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Abstract

Diabetic retinopathy (DR) is a significant reason for the global increase in visual loss. Studies show that timely treatment

can significantly bring down such incidents. Hence, it is essential to distinguish the stages and severity of DR to recommend

needed medical attention. In this view, this paper presents DRISTI (Diabetic Retinopathy classIfication by analySing reTinal

Images), where a hybrid deep learning model composed of VGG16 and capsule network is proposed, which yields statistically

significant performance improvement over the state of the art. To validate our claim, we have reported detailed experimental

and ablation studies. We have also created an augmented dataset to increase the APTOS dataset’s size and check how robust

the model is. The five-class training and validation accuracy for the expanded dataset is 99.21% and 75.50%. The two-class

training and validation accuracy on augmented APTOS is 99.96% and 97.05%. Extending the two-class model for the mixed

dataset, we get a training and validation accuracy of 99.92% and 91.43%, respectively. We have also performed cross-dataset

and mixed dataset testing to demonstrate the efficiency of DRISTI.

Keywords Diabetic retinopathy · Deep learning · VGG16 · Capsule network · Image classification

1 Introduction

Globally, studies have projected that more than 360 mil-

lion people will be at risk of developing diabetic retinopathy

(DR) by 2030 [31]. Figure 1 [30] shows an illustration of

the medical condition. Here, we can observe how a normal

human being will see the world (Fig. 1a) versus how a DR

patient will see (Fig. 1b), where the latter is severely affected.

Clinically, DR is divided into four stages [6]. They are: (i)

non-proliferative, (ii) moderate non-proliferative, (iii) severe

non-proliferative, and (iv) proliferative. Hence, it is essential

to categorize and stage DR’s severity for adequate therapy.

Researchers have proposed several methods for DR clas-

sification. Amin et al. [12] proposed a technique for exudates

detection in fundus images. Jain et al.’s [11] approach using

pretrained networks resulted in an accuracy of 80.40%. Pratt
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et al. [20] used the CNN method to classify DR stages, yield-

ing a specificity, accuracy, and sensitivity of 95%, 75%, and

30%, respectively. Suriyal et al. [26] proposed a mobile appli-

cation for real-time detection of DR with an accuracy of

73.3%. Masood et al. [16] discussed a transfer learning model

supported Inception-V3 for DR detection on the EyePACS

database with 48.2% accuracy. Harun et al. [8] discussed a

Multilayered perceptron trained with Bayesian regulariza-

tion that provides a much better classification performance

than the use of Levenberg–Marquardt with a training and

testing accuracy of 72.11%, 67.47%, respectively. Wang, X.

et al. [29] used pretrained models, AlexNet, VGG16, and

Inception-v3, to classify DR. The average cross-validation

accuracy of AlexNet, VGG16, and Inception-V3 are 37.43%,

50.03%, and 63.23%, respectively. A new pixel-wise score

propagation model was proposed in [28] for the interpretable

model for DR classification. Shankar et al. [22] have pro-

posed a Synergic Deep Learning (SDL) model for DR image

classification. In all such methods, the primary focus was to

apply an off-the-shelf solution without getting into the net-

work’s core, resulting in lower accuracy.

Recently, capsule network (CapsNet) got a lot of attention

in medical technology as an alternative to CNN. Mobiny et al.

[17] applied CapsNet in lung cancer screening and observed
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Fig. 1 A qualitative comparison of normal vision and vision affected

by Diabetic Retinopathy (DR) [30]

superior results than CNN when the training set is small.

Afshar et al. [2] proposed COVID-CAPS, for COVID-19

detection using X-ray images with an accuracy of 95.7%, a

sensitivity of 90%, specificity of 95.8%, and Area Under the

Curve (AUC) of 0.97. Zhu et al. [33] introduce a method con-

sisting of CNN and original capsule networks as a 1D deep

capsule network and 3D deep capsule network for hyperspec-

tral image classification. However, there has been no attempt

to explore the possibility of CapsNet in DR classification.

