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DOUBLY NONLOCAL SYSTEM WITH
HARDY-LITTLEWOOD-SOBOLEV CRITICAL NONLINEARITY

J. Giacomoni? T. Mukherjee’ and K. Sreenadh?

Abstract

This article concerns about the existence and multiplicity of weak solutions for the follow-
ing nonlinear doubly nonlocal problem with critical nonlinearity in the sense of Hardy-
Littlewood-Sobolev inequality
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where € is a smooth bounded domain in R™, n > 2s, s € (0,1), (—A)® is the well known

2n —
i the upper critical exponent in the Hardy-

fractional Laplacian, u € (0,n), 2}, =
Littlewood-Sobolev inequality, 1 < g < 2 and \,0 > 0 are real parameters. We study
the fibering maps corresponding to the functional associated with (Pys) and show that
minimization over suitable subsets of Nehari manifold renders the existence of atleast two
non trivial solutions of (Py ) for suitable range of A and ¢.
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1 Introduction

Let  C R™ be a bounded domain with smooth boundary 9 (at least C?), n > 2s and s €

(0,1). We consider the following nonlinear doubly nonlocal system with critical nonlinearity:

2*
(—=A)*u = Mu|9%u + </ [P )™ dy) lu* "%y in Q
P 2 .
(Prs) (—=A)*v = 6|v|9 %0 + (/Q 7"2(3);’: dy) lv|? 20 in Q

u=v=0inR"\ Q,

2 _
where Q) is a smooth bounded domain in R, n > 2s, s € (0,1), u € (0,n), 2; == 2M is
n—2s

the upper critical exponent in the Hardy-Littlewood-Sobolev inequality, 1 < ¢ < 2, A\,d > 0

are real parameters and (—A)?® is the fractional Laplace operator defined as

(=A)*u(z) = 2C"P.V. /R ) % dy

where P.V. denotes the Cauchy principal value and C7' = 2021 % I' being the
Gamma function. The fractional Laplacian is the infinitesimal generator of Lévy stable dif-
fusion process and arise in anomalous diffusion in plasma, population dynamics, geophysical
fluid dynamics, flames propagation, chemical reactions in liquids and American options in
finance, see [2] for instance. We also refer [21] to readers for a detailed study on variational
methods for fractional elliptic problems.

In the local case, authors in [3] studied the existence of of ground states for the nonlinear

Choquard equation

—Au+V u—</ >up_2u in R", 1.1
(@) L ay) (1)

where p > 1 and n > 3. Recently, Ghimenti, Moroz and Schaftingen [14] proved the existence

of least action nodal solution for the problem
—Au+u= (I, * |u/*)u in R",

where * denotes the convolution and I, denotes the Riesz potential. Further results related to
Choquard equations can be found in the survey paper [22] and the references therein. Alves,
Figueiredo and Yang [1] proved existence of a nontrivial solution via penalization method for

the following Choquard equation
—Au+V(x)u= (|Jz| ™"« F(u))f(u) in R™,

where 0 < u < N, N = 3, V is a continuous real valued function and F' is the primitive

of function f. In the nonlocal case, Choquard equations involving fractional Laplacian is a
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recent topic of research. Authors in [7] obtained regularity, existence, nonexistence, symmetry

as well as decays properties for the problem
(=A)*u + wu = (J2|*7™ % [ulP) |u[P~?u in R",

where w > 0, p > 1 and s € (0,1). Fractional Choquard equations also known as nonlinear
fractional Schrodinger equations with Hartree-type nonlinearity arise in the study of mean
field limit of weakly interacting molecules, physics of multi particle systems and the quantum

mechanical theory, etc. These are recently studied by some authors in [6, 8, 20].

Concerning the boundary value problems involving the Choquard nonlinearity, the Brezis-

Nirenberg type problem that is

Ay — e 22 e R
Au = A\u+ dy ) Jul* “uin Q, u=0in R"\ Q
alz—yl

where Q is bounded domain in R", was studied by Gao and Yang in [11]. They proved the
existence, multiplicity and nonexistence results for a range of A\. Moreover, in [12] authors
proved the existence results for a class of critical Choquard equations in critical case. Among
the very recent works, we cite [13] where Shen, Gao and Yang obtained existence of multiple
solutions for non-homogenous critical Choquard equation using the variational methods when
0 < A < A1, where A1 denotes the first eigenvalue of —A with Dirichlet boundary condition.

Coming to the system of equations, elliptic systems involving fractional Laplacian and homo-
geneous nonlinearity has been studied in [16, 18, 9] using Nehari manifold techniques. Guo et
al. in [17] studied a nonlocal system involving fractional Sobolev critical exponent and frac-
tional Laplacian. We also cite [5, 10, 29] as some very recent works on the study of fractional
elliptic systems. However there is not much literature available on fractional elliptic system
involving Choquard type nonlinearity. And fractional elliptic system with critical Choquard

inequality has not been studied yet, to the best of our knowledge.

In this present paper, we discuss the existence and multiplicity result for the problem (P s).
We seek help of the Nehari manifold techniques where minimization over suitable components
of Nehari manifold provide the weak solution to the problem. We divide the problem into
two cases that is 0 < pu < 4s and p > 4s and show existence of atleast two solution while
bounding the parameters A and ¢ optimally. The existence results in the first case is optimal
in the sense of obtaining the constant © (defined in Lemma 3.3). We also reach the expected

first critical level that is
~ 2n—pup
n—p+2s (C’;‘Sf) nom

I
Ao(ur,v1) + ST— 5

where (u1,v1) denote the first solution of (P s), in this case (see Lemma 4.9) analogously to

the local setting case (refer Lemma 2.4 in [12]). Whereas in the latter case, we obtain the



multiplicity for a smaller range of A and § that is ©¢ (defined in Theorem 4.13) as compared
to ©. We use the blow up analysis involving the minimizers of the embeddings to achieve the
goal. In the case 0 < p < 4s, our results are sharp in the sense that the restrictions on the
parameters A and § are used only to show that Nehari set is a manifold. Moreover using an
iterative scheme, regularity results known for nonlocal problems involving fractional laplacian
and strong maximum principle, we show the existence of a positive solution (see Proposition
4.8).

Theorem 1.1 Assume 1l < q <2 and 0 < u <n then there exists a positive constants © and
©¢ such that

2 2
1. if p < 4s and 0 < A\27a + 6279 < O, the system (P\;) admits at least two nontrivial
solutions,

2 2
2. 4f p>4s and 0 < A2-7 4+ 62-9 < O, the system (P ;) admits at least two nontrivial
solutions.

Moreover, there exists a positive solution for (P ).

