exhibits a clear change in the nature of the
dynamics of jI〉 in going from the first to the second timescale.
The maximum density shifts from the 526 region to the 125 re-
gion of the FRS with no such shift for jE〉. Such a density shift
indicates different resonances becoming important at different
times during the dynamics, observed for other cases as well (SI
Appendix, SI Text and Fig. S6), and establishes the important role

of the classical resonance network in understanding the multiple
timescales observed in the quantum dynamics.
The slowing down of IVR from jI〉 can also be understood

from the differences in the structure of the longer-timescale
FRS shown in Fig. 3. The jE〉 density continues to expand
across the 526 resonance whereas the jI〉 density “swirls”
around the primary junction. Thus, compared with jE〉, we
suspect that the primary junction is playing a significant role in
the IVR dynamics of jI〉 in terms of trapping the trajectories
and leading to slower IVR. To lend further support for the
slowing down of the dynamics near the junction, we recall the
puzzling observation mentioned earlier regarding the acceler-
ation of IVR for jI〉 upon removing the 125 resonance. Con-
sequently, we recompute the FRS for jI〉 with the 125 resonance
switched off and the results are shown in Fig. 4B at both short
and long times. Clearly, the density shift around 0.7 ps is absent
and, more interestingly, the long-time FRS shows far less ac-
tivity around the primary junction. These observations are
clearly reflected in the corresponding quantum results shown in
Fig. 4A, which shows a delayed onset of the second timescale
for jI〉. In addition, as shown in Fig. 4A, Inset, the removal of
the 125 resonance clearly suppresses the recurrences in the
survival probability. Thus, we believe that the origin of the
slower timescale for jI〉 in Fig. 2A is due to the trapping near
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Fig. 3. Summary of the classical IVR dynamics of SCCl2
corresponding to Fig. 2. (A and B) Classical Arnold web

(A) and the dynamically dominant part of the web (B)

at 7,868 cm−1 with (f1, f2) ≡ (Ω1r/Ω3r, Ω2r/Ω3r). A and B

have identical axes range. The nonlinear resonances

(green, labeled in B) corresponding to Eq. 6 and other

resonances up to a total order of five (yellow lines)

are shown. In A and B the locations of jE〉 (red), jI〉

(blue), and the rest of the near-degenerate states

are shown, respectively. C and D show the dynami-

cal evolution of the web for jE〉 and jI〉, respectively,

over the two timescales of interest as indicated. The

dynamics were performed with a total of 104 trajec-

tories propagated to 25 ps. All of the plots in C and D

have identical axes range.
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axes range). The density shift seen in Fig. 3 disappears and the longer-timescale

dynamics exhibit reduced activity near the primary resonance junction.

14358 | www.pnas.org/cgi/doi/10.1073/pnas.1406630111 Manikandan and Keshavamurthy

D
o
w

n
lo

a
d
e
d
 b

y
 g

u
e
s
t 
o
n
 J

u
ly

 3
0
, 
2
0
2
1
 



the multiplicity two resonance junction and not due to finite
state space effects (SI Appendix, Fig. S4).

Conclusions and Future Outlook

In this work we have demonstrated a detailed and remarkable
classical–quantum correspondence by showing that a ubiquitous
feature of high-dimensional phase spaces, a resonance junction
on the Arnold web, is primarily responsible for the slowing down
of IVR in the quantum state space. Trapping near resonance
junctions is therefore expected (38) to have important ram-
ifications for mode-specific chemistry and control. However, for
further progress, several outstanding questions need to be an-
swered and we mention two of them. First, although the influence
of higher-order resonances in the Arnold web has been hinted at
in this work, the implications of such sparse regions of the web to
the quantum ergodicity threshold are largely unexplored and

warrant further study in terms of the rate of diffusion near various
resonance junctions (52, 58). In this context, apart from more
detailed study of the evolution of the Arnold web (59), including
the subdominant frequencies in the time-frequency analysis (44)
should yield deeper insights. Second, trapping near resonance
junctions is one among many possible dynamical barriers that can
arise in systems with ≥3 df. Identifying other relevant barriers in
the classical phase space and their effect on the quantum IVR
dynamics, particularly the potential competition in terms of
dynamical tunneling, interference, and localization, is still an
open problem.
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