This paper proposes DRISTI (Diabetic Retinopathy clas-

sIfication by analySing reTinal Images), a deep learning

model for DR classification. The primary contributions of

this paper are: (i) designing a hybrid deep learning model

that combined VGG16 and the capsule network for the clas-

sification of retinal images into five classes (one non-DR and

four DR classes), (ii) extensive experimental studies on six

publicly available datasets and comparing the results with

seven different state-of-the-art models to achieve the best

performance, (iii) achieving almost 5% gain over the best

performing technique proposed in the literature.

The remaining of the paper is organized as follows. Details

of the proposed methodology are given in Sect. 2. Section 3

gives a thorough explanation of the experimental study con-

ducted in this work. In Sect. 4, the concluding remarks and

future plans are highlighted.

2 Proposedmethodology

Convolution neural networks (CNNs) have some limitations,

and studies in the literature established that capsule networks

could overcome some of these limitations [13]. After a thor-

ough review of the papers on capsule networks, we concluded

that pure convolution networks are not natively spatially

invariant [13]. With pooling layers, convolution neural net-

works can learn the separating features of objects. However,

they do not reflect the location of the item. These spatial

features can seldom help determine the object’s class and

hence affect the classification. The introduction of capsule

networks fixes this approach and can model an object’s spa-

tial or viewpoint variability in an image.

In the capsule network, neurons can encode the spatial

information and the probability of an object being present

[13]. This property of capsule networks makes it very encour-

aging in the case of medical image analysis. It is one of

the motivations behind applying capsule networks to DR

fundus images. Given the amount of data available in the

publicly available datasets, we have adapted a transfer learn-

ing approach. We followed VGG16, Resnet50, Inceptionv3,

and Xception architectures for the pretrained model because

of their established effectiveness and ease of implementation.

ImageNet, as a lot of transfer learning literature shows, is the

best way to go in this case.

2.1 Network architecture

Figure 2 depicts the network structure of DRISTI, where a

few intermediate layers are not shown for the sake of clar-

ity. A literature review reveals that increasing the number of

convolution layers allows the network to learn more buried

features. Motivated by the fact that the deep neural network

layers gradually know from simple to complex components

from the samples, we decided to go for VGG16 and then

increase the depth by using residual networks. Surprisingly,

Fig. 2 A schematic illustration of the architecture of our proposed model DRISTI
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Table 1 Details of the network architecture of DRISTI

Layer (type) Output Shape Param#

Input1 (InputLayer) (0, 224, 224, 3) 0

Conv1 (Conv2D) (0, 224, 224, 64) 1792

Conv2 (Conv2D) (0, 224, 224, 64) 36928

MaxPool2D (0, 112, 112, 64) 0

Conv1 (Conv2D) (0, 112, 112, 128) 73856

Conv2 (Conv2D) (0, 112, 112, 128) 147584

MaxPool2D (0, 56, 56, 128) 0

Conv1 (Conv2D) (0, 56, 56, 256) 295168

Conv2 (Conv2D) (0, 56, 56, 256) 590080

Conv3 (Conv2D) (0, 56, 56, 256) 590080

MaxPool2D (0, 28, 28, 256) 0

Conv1 (Conv2D) (0, 28, 28, 512) 1180160

Conv2 (Conv2D) (0, 28, 28, 512) 2359808

Conv3 (Conv2D) (0, 28, 28, 512) 2359808

MaxPool2D (0, 14, 14, 512) 0

Conv1 (Conv2D) (0, 14, 14, 512) 2359808

Conv2 (Conv2D) (0, 14, 14, 512) 2359808

Conv3 (Conv2D) (0, 14, 14, 512) 2359808

MaxPool2D (0, 7, 7, 512) 0

Conv1 (Conv2D) (0, 1, 1, 256) 6422784

Reshape1 (Reshape) (0, 1, 256) 0

Capsule1 (Capsule) (0, 5, 16) 20480

Lambda1 (Lambda) (0, 5) 0

as shown in Sect. 3, our VGG16 model performs better than

all other systems for both the two-class and five-class models.

We have adapted the VGG16, Resnet50, and Xception net-

works in our framework. These networks are all pretrained

on the ImageNet dataset.

CapsNets are capable of outperforming CNNs [21].