Remark 1.2 We remark that the solution obtained for (Pys) (other than the positive solu-

tion) is not even semi trivial. The proof follows along the same line as section 5(pp. 841) of

[4]-

Our paper is organized as follows: Section 2 contains the functional setting and various
asymptotic estimates involving minimizers of best constants. We analyse the fibering maps
associated to the Nehari manifold in section 3. Lastly, section 4 contains the proof of main

result where we show the existence of atleast two non trivial solutions.

2 Function Spaces and some asymptotic estimates

Consider the function space H*({) as the usual fractional Sobolev space W*2(Q) defined by

u\xr) —u 2
HS(Q):{ueL2(Q): /Q Q%dxdy<+w}.

Setting @ := R?"\ (CQ x C) where CQ = R" \ Q, we define the Banach space
_ 2
X = {u : R™ — R measurable : u € L*(Q), %dxdy < —i—oo}
0 —

with the norm defined as

1
ullx = llullLz@) / ule) — u)P dy) = lull L2 + i/u(—A)su dady
( y’n+28 ( ) ng Q

[NIES
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If we set Xo :={u e X : u=0inR"\ Q}, then it can be shown that X, forms a Hilbert
space with the inner product

@mazly“”‘“@m“@‘”@mu@

|z — y[rt2e

for u,v € Xg and thus the corresponding norm is

1
(@) —ul)? .\
HW%—PM—</——7W§rd® |

Then Xy can be equivalently considered as completion of C§°(£2) under the norm || - ||x. It

holds that Xy — L"(9) continuously for r € [1,2%] and compactly for r € [1,2¥), where

) =S8
. _ 2n

s

5 Now consider the product space Y := Xy x Xg endowed with the norm
n — 2s

| (u,v)||? == ||ul|* + ||v]|?. Before defining the weak solution for (Py 5), we need to certify that
whenever u € X, the term

2* 2%
:Ewu2u%®_//w Pl
/u| 25 o A y

is well defined. This is certified by the following well known Hardy-Littlewood-Sobolev in-

equality.

Proposition 2.1 (Hardy-Littlewood-Sobolev inequality) [pp. 106, Theorem 4.3, [19]]
Let t,r > 1 and 0 < p < n with 1/t + pu/n+1/r =2, f € L'(R™) and h € L"(R™). There
exists a sharp constant C(t,n,u,r), independent of f,h such that

/n N |$_ |M)d dy < C(t,m, s )| f || ey 12| o gy - (2.1)

Ift=r= 23”#

EI*(ﬂ '
C’(t,n,,u,r) = C(”)M) =72 F(fL— é)

In this case there is equality in (2.1) if and only if f = (constant)h and
W) = AG? + e — o) "5
for some A€ C,0#~v€R and a € R".

Remark 2.2 For u € H*(R"), if we let f = h = |ulP then by Hardy-Littlewood-Sobolev

inequality,
) [Plu(y)
d d
/}/n =y

is well defined for all p satisfying

2n —pu 2n —pu
2, := <p< =27,
a < n >_p_<n—23> ’




Next result is a basic inequality whose proof can be worked out in a similar manner as proof
of Proposition 3.2(3.3) of [15].

2n
Lemma 2.3 For u,v € L% (R"), we have

Ju(@)Plu(y) P )P 2
/n/n \x—y\“ dxdy<</n/n ]a:—y\“ da;dy) </n/n ]a:—y\“ dxdy) ,

where € (0,n) and p € [2,,,2}].

Proof.  We recall the semigroup property of the Riesz potential which states that if I,
R™ — R denotes the Riesz potential given by

I, = A—, where A, ﬁ
‘LL”" @ F(%) an/29a

Then 1, satisfies [, = I/9 * I/2. Using this alongwith Hélder’s inequality we obtain

z)[Plo(y) P
//n |z — y|+ dudy

1
PYolPdy — p p
= /n(]n p o |ufP)|vlPde = v Rn(Inw * |u )(Ingu * [v|P)dz

2

gAl </ (Lo ful?) dx>1/2 </ (Lo o) x>1/2
= (L Lt dy) (L L Rt dea)

Therefore, it easily follows using Lemma 2.3 that for every (u,v) € Y, / (||~ s |u|?m)|v]?r da <

Y
+00. In the context of Hardy- Littlewood-Sobolev inequality that is Proposition 2.1, for any
u € Xy we get a constant C' > 0 such that

25\ 1025 |u(z ’U( )\
[ el < fuiafiaz = [ | |$_ Doty < Ol g (22)

For notational convenience, if u,v € Xy we set

Blu,v) = /Q (T~ % fuf2) o -

Definition 2.4 We say that (u,v) € Y is a weak solution to (Pys) if for every (¢,v) € Y
it satisfies

C5 ({u, 9) + (v, 9)) = /KZ(AIUIq_2u¢+5IUIq_2v¢)d$

+/(|;L~|—ﬂ* v|%) |u 2201 da.
Q

%2u¢p dz + /Q(|x|_“ * |u|2;)|v
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Equivalently, if we define the functional I 5:Y — R as

n

o 1
Ds(u) = =~ 1w, 0)1* = = / (Alul? + 6[v[?) —
q.Ja

2
- B(u,v)
227

then the critical points of Iy 5 correspond to the weak solutions of (P 5). A direct computation
leads to I, 5 € C*(Y,R) such that for any (¢,1) € Y

(I 5(u,0), (6, )) = C ((u, §) + (v, 9h)) — /Q(MU\‘]_2U¢+5\U\‘1_2U¢) dz

(2.3)
: /Qw:\‘“ *[oP)ufPug da — /an!‘“  ul?i) o 2oy da.
We define
2
u(z) —u(y
/ ’ ‘; )_ ’nS—ZZ‘ dzdy Hqu
S, = in R2n Y 277 = in —y -
u€Xo\{0} < / f? dx) : weXo\0} [[ll7 oz gy
Consider the family of functions {U.} defined as
L2 0
U(z)=¢ "2 u <€>,3:€R (2.4)
where u*(x) = a | 2 |, a(x) = — @) and a(z) = a(B? + ]az\2)_"32$ with a € R\ {0}
§2s Iall 25 g,

and 8 > 0 are fixed constants. Then for each € > 0, U, satisfies
(=A)u = |u|*"2u inR"

and verifies the equality

. 2 . n
[ [ e [ aeest e

For a proof, we refer to [24]. Next, in spirit of the inequality (2.2) we define the best constant

[ v,
R2n

|z —y[ 2

2
g "

SH.— inf I =
2;:dx) N B, )

uEXo\ {0} ]
( [ Gl )
Rn

Lemma 2.5 The constant ST is achieved by u if and only if u is of the form

n—2s

t 2
C|— , r€R"?
2 + |z — x0)?

for some xg € R", C' > 0 and t > 0. Moreover,

SH — _ S (2.6)

C(n,p)

¥
=i



Proof. By the Hardy-Littlewood-Sobolev inequality we easily get that
Ss

SH ﬁ.
C(n, p)*

s

v

Also from Proposition 2.1 we know that the inequality in (2.1) is an equality if and only if u
is of the form

n—2s

t
C|l———— R™.
<t2+ya;—xoy2> e

While we know that if u is of this form then it also forms a minimizer for the constant S,
thus we obtain the result and (2.6) follows directly. |
We set

~ 2 2

SH_ g I, 0)] P [R5

OO0} ([ (1ol ¢ Jul2i) o2 dz) T @I MOO) g

and show the relation between S and S in the following lemma. The argument follows

closely the line of Lemma 3.3 of [4] but for sake of completeness, we include it here.
Lemma 2.6 There holds S = 25!