Table 1 shows the model parameters of DRISTI. We have

replaced the top layers of the base model with our layer,

which improved the results. In every capsule layer, a capsule

yields a local grid of vectors to the type of capsule in the

next layer. Then, the different transformation matrices for

each grid member and each capsule type are used to obtain

an equal number of classes. We have combined a convolu-

tion layer with an output depth of 256 and a kernel size of

7 × 7 with a stride size of 1. We have passed the parameters

2, 16, and 4 to the two-class model capsule, while 5, 16, and

4 for the five-class model. The order of these parameters is

the number of capsules, the capsules’ dimension, and rout-

ing. The remaining parameters passed to the capsule are set

to the default value. Finally, we have used the margin loss

with a batch size of 32, keeping the number of epochs set to

500.

2.1.1 Residual learning

Residual learning networks were proposed to ease the train-

ing of networks that are substantially deeper than those used

previously [9]. The rationale of such a choice is their excel-

lent performance on the ImageNet test set with an error of

3.57%. The number of filters is less compared to VGG16.

The formal building blocks for residual networks are:

y = F (x, {Wi }) + x . (1)

Here, x, y are the input and output vectors. We need to

learn the residual map represented by the function F . These

residual links speed up the convergence rate and avoid the

problem of vanishing gradient.

2.1.2 Inception and Xception

Inception nets extracts feature by computing 1×1, 3×3, and

5 × 5 convolutions within a network module. The correla-

tion between channels is mapped differently from the spatial

correlation [27] by decoupling the mapping of cross-channel

correlation and spatial correlations in the feature maps of

CNNs. The idea of the Xception network is based on depth-

wise separable convolution layers [4]. The advantage of this

architecture is that it is straightforward to define and highly

customizable.

2.1.3 VGG16model

The VGG16 model has an input size of 224 × 224 during

training, where an image is preprocessed by subtracting the

mean RGB value for each pixel [24]. When the images pass

through various network layers, filters with a small receptive

field of size 3 × 3 are used, with a stride of 1 pixel. The

spatial padding is 1 pixel for 3 × 3 convolution layers to

preserve the spatial resolution. The spatial pooling is carried

out by five max-pooling layers, which follow some (but not

all) of the convolution layers. The max-pooling operation

is performed with a stride of 2 on a 2 × 2 pixel window.

Three fully connected layers follow a stack of fully connected

layers. The 1st two fully connected layers have 4096 channels

each, and the 3rd one contains 1000 channels.

2.2 Loss function

The loss (l j ) is calculated as [21]:

l j = A + λB. (2)

The first part (i.e., A) is calculated for the correct DR cat-

egory, while the second part (i.e., B) is calculated for the

incorrect DR category. The λ coefficient, with a value of 0.5,
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is introduced in this context for numerical stability during the

training process. The individual cost components are defined

as:

A = T j max(0, a − ||s j ||)
2 (3)

B = (1 − T j )max(0, ||s j || − b)2. (4)

The terms a and b are hyperparameters and are set to 0.9 and

0.1, respectively. Whenever the DR class j is present, the

term T j is 1, while for all other classes, which are absent for

them, the value of T j is 0. We have calculated the total loss

over the sum of the losses of every output capsule. In cases

where T j will be 1 the first part of Eq. 2 will remain active.

The value of a is set as 0.9, which means that when the l2

norm of s j is greater than 0.9, it is a 0 loss. Otherwise, it will

be a nonzero loss. Therefore, if the probability of predicting

the correct label is greater than 0.9, it is 0 loss. The second

case will return a 0 loss if the correct label is not matched,

and the probability of predicting an incorrect label is less

than 0.1. In this case, T j is 0.

The loss of the decoder part is squared error and con-

tributes less when compared to the capsules. We have done

this to fix the networks and focus on the classification of the

image. The final output v j for class j is computed as follows

[21]:

v j =
||s j ||

2

1 + ||s j ||2
s j

||s j ||
(5)

where the prediction vector û j |i = Wi j ui and v j is the vector

output of capsule j and s j is its total input.

s j =
∑

i

ci j û j |i . (6)

2.3 Transfer learning for DR classification

Given a source domain S and learning task T , a target

domain D and learning task T , transfer learning aims to help

improve the learning of the target predictive function fT () in

D using the knowledge in S and T . Here, the notable concept

is S �= D , or T �= T . In the context of recognition task for

cross-dataset testing, the goal of transfer learning is to learn a

robust classifier F (.) from a dataset (i.e., target dataset DT )

by effectively utilizing the knowledge offered through other

datasets (i.e., source datasets DS ). In DRISTI, a pretrained

model on ImageNet is used. Hence, S is the domain of natu-

ral images, and T is various tasks in ImageNet. In our case,

neither the source domain’s samples are related to DR detec-

tion nor the task. The target domain (D) in our case is the

domain of retinal images, and the learning task (T ) is DR

classification. In DRISTI, we repurpose the learned features

by learning the mapping function F (.) from the S into D .

Fig. 3 Sample images showing affected and non-affected retina images

from various datasets

Table 2 Details of the datasets used in experiments

Dataset # Samples Classes

IDRiD 331 2

DIARETDB1 89 2

DIARETDB0 130 2

STARE 161 2

DRIVE 40 2

MESSIDOR-2 900 5

3 Experiment and results

The model is trained on Nvidia DGX II, using Python 3.7. We

have used API Keras version 2.2.4, Tensorflow-GPU version

1.14, Seaborn 0.9.0, Scikit learn 0.21.3 that were used to

implement the proposed framework.

3.1 Dataset

DRISTI is evaluated by performing experiments on IDRiD

[19], DIARETDB1 [14], DIARETDB0 [15], STARE [10],

DRIVE [18], and MESSIDOR-2 [1,5] datasets. Figure 3

depicts a few samples from these datasets. Table 2 sum-

marizes the details of the datasets. The target of any deep

neural network approach is to learn the optimal set of param-

eters during training. With the increasing number of learnable

parameters, the model demands a large number of training

samples. The number of examples available in the publicly

available dataset used for DR detection is few compared to

standard image datasets used to train any deep neural net-

work model. We account for these situations by introducing

our neural network with an augmented dataset (see Sect. 3.8).
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Table 3 Comparison of classification accuracy of several state-of-the-

art methods with DRISTI

Method Approach Accuracy

[32] CNN 44.22%

[25] CNN 56%

[25] CNN (two-class) 71%

[23] CAD system (two-class) 93.75%

[29] Pretrained model 63.23%

[3] CNN 74%.

[7] VGG16 CNN 75.83%

Ours VGG16+Capsule (five-class) 82.06%

VGG16+Capsule (two-class) 96.24%

Fig. 4 Confusion matrix for a two-class and b five-class classification

performance of DRISTI. In (b), the five classes are A: Severe, B: No-

DR, C: Moderate, D: Mild, E: Proliferate-DR

3.2 Results

DRISTI’s performance is compared with other state-of-the-

art models (see Table 3), where the boldface values indicate

the best performance. The five-class model has performed

better than even some two-class state-of-the-art models.

Moreover, our two-class model has outperformed every other

model on the list. For five classes, the highest training accu-

racy achieved is 99.60%, the highest validation accuracy

achieved is 82.06%, and the test accuracy obtained is 75.81%.

For the two classes, the highest training accuracy achieved

is 99.74%, the highest validation accuracy we have achieved

is 96.24%, and the test accuracy obtained is 95.50%. The

confusion matrices for the two-class and the five-class set-

ting are shown in Fig. 4a and b, respectively. The accuracy

and loss graphs for the two-class and the five-class model

are shown in Fig. 5. These plots indicate the training and

validation process of DRISTI.

3.3 Ablation study

In models like DRISTI having intermediate processing

stages, it is important to study the influence of intermedi-

ate stages. We have done an ablation study and compared

our model by changing the base model with different archi-

tectures. Such a comparison based on primary metrics is

undertaken. Table 4 shows the ablation study results on the

datasets. The base capsule model is also used for compar-

ison, and the results are presented in the same table. The

bold face values show the best performance across all vari-

ants. We can see that the VGG16 performs the best for two

classes as the five-class models when we compare it by the

validation accuracy. The Resnet50 model for two classes

closely follows it, but the Xception network outperforms the

Resnet50 for five classes. To summarize the research find-

ings, we have presented Tables 5 and 6 to show the precision,

recall, and F1-score of the predicted result for the five classes

and the two-class model, respectively, with the base model

as VGG16.