Proof. Let {gr} C Xo be a minimizing sequence for Sf . Let 1,79 > 0 be specified later and

set the sequences up = r1gr and vy = rogg in Xg. From the definition of Sf we have

H < <r%+r§> g |I? _ (7‘_1 n 7‘_2> g |I? (2.7)
S —_ i - i . .
i B(gk, gr) " "2 "\ B(gk, i) %

Let us define the function f : RT — R* by setting f(x) = x + 2~!. Then it is easy to see
that f attains its minimum at xp = 1 with the minimum value f(1) = 2. We choose 71,72 in
(2.7) such that r; = ry and letting & — oo in (2.7) we get

SH <281 (2.8)

To prove the reverse inequality we consider the minimizing sequence {(ug,vg)} C Y\ {(0,0)}
for S'f We set wy, = rivg for 1, > 0 with B(ug,ur) = B(wg,wy). This alongwith Lemma
2.3 gives

B(uk,wk) < B(uk,uk)%B(wk,wk)% = B(uk,uk) = B(wk,wk).

Thus we obtain

2 2 2 2
U, V Uk, U u B w
ol Mool |l e
B(ug, vg) % B(uy, wy,) % B(ug, uy) % B(wg, wy,) %

> f(ry) ST > 280
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Now passing on the limit as k — oo we get
288 < 51 (2.9)

Finally from (2.8) and (2.9) it follows that S = 2S5H. ]

We recall the definition of U, from (2.4). Without loss of generality, we assume 0 € Q and
fix > 0 such that Bys C Q. Let n € C*°(R"™) be such that 0 <7 < 1in R", n =1 in Bs and
n=01in R™\ Bys. For € > 0, we denote by u, the following function

ue(z) = n(z)Ue(z),

for x € R™, where U, is defined in section 2. We have the following results for u. from
Proposition 21 and 22 of [24].

Proposition 2.7 Lets € (0,1) andn > 2s. Then, the following estimates holds true as e — 0

2
- uE xr) — ué y 7= n—28
¥ R2n | |Ez: )— y|”+(2s)| dedy<SF + O("™),

(ii) / % do = S 4+ 0,
Q

(iii)

Cs€% + O(e"%) if n>4s
/ lue(x)[* do><{ Coe®|loge| + O(e2) if n = 4s ,
Cse"25 4+ O(e) if n <4s

for some positive constant Cs, depending on s.

Using (2.6), Proposition 2.7(i) can be written as

L e O gray < 55 1 o) = (10 F5sH)F o). @)

|z —y["+e

Proposition 2.8 The following estimates holds true:

n—2s

Iu (2) [P fue (y) P e e
dzdy < (Cln, )@= (ST + 0(e),

|z —y|#

and

n—2s

</ [ Ll dm@/) T (s - o (@) B
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Proof. By Hardy-Littlewood-Sobolev inequality, Proposition 2.7(ii) and 2.6, we get

n—2s

2% 2n—p
!w—y\“
n—2s

é(C(n,u))%lluelligg(mZ(C(n,u))% F (s v o) T

= (Clna ) 5 <<0<n, W) FE (SH)E 1 0<e“>) o

n(n—2s)

= (C(n, ) == (S) ">

+O( ™).

Next, we consider

2],

// [uc(= \ue y)[™ dzdy
\x—y!“
/ / [uc( ()I* dxdy—/ / (y)[* dzdy
Bs J B; |33—Z/|” Bs J B; |33—l/|“
2" 2"
/ / z)|*|Uec(y) " dady 2/ / |Ue(@)[*#|Ue(y)[* dudy
n JRn ’33 -yl R\ Bj; J Bs |z — yl|~

/ / |Ue()|*#|Ue(y)[* dady.
R\ B; JR"\ Bj |3:—y|“

We estimate the integrals in right hand side of (2.11) separately. Firstly to estimate the first

integral, by Lemma 2.5 we get that {U.} forms minimizers of S. Therefore using (2.5) we
get

* 2%
2)|% |Ue(y)|% U2\ % s\ 25 | H 2t
Lo Lt = () "= (%) —cmanrsn®
(2.12)

Secondly, consider

2%
/ / ) [Pu U (y) [P dudy
R™\B; J Bs \x—y\“

M= 2n
<C2S/ / _ — dady
R™\Bs /B | — yli (1 + |2 |) N (1+| |)
2n MC25/ / 1 da:dy
R™\Bs JBs |z — y|+ (€2 + |z|? ) B (62 + |yl )

where Cy 5 is an appropriate positive constant. Let D := Bs x (R" \ Bs) then

1
2n ;LC2 / / Ty dxdy
R"\B; J Bs ]a: — y[“ (62 + ’33‘ ) B (62 + ‘y’ )2

1
— 62"_“02,3 (/ +/ ) e ST dzdy.
D{la—y|<1}  JD{lz—y|>1} ) |z —y|* (2 + |z]2) = (2 + |y|?) 2
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Consider
2n MCZS/ o d:ndy
DAfle—yl>1} o — ylk (€2 + [2]2) 7 (€2 + [y[2)
1
2y, | / — dzdy
Dfla—y[>1} (€2 + |z|? ) E (62+ ly|? )
cemmugy [ 4 / L
By (€2 + [2f2) *7" Jrn\Bs (&2 4 y[2) 3

ofe nyn—1q¢ d
< 62"_MC2,5/ EW/ 7y2nw = O(e").
o (LHB)27H Jrmp, (|y[2) ™2

Next we observe that the set D N {|x —y| > 1} is bounded and if z,y € D N {|z —y| > 1}
then there exist constants a, 8 > 0 such that o < |z|, |y| < 8. This implies that