3.4 Performance on unseen samples

Learning paradigms assume that the training and test data

belong to the same distribution. However, when we deal with

the real-world scenario, we often come across test data with

different distributions than the training data. To investigate

how DRISTI performs on unseen data, we have conducted

experiments on unseen samples. Figure 6 depicts a few such

unseen examples and DRISTI’s performance on them. The

label at the top of each instance represents the prediction and

the actual values. The samples shown here are a portion of

the examples that are used for testing. Here, we can see that

some of the categories are predicted incorrectly. For example,

the first sample of the fourth row is predicted as No-DR.

However, it belongs to the DR class.

Fig. 5 Graphs of accuracy and loss for two-class and five-class problems during training and validation
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Table 4 Experimental results in

terms of classification accuracy

on ablation study

Approach Max Train Acc. Max Valid Acc.

VGG16 + Capsule (two-class) 99.74% 96.24%

VGG16 + Capsule (five-class) 99.60% 82.06%

Resnet50 + Capsule (two-class) 98.89% 96.07%

Resnet50 + Capsule (five-class) 96.73% 76.80%

Inception3 + Capsule (two-class) 99.91% 95.05%

Inception3 + Capsule (five-class) 99.36% 76.41%

Xception + Capsule (two-class) 100% 95.22%

Xception + Capsule (five-class) 99.46% 79.53%.

Capsule Network (two-class) 95.13% 93.68%

Capsule Network (five-class) 81.79% 74.07%

Table 5 Classification result of the five-class problem

Level Precision Recall F1-score Support

Severe 0.32 0.27 0.29 30

Normal 0.93 0.97 0.95 272

Moderate 0.64 0.73 0.68 151

Mild 0.59 0.36 0.44 56

Proliferative 0.49 0.40 0.44 45

Table 6 Classification result of the two-class problem

Level Precision Recall F1-score Support

DR 0.95 0.96 0.96 372

Normal 0.96 0.95 0.95 361

Fig. 6 Qualitative results of DRISTI showing the predicted vs. actual

class labels for the two-class problem

3.5 Cross-dataset testing

We have tested our highest performing VGG16 with the Cap-

sNet model on completely unknown samples. Out of the

datasets mentioned, we had taken the dataset MESSIDOR-

2 for five-class classification as it has appropriately labeled

five-class images. We have used our top-performing five-

class model to test on MESSIDOR-2. The rest of the datasets

have been tested in two classes. The testing accuracy of our

VGG16 model is shown in Fig. 7a. We can see that the accu-

racy with the IDRiD dataset is highest by a margin of 2.39%

when compared to the second highest DRIVE dataset for

two classes. A possible reason for such observation could be

the Indian context of APTOS (training) and IDRiD (testing)

datasets.

3.6 Experiments onmixed dataset

A single dataset contains a limited number of signature sam-

ples and fails to capture the input space’s entire gamut. To

see the effect on DRISTI’s performance while introducing

samples from other datasets, we have randomly taken 30%

of each dataset and combined them to create a mixed dataset.

The training and testing have been performed by splitting

the dataset into a proportion of 65% training and 35% test-

ing. The two-class classification results of this version of

DRISTI are shown in Fig. 7a. The APTOS dataset is the best

performer due to the more number of images received dur-

ing training. It even crosses the validation accuracy of the

mixed dataset on which the model was trained. The mixed

dataset performs better than or equal to every other test done

on the cross-dataset except on the STARE dataset. The ratio-

nale for this is the highly unbalanced nature of the dataset

when converted to a two-class. This is also a possible rea-

son for such improved performance on the images trained on

APTOS than when trained on a mixed dataset. The five-class

classification has not been shown as most of the datasets that

we have used and available in the literature are two-class, so
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Fig. 7 Quantification of cross-dataset and mixed dataset perfor-

mance of DRISTI on D1:IDRiD, D2:DIARETDB1, D3:DIARETDB0,

D4:STARE, D5:DRIVE, D6:MESSIDOR-2, D7:APTOS datasets
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Fig. 8 An illustration of the effect of number of training samples on

DRISTI’s performance

it was impossible to create a proper five-class mixed dataset

for performing training.