1

2n MC’ZS/ - dzdy
Dfle=yl>1) [z — yl# (2 + |2[2) T (&2 + [yl?) 2
1
< gy, _ dady
Dfla-sl>1} [z — o (|22) 7T (Jy[2)
1
< 0(62"_“)/ —— dady = O(e"™H)
DAfle—y|>1} |7 — yl#
since p € (0,n). Therefore
) |2
U,
/ / )| ;E yI* dzdy < O(e2"7H). (2.13)
R™\Bj; J Bs \95 —y
Lastly, in a similar manner we have
2*
[ meEnE .,
R™\Bs JR"\ By |z —y|»
M 2n
< Cé,s/ / " dxdy
"\Bs SR |yl (14 [2[2) 72 (14 22) 2 (2.14)
1
e2n— e / / 5 dzdy
R\B; SR Bs [ — gl (€2 + [af2) T (€2 + [y|2) 7

1
< gy / / dady = O(2"1).
2 Re\ By JRA\ B, [T — Y|P |z]2nm Ry [2ne

where Cj , is an appropriate positive constant. Using the estimates (2.12), (2.13) and (2.14)
n (2.11), we get

n—2s

2% n—=2s

< | [ |x—|ZTu) ‘ dmdy> T (BT - o)

This completes the proof. [ |
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3 Analysis of fibering maps

In this section we study the fibering maps and establish some preliminaries for the Nehari
manifold. It is easy to see that the energy functional I 5 is not bounded below on the whole

domain Y, so we minimize I 5 over proper subsets of the Nehari manifold. We define the set

N)\ﬁ = {(u,v) ey \ {0} : (IS\’(;(’U,,’U), (u,v)) = 0}

and find that the functional I) 5 is bounded below on N 5. Therefore we state the following

Lemma without giving the proof.
Lemma 3.1 1) is coercive and bounded below on Nk,é for any A\, 6 > 0.

Proof. Let A, >0 and (u,v) € N 5. Then it holds that

- " 1_ 1 2 _ 1_ 1 q q
Tuatin) = 2 (5 = g5z )0 = (G = 52 ) [l iy

1 1 9 1 1 2%-a o 2 _g
>on 2 N Ql 23 2— 2— 52 q
>C (2 222)u<u,v>u (q 22;:>' 5T 40708, (u,v)|

and this yields the assertion because 1 < g < 2. [ |
From the definition of N} g, it is obvious that (u,v) € N) s if and only if (u,v) # (0,0) and

O™, )| = /Q (Alul? + 8[v]7)dz + 2B(u, v).

Let us define the fibering map ¢, , : RT — R as

t2on , td +225,
Pup(t) = Dys(tu, tv) = [, 0)[]* = — / (Afu|? + dfo|")dz — —=B(u,v).
2 q Jo 2;“’
This gives another characterization of N 6 as follows
Nas = {(tu,tv) € Y\ {(0,0)} = ¢, ,(t) = 0}
because ¢, ,(t) = (I} 5(tu,tv), (u,v)). An easy computation yields
Pu(t) = tOF|(u, v) > — 177 / (Alul? + 8|v]?)da — 2271 B(u, v) (3.1)
Q

and ¢ , (t) = CF||(u, v)||* — (¢ — 1)t / (Alul? + 8o|)dz — 2(22;, = 1)t*+ 2 B(u,v). (3.2)
Q
If (u,v) € N5 then (3.1) and (3.2) gives
Po(1) = (2 =) O (u,0)||* + 2(q — 22;,) B(u, )

— (2 225)C7 ) (w) |2 + (223 —q)/()\|u|q+5|v|q)d:n.
Q
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Naturally, our next step is to divide N} s into three subsets corresponding to local minima,

local maxima and point of inflexion of ¢, , namely
Nfé = {(u,v) € Nygs: gpgﬂ)(l) = 0} and ./\f)(i(; = {(u,v) € N)s: gpgﬂ)(l) = 0}.

Our next lemma says that the local minimizers of Iy s on the Nehari manifold N, A5 are actually

its critical points. So it is enough to prove the existence of minimizers of I 5 on N .

Lemma 3.2 Let (u1,v1) and (ug,v2) are minimizers of Iy s on Njé and N 5 respectively.

Then (u1,v1) and (uz,v2) are nontrivial weak solutions of (Pys).

Proof. Let (uy,v1) € ./\/';f(S such that Iy 5(ui,vi) = inf I>\75(/\/'I6) and define V := {(u,v) €
Y i (J)5(u,0), (u,v)) > 0} where Jy 5(u,v) = (I} 5(u,v), (u,v)). So, /\/';:5 = {(u,v) € V:
Js(u,v) = 0} because for each (u,v) such that Jys(u,v) = 0, we have (J} 5(u,v), (u,v)) >0
if and only if @Zﬂ)(l) > 0. Therefore there exists Lagrangian multiplier p € R such that

I s(ur,v1) = pJ3 5(ur, v1).

Since (u1,v1) € ./\/';f(;, (1) s(u1,v1), (u1,v1)) = 0 and (J} 5(u1,v1), (u1,v1)) > 0. This implies
p = 0. Therefore, (u1,v1) is a nontrivial weak solution of (P)s). Similarly, we can prove
that if (ug,v9) € N):(; is such that Iy 5(ug,v2) = inf I>\75(N)\_75) then (ug,v9) is also a nontrivial
weak solution of (P s). |
For fixed (u,v) € Y\ {(0,0)}, we write ¢, ,(t) = #2207 (my(t) — 2B(u, v)) where

Mo (8) = 8272207 (u, 0) |2 — 49722 / (AJul? + dfv|*)da.
Q

Clearly, ¢, ,(t) = 0 if and only if m, »(t) = 2B(u,v) if and only if (tu,tv) € Ny s. So in order
to understand the fibering maps, we study the map m,,,. Since 2 < 22, and 1 < ¢ <2, we
get

t1_1)1(1)1+ Myy(t) = —o0 and t_l}gloo My o(t) = 0.

Claim: The map m,,,(t) has a unique critical point at

1
2—q

(227 —q)/Q(A\uyuayqu)dx
(225, — 2)C7|(u,v)|?

tmax(u,v) ==

This follows from

Ml (t) = (2 = 22t 2R CP | (u, 0)|* — (¢ — 22)t7 1% /(AIUI‘] +dv]?)da.
Q

u,v

We can check that tmax(u,v) solves the equation m;, ,(t) = 0. Also we can verify that since
l<qg<?

2+422% —q ) 2422} —¢q
(0-2)(22% -2 7 o) =

mZ,v(tmax(ua v)) = T

22;1 22f;
(22, — @)= (Jo(Alul? + 8lv|7)da) 7=
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implying that tmax(u,v) is the point of maximum for the map m, ,(t). The uniqueness
of the critical point of m, , at tmax(u,v) guarantees that m,,(t) is strictly increasing in
(0, tmax (u, v)) and strictly decreasing in (tmax(u, v), +00). If (tu,tv) € N, 5 then

1257w, (1) = @l o (1) = 1720, 1 (1)

which implies that (tu,tv) € /\/’I{;(or \o) if and only if mj, () > 0(or m;, ,(t) < 0).

Lemma 3.3 For every (u,v) € Y \ {(0,0)} and X\, satisfying 0 < ATq + 577 < O, where

1
2% _q * 251

2 -2 * * *

_[ien®E oog ) oI iy egen

O — B o) o2 S Q= , (3.3)
) w 7

there exists unique ty,ta > 0 such that t1 < tpe(u,v) < to, (t1u,t1v) € /\/';'5 and (tau,tov) €
N, 5. Moreover,

I s(tiu, tiv) = inf I 5(tu, tv) and I s5(tou, tav) = sup I s5(tu, tv).
te[ovtmaw(u,v)} t>0

Proof. Let (u,v) € Y\ {(0,0)}. Then we have already seen that
My o(t) = 2B(u,v) (3.4)

if and only if (tu,tv) € Nys. Since B(u,v) > 0, we say that (3.4) can never hold if we choose
A and 6 such that 2B(u,v) > My, (tmax(u, v)) and vice-versa. In this case, (u,v) € N, 5 and
hence not a weak solution to (Pys). Using Holder’s inequality and the definition of Sy, we
get

*
25 2—q

—q 2 2
9075 )77 +57°0) %"

25 —q _q
% 2

/(MW +6lelT)dz < 852105 (Aul? + 6]lo]9)< 55
Q

Also from the definition of S¥ and Lemma 2.6, we get
2B(u,v) < 2(SH) % | (u, )25 = 21255 % O, ), 0) |22 (3.6)

Using (3.5) we can estimate my, ,(tmax) as follows

22}, -2 227 —q 22}, —q
22 — 2\ 21 227, — 2\ 2-a (C™||(w,v)||?) 27
My v (tmax (U, v)) = %2 g “\ 5o p 22}, 2
I H (fQ()\]u\q + 5\U\q)dx) 2-q
22}, -2 22}, —q
_ <2223—2> 2 < 2—¢ > (CHl(u,v)||*) 2=
~ \ 99+ _ 29+ _ 22 —2
w4 p U (A ufa + dloje)dz) 2T
22% -2 22),—q .
> <22;: - 2>2q < 2-¢ ) (C3) = ||(u, v)|[*%
=  _ PR 2% _q (2% —1) (25 —q)(22],-2) ~
i B O R ) M OO S

(3.7)
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Now if A and ¢ satisfies 0 < Az%q + 52%‘1 < O, where © is given in (3.3), then

22% —2 22%

% CpT® -2
21287, 1) < (2%—2) ( 24 ) (C) ==
’ =\ 228 — 22% — s 921 (25-g)(e2;-2)
w4 A (Aﬁ +52%q)2“ A= Q] Zeo
(3.8)
which along with (3.7) implies that
0 < 2B(u,v) < 21_2358_2;C(n,u)H(u,U)Hmz < My (tmax (6, v)). (3.9)

Therefore there exist unique ¢1,ty > 0 with t] < tpax(u,v) < t2 such that
Muw(t1) = Muw(t2) = 2B(u,v)

and my, ,(t1) > 0 and m;, ,(t1) < 0. This implies (tiu,t1v) € ./\/';fé and (tau,tav) € Ny ; and
also ¢l ,(t1) > 0 and ¢y ,(t2) < 0. From the definition of ¢, we get

Iy 5(tau, tav) > Iy 5(tu, tv) > Iy 5(t1u, t1v) for each t € [t1,ta);

I s(tiu, t1v) < Iy s(tu,tv) for each t € [0,t;].
Thus

I s(tiu, tiv) = inf I 5(tu, tv) and I s(tou, tav) = sup Iy s(tu, tv).
t6[07tmax(u7v)} t>0

holds true. ]

We end this section with the following important lemma.
2 2
Lemma 3.4 If0 < A\2=7 +02-9 < O, where © is as in (3.3) then /\/')(\)75 =0.

Proof. We prove this by contradiction, so let (u,v) € N )(\)7 s- By Lemma 3.3 we know that
there exist t1,t2 > 0 such that ¢, ,(t1) = 0 = ¢, ,(t2) and ¢ ,(t1) > 0 > ¢ ,(t2). But
(u,v) € ./\/'25 means that ¢y, (1) = 0= ¢}, ,(1). This is possible when either t; = 1 or t3 = 1.
But this again implies that ¢ (1) > 0 or ¢y, (1) < 0, a contradiction. |

4 Existence of minimizers on N /\+ s and N

Lastly, in this section we present the proof of Theorem 1.1. We divide this section into two

subsections where we prove existence of first and second solutions respectively.

Lemma 4.1 Let {(ug,vr)} CY be a (PS). sequence that is
Iy 5(ug,vg) = cin R and Ig\ﬁ(uk,vk) —0inY™* ask — oo.

Then {uk, v} is bounded in'Y .
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Proof. Let {(ug,vr)} CY be a (PS). sequence for Iy 5 such that
Iy s(ug, vp) = ¢in R and I 5(ug, vx) — 0in Y™ as k — oco.

This can be equivalently written as

cr | |

S, w2 = 2 / (Alugl? + 8lopl9)de — = Blug, o) = ¢ + op(1), (4.1)
2 q.Jo 2#

C2 | (uk, o) || — /Q(Muk\q + dlog|T)dx — 2B (ug, vi) = or (|| (ur, vi)l]) (4.2)

as k — co. We show the boundedness of the sequence {(ux,vx)} in Y using the method of

contradiction. So assume, on contrary, ||(ug,v)|| — oo as k — oo and set

w h z Uk
R T TR e T
(s o) (e, v ) |
Clearly, ||(wg, zr)|| = 1, for all k& which implies that there exists a subsequence, still denoted

by {(wg,z)}, such that (wg,zr) — (w, z) weakly in Y as k — oo, for some (w,z) € Y. By

fractional Sobolev embedding results, we get
/()\\wqu + 6]24|7)dz — /()\\w\q +6]2|%)da as k — oo, (4.3)
Q Q

Putting up = wg||(uk, vi)| and vg = 2| (ugk, vg)|| in (4.1) and (4.2) and solving we get

n

Cr ug, 21 ||772 1 .
a2 = LI o4 0 = o, o) P52 B, 1) = on(0),
I

O (wry 2P = Il (e, wr) | 772 /Q(Alwqu + 0]z dz — 2| (ug, o) | 2B (wy, 21) = ok (1).