3.7 Impact of training size

The exploitation of high-order complex data raises new

research challenges due to the high dimensionality and the

limited number of ground truth samples. The number of train-

ing samples is a critical factor that determines a model’s

classification accuracy. Figure 8 depicts the effect of change

of training samples on the performance of DRISTI. The

horizontal and vertical axes represent the number of image

samples and the percentage accuracy, respectively. In the sin-

gle image set, we see that neither the training accuracy nor

the testing accuracy improves drastically but shows signs of

progress. For the mixed dataset, we see a peak presented in

Fig. 8b. This is because a 65 percent mark shows the best

result, i.e., we get the best testing accuracy when the ratio

of training to testing is 65:35. Hence, for DRISTI, we have

chosen 65% of samples for training.

3.8 A study on an augmented dataset

We have augmented the APTOS-19 dataset by changing the

rotation range, width, and height shift range. The images have

been horizontally flipped with a low shear and zoom range

of 0.2 to keep the distinguishing features. We have done this

to ensure that the model holds valid for a bigger dataset,

thus being more general. Figure 7b depicts the cross-dataset’s

testing results and mixed dataset scenarios. We use 29, 101

augmented images for five-class, and the highest training and

validation accuracy obtained is 99.91% and 75.50%, respec-

tively. We tested the five-class model on 546 images and got

a testing accuracy of 74.73%. We have also extended our

previous two-class cross-dataset, and mixed dataset models

to the two-class augmented dataset. We use 21, 024 images

from augmented APTOS for training on two classes. The

number of images is lesser than five classes to balance the

two types. The highest training and validation on the two-

class augmented APTOS dataset is 99.96% and 97.05%,

respectively. For the mixed dataset, we have used 29, 009

for images. Additional 8000 images are augmented and col-

lected from the different datasets mentioned in Fig. 7. Our

curated dataset has 70% of the expanded APTOS dataset

and 30% of the remaining un-augmented datasets. The pro-

cess is similar to how we created a mixed dataset in the

previous section except for the augmentation. The highest

training and validation accuracies are 99.92% and 91.43%,

respectively. We see an opposite scenario when compared to

training on an un-augmented APTOS. The mixed augmented

dataset has not performed very well when compared to the

cross-dataset. Augmenting the dataset changes the difference

between images and decreases the separability between them.

That is why creating a mixed dataset on such extended results

further confuses the model, lowering the effects.

3.9 Statistical significance test

We followed the two-proportion Z-test to justify whether the

differences between different algorithms (and their variants)

are essential in the statistical sense. Here, the proportion

means that the average percentage accuracy of DRISTI across

the dataset. The null hypothesis for the test is that the propor-

tions are the same, while the alternative hypothesis is that the

proportions are not the same. In our experiments, we have

considered an alpha level of 5%. The Z-score obtained in our

case is 7.68. Comparing the calculated Z-score with the table

Z-score (1.96) shows Z-score is larger. Hence, we rejected

the null hypothesis and claim that DRISTI has significantly

better performance over others.

4 Conclusion

This paper presents DRISTI, a combination of VGG16

and capsule networks, to classify DR from retinal images.

DRISTI performs with an overall validation accuracy of

82.06% and testing accuracy of 75.81% for five-class and
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96.24% validation accuracy and 95.50% testing accuracy for

two-class classification. The experiment also shows that our

classification system can assist the oculist in diagnosing DR

accurately with more speed and could potentially boost DR

patients’ screening rate. The dataset that we have used for our

experiment was unbalanced for the class distribution. If we

use an improved dataset, then the results can be improved.

We have also done testing on a cross-dataset to show that our

model is robust for unknown data.
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