From above these two equations and (4.3), we get

O 0P = = 1 [ e+ 12+ 1)
(22* q) q— q q
oo ol [ Ol 17z + (1),

|> = 0 as k — oo which contradicts

Since 1 < ¢ < 2 and |[(ug,v)|| — oo we get ||(wg, 2x)
l(wg, zx)|| = 1 for all k. This completes the proof. |

Lemma 4.2 If {(ug,vr)} is a (PS). sequence for Iy s with (ug,vr) — (u,v) weakly in'Y
as k — oo, then 13\75(u,v) = 0. Moreover there exists a positive constant Dy depending on

1, q,s,n,Ss and ) such that
Ins(u,v) > —Do(AT 7 +673), (4.4)

where 2

2—q

(2-9)(22;, —q)
42;q

q
22*C"S.(n — pu+2s)\ 2 2-a
Dy — ( nC3Ss(n — p )> ok

(2n — )22, — q)
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Proof. Let {(ug.vg)} CY be a (PS). sequence for Iy ;5 such that (ug,v;) — (u,v) weakly in
Y as k — oo. This implies I} 5(ug,vk) = 0x(1) in Y™ as k — oco. Let (¢,%) € Y. From weak

convergence it follows that

lim <uk7 ¢> = <u7 ¢> and lim <,Uk71[)> = <’U71)[)>' (45)
k—o00 k—00
For ¢’ = Ll we also have

|92y, — u|™%u, Jog|? %0, — [v]7 20 in LY () and up — u, vy — vin L% (). (4.6)

as k — oo, thanks to the embedding of Xy into L™ () for all 1 < m < 2%. Since we assumed
¢, € Xo which is contained in L(Q) N L%(Q), so from (4.6) it follows that as k — oo

/Q]uk]q_Quk(bdx—)/Q\u]q_2u¢dx. (4.7)

— 2 x
Also since 2y, — 1 = n_pras and |ug|? — |u

* * 72
2 o2 — Ju]? in Lons (Q), we get
n—2s

« 2
g |22y, — |u)? 20 and|og %20, — o220 in Lt (Q).

By Hardy-Littlewood-Sobolev inequality, the Riesz potential defines a linear and continuous
2n 2n
map from L2—x () to L # (2) which gives

* * 27
2|7 s |ug| 20— || % [ul?e and |@]7F « jog |2 — |2 7H % [o|% in L :(Q) (4.8)

2oy and (|| ™ Jog ) fug [~ 2ug con-

This implies that the sequences (|z|™# * |ug|?*)|vy
2n
verges weakly in Ln+2s (). Through Sobolev embedding we know that

Jur |2~ 2up — |u)? 2w and v %20, — |v|% %0 in L7 (Q) (4.9)

Taking into account (4.8) and (4.9), for any ¢ € L>°(£2) we obtain
/(|$|_”*|Uk|2:‘)|vk|2;_2vk¢ d113—>/(|$|_”*|u|2f‘)|U|2:_2ml~) dx
Q Q
and /(lxl_“*|vk|2:‘)|uk|2;_2uw d113—>/(|$|_“*|U|2t‘)|u|2;_2w; da.
Q )

|2;—2 2;)

in the distributional sense. Since the weak limit and the distributional limit coincides, for
b, € Xo() C L% (), we get that as k — oo

/ (e # Ju

Q

/ (e # oy
Q

*_
ug|? 2wy, converges

Therefore the sequences (|z|™* * |ug|*)|vg v and (|z|7* * |vg

2;)

or %20 da — / (I 7+ 5 [l ) o %200 da,
Q

(4.10)
) 2 [u)?2ug da.

Uk

5200 da — / (|e|7# * |v
Q
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So using (2.3), (4.5), (4.7) and (4.10) we get (I} 5(uk,vi) — I} 5(u,v), (¢,)) — 0 as k — oo,
for all (¢,9) € Y which implies that I} 5(u,v) = 0. Therefore (u,v) is a weak solution of
(Prs) and (u,v) € Nys. That is

O™, )2 = /Q (Alul? + 8Jo|7)dz + 2B(u, v)

which gives

(2r —1)Cn , 228 g
Dys(u,v) = = |(u,v)[|* - %/(AIUI" + 6[v|?)da. (4.11)
227 227 Jo

2 n—p+2s (1 1\ . s . . .
Let D = |- ——— | - Using Holder’s inequality, fractional Sobolev in-

¢ 22n—p) \q 22
equality, definition of S5 and Young’s inequality we get the following estimate

25-9¢ _g
/(AIUVZ + 8lol)dz < 0] S5 2 (Alfull” + 6[v]|%)
Q

2:q

q g q 24 a q q g s — a
— (PHemtulr) (-t 5 (s ) + (DHepilr) (-t cps) ¢

n—,u—l—28<1 1

~1
) cntul ety + B (3 1 575)

S \a
n—p+2s (1 1\7' S22
o (i a) IO +D (3 o),
n
(4.12)
/e e N
where D := 5 <D_2|Q| % (C’;‘SS)_2> . Using (4.12) in (4.11), we finally obtain (4.4)
. 22, —q\ - .
with Dy = ” D. This completes the proof. [ |
2274

2 2

As a consequence of Lemma 3.4 we infer that for any A, satisfying 0 < A\2-¢ 4+ §2-9 < O,
Nas = Ny UNTs.

In spirit of Lemma 3.1, we define the following

Iys = inf I, 5 and [T = inf I, .
Nas A0 Nki,é

Then we have the following result.
Lemma 4.3 The following holds true:
(i) If0 < \T7 4 677 < ©, then Iy 5 < I ; <0,

(it) f{[[(u,v)[| + (u,v) € Ny} > 0 and sup{[|(w,v)[| : (u,v) € Ny;, Ds(u,v) < M} <
400 for each M > 0.
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Proof.
(i) Let (u,v) € Ny, implying that ¢, (1) = 0 and ¢], (1) > 0. Therefore

(2-¢q)CY

s 2
—— 5 ||(u,v)]|* > B(u,v).
gy 0 > Bww)
Using this we deduce that
1 1 2 1
Iy s(u,v :(———)Cg U, U 2+<———>Bu,v
0 = (54 ) Gl + (5 - 5 ) B
q—2 2—q n 5 2—q (1 9
4—= =24 .
< (% 22:q>csu<u,v>u g (27~ 1) lw ol <o

This alongwith the definition of [ s and l)té implies that [, s < l;t(; < 0.
(i) Let (u,v) € N5 then using Lemma 2.3 and (2.2) we get
0> ¢y (1) > (2 = @) Ol (w, v) 1> = 2(22; — @)(S2T) 7% | (w, v) [

This gives

(2-9)C¢ .
1w, 0} = (2(22;; — q)(Sf)_Q’*‘) B

which implies that inf{[|(u,v)|| : (u,v) € Ny 5} > 0. Therefore inf{||(u,v)| : (u,v) €
Ny s} > 0. Now let I 5(u,v) < M for some M > 0 then an easy computation yields

11 ) 11
- - " — Ky (- — 1< M

_ga  2—q
where K 5 = S5 ?|Q| %5 (A4 0) which completes the proof. [

Our next result is established by using the implicit function theorem and it plays a crucial
role in proving Theorem 4.5.

Proposition 4.4 Assume 0 < AT + 577 < © and w = (u,v) € Nygs. Then there exist
e > 0 and a differentiable function ¢ : B(0) CY — RT (B.(0) denotes ball of radius € with
center origin) such that ((0) =1, {(z)(w — z) € N5 and

2((u, 21) + (v, 22)) — T 5(w, 2) — 2M ()

(02 = == G et w2 2(22;) Blu0) (4.13)

for all z = (21, 22) € Be(0), where
Toslw,2) = [ (ult2uz1 + 80l vaa)da,
Q

M(z) = /Q (7 % Jo

2;) 25,2

2;)

u uzy + (|27 * Jul?) o2~ 2z de.
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Proof. For w = (u,v) € Ny, let us define §,, : R x Y — R" by
Suw(p, 2) = (I} s(p(w — 2)), (p(w — 2)))
= p2C;‘H(u — 21,V — 22)H2 —pl / (Au — 21|74+ 6|v — 2z5]?)dx — 2p22ZB(u — 21,0 — 29)
Q

where p € RT and z = (21,22) € Y. Then clearly Fy(1,(0,0)) = (I} 5(w),w) = 0 since
w € ./\/’)\75. Also

d

d—p%w(l, (0,0)) = 20%[|(w, v)|* ~ Q/Q(/\Wq +0lv)dx — 2(22),) B(u, v)

= (2 - )7 (wv)]|? - 2(22}, — g) /Q (Alul? + 8[v]?)dz = !, (1) # 0

because of Lemma 3.4. Therefore we can apply the implicit function theorem to obtain a
e > 0 and a differentiable map ¢ : B.(0) C Y — R* with ¢(0) = 1 and satisfies (4.13). Also
Sw(¢) =0 for all z € B,(0) which is equivalent to

(I35(C(2)(w = 2)),¢(2)(w — 2)) = 0, for all z € B(0),
that is ((z)(w — z) € Ny 5. [ |

Theorem 4.5 If0 < AT —1—6ﬁ < © then there exists a (PS)y, 5 sequence {(uy,vy)} C Nys
for Iy s.

Proof.  We use the Ekeland Variational principle to say that there exists a minimizing

sequence {(ug,vy)} C N, 5 such that

1 1
I s(ug,vg) < lys+ % and Iy 5(ug,vr) < Ixs(wi,ws) + EH(wl,wg) — (ug,vg)|, (4.14)

for each (wy,wz) € Nys. From Lemma 4.3(i) we know that [y 5 < 0, therefore we can find &
sufficiently large such that

1 1 1 1 l
Iy s (g, vg) = <5 ~ 5 ) ()| (5 - 22*) /Q (AJul? +8le])d < 2. (4.15)
H e

This gives us
2,49 ~g %4 3 2 24
~ @ - )Z”</<A!u\q+5\v\q>dw<58 Q] (AT 40%9) 7T | (un, vp)[17. (416)
- Q

Consequently (ug,vy) # 0. From (4.16) we get
2% ql 5 - 922N g
I (uge, v )|| > < 22“*j 52|Q| 5 ()\2 74 §2-q q) 2 > (4.17)
and from (4.15) we get

(225, —q) —a 2%-a , 2 o\ 9N\ 2
(e, o) || < <hs 2| 75 <A +52—q) 2 > . (4.18)
o
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Claim: I} ;(ug,vr) — 0in Y* as k — oo,

Let us fix £k € N then by applying Proposition 4.4 to wy = (ug,vr), we get that there
exists a function ¢; : B, (0) — R for some e; > 0 such that (,(h)(wp —h) € N4 for
h = (hi1,h2) € B, (0). Let us take 7 € (0,€x) and z € Y with 2 # 0 in Y. We set

W and h; = (x(2)(wg — 2).

Then Lemma 4.4 implies that Z € V) s and using (4.14) with (w;,ws) = h,; we get

Nz

Ins(he) = Daawr) > =7 (he — )|
Now applying the Mean Value theorem we obtain
(I3 5(u0k), e = wr) + (ly = wgl) = =1 — .
Substituting the value of A, in this, we get
(I3 5(wr), —2) + (G(2) — V(I 5(wi), wi — 2) = —%HhT — wg|[ + o([[r — wi]))-
Then using the fact that ¢/,(h)(wg — h) € Ny, we get
(B0 57 ) + (GO = DT a0) = Bhr) = F) > e =+ of - =),

(4.19)
Since ||h; — wi|| < 7[C(h)] + [Ck(h) — 1][[wg || and

o 6B — 1

7—0 T

S [AOIF

On passing the limit 7 — 0 in (4.19), for some constant M > 0 we get

(Im D H) M igon.

This will prove our claim once we are able to show that sup [|(;.(0)|| < 4+o00. Let w = (wq,ws) €
k

Y then using Holder’s inequality we get
/Q(Muk\q_l’wl + 6Jug| " wz)da < (A + 8) O (wk, vr) |7 (w1, wa) (4.20)

where Cy = sup{ [, u? : ||ug|| = 1}. Again using Holder inequality, Hardy-Littlewood-Sobolev

inequality and fractional Sobolev embeddings, we can estimate the following

/Q(’x‘u # [ug[*) Jog |y da
< C(n,p) (/Q( 2*_174)1)23”“)2”H </Q ’uk’22'23nu>gn o
(o) ([ ()

< M| (u, o) 1| (wr, wo)],
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3n —2u+2s
2n
exist My > 0 such that

where o = 27 > and M; > 0 is a constant. Similarly we can show that there

/(W‘ s v %) [uge [ wa da < M| (ug, i) || (we, wa) |- (4.22)
Q

Consequently using (4.20), (4.21) and (4.22) in (4.13) we get

) M| (w1, ws)||
(G (0), w)| < (2 — q)C2 || (ur, vi) |2 — 2(22% — @) B(uy, vg)|

where M3 > 0 is a constant independent of (ug, vx), thanks to (4.17).
Claim: There exists a M, > 0 such that

(2 = @) C2 | (up, vr)I” — 2(225, — ) B(ug, vi) | > M.

On contrary, let us assume that there exist a subsequence still denoted by {(uy,vr)} C N W)
such that

(2 = QO (uk, v) II” — 2(22), — @) B(u, vi)| = 0x(1). (4.23)

Since (ug,vx) € Nyg, we have

22), —q

O (g, vie)||* = <*7
. 22; — 2

>A(A]uqu+5lvk\q)dx+ok(l)

22;—q N 2 2.4
<\ oo ) S5 219 % (A0 +62-9) 2 || (ug, vg) |7 + ok (1)
22, — 2

which implies that

22), — ¢

| g, )27 < ( *
227 — 2

_g  2%-q 9 2 2-g
)Ss 2|Q| 2% (AZ*(] _|_52—q)T +0k(1)- (4.24)

Also (4.23) gives us

. 2(22% — ¢ 2225 — )\ ~pr o .
Ozl = (T ) Blowmd +out) < (FGELE) S B )l ut
which implies that

Cn(2 — g)(§H) | 2
[ (ug, o) || > < (2(22* )f q)) ) + ox(1) (4.25)
“w

where we used the fact that ||(ug,vk)|| # ox(1) because of (4.17). From (4.24) and (4.25), for

large k£ we obtain

2—q

C™(2 — q)(SH)2u | a2 220, —q\ —g¢, Ba 22 2y
n S S < 2 2% 2— 2—
Cl ( 207, —q) <22 Ss 2|Q %= (N2a 4 §2-4) 2
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Then using Lemma 2.6 and (2.6), the above inequality yields

1
22}, —q 22% 2 oF 1

2% —1 e _ * - @21 (23-a)e2p-2) | 7]
(ofiyget) > |2 (G T (22 ) (235 T2 R g e
- C(n, p) 22t —q) \ 22 —¢q

2 2
This contradicts the assumption that 0 < A2-¢ 4+ §2-¢ < ©. Hence the claim holds true and

we finally obtain
z M
(Baten) 7)< 5

This establishes our first claim and completes the proof. [ |

4.1 First solution

We now prove the existence of first solution for the problem (P s).

2 2
Theorem 4.6 Let0 < A2-1+§2-a < O. Then there exists a (u1,v1) € Ny such that (u1,vr)
is a weak solution of (Pys). Moreover, (u1,v1) satisfies Iy s(ur,vi) = lys = lj\r(; < 0.

Proof. By Theorem 4.5 we know that there exists a (PJS5)
I \d that is

s sequence {(ug,vy)} C Ny s for

lim I 5(ug,vg) =g < lj\ré <0and lim I} s(ug,vx) = 0in Y*.
k—o0 ) k—oo 77

By Lemma 4.1 we know that this sequence {(uy,vy)} is bounded in Y. Therefore there exists
(ui,v1) € Y such that upto a subsequence, (ug,vr) — (ui,v1) weakly in Y and (ug,vg) —
(u1,v1) strongly in L™(Q2), for m € [1,2%) as k — oo. Therefore kll)nolo Joo(Aug|? 4 6|vg]?)dz =
Jo(Alul? + 6Jv|?)dz. We already know that (uy,v;) is a weak solution of (Pys), by Lemma
4.2. Since {(ug,vx)} C Ny s we obtain

1 1 1 1
Bstunsn) = (5 = 532 ) €Xlmonl? = (= 210) [ et + Srfs
1 1

1 1
> | == q Ndzx.
> <q 22*)/9(/\|uk| + d|vg|?)d

From Lemma 4.3 we know that [y 5 < 0, so passing on the limit k — oo we get

*

/(Ay |9+ 6|1 |)da > 22 Ins >0
(5% V1 Xr =z —— /7T A0 .
Q (225, —q)

This implies that (u1,v1) € Ny is non-trivial solution of (Pj ).
Claim: (uy,vy) — (u1,v1) strongly in Y as k — oo and I s(uq,v1) = l;\'(;.
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Using (u1,v;1) € ./\6\75 and Fatou’s Lemma we have

Ing < Ins(ur, v1) (2:‘_1>C"H(u )2 (227”)/@@ 19+ 8o ]9) da
Ae S dxslu,vr) = " s 1, V1 - " 1 1
22" 22¢q ) Jo

< lim inf 21 C™ || (ug, v ) ||* — 24 /()\]u |74 0|vg|T)dx
= koo 22 s TR Tk 227q g " ’

= liminf[)\ 5(uk,vk) = l)\ S5-
k—o00 ’ ’

This implies that Iy s(u1,v1) = Iy s and [|(ug, vg)|| = ||(u1,v1)|| as kK — co. We have

(g, = wrop = v1) |2 = [ (e, o) 12 = | (wr, 1) | + 0 (1).

Therefore (ug,vr) — (u1,v1) strongly in Y as k — oco. To establish our claim, it remains to
show that (u1,v1) € Ny, On the contrary, if (u1,v1) € N, ; then by Lemma 3.3, there exist
unique to > t1 > 0 such that

(tiu,tiv) € /\/';:5 and (touq,tovy) € N):(;.

Particularly, t; <ty = 1. Since ¢}, ,(t1) = 0 and ¢"(t;) > 0, so #; is local minimum of @, .
Therefore there exists a t € (¢1, 1] such that I s(tiur, tivg) < I,\,(;(ful, tvy). Hence

s < Dus(tiun, tivn) < Iy s(tur, tor) < Dos(ur,vr) = s
which contradicts that (ui,v1) € Ny . |
Lemma 4.7 There exists a non negative local minimum of I s.

Proof. Suppose (u1,v1) be as obtained in Theorem 4.6. Then it is also a local minimum for
I, 5, the proof follows as [pp. 291,[28]]. If ui,v1 > 0 then we are done. Else consider (|u1], |vi|)
then by Lemma 3.3 we know that there exist a ¢; such that (ti|ui|,t1]v1]) € Ny Since

m\u1|,|v1|(1) < My 1y (1) = 2B(ur,v1) = 2B(Jua], [v1]) = m\uﬂy\vl\(tl) and 0 < miu,m(l) <
m\/u1|,|v1|(1)' This implies ; > 1 and thus we have

Ds(tilur], tr|vr]) < Ins(lual, [or]) < Das(ur,vr) = ian,\,(s(N;f&).
Hence we obtain a non negative local minimum of I s over N ;r 5 -

We prove positivity of the solution (uq,v1) of (Pys).

Proposition 4.8 The non negative weak solution (u1,v1) of (Py ) obtained in Lemma 4.7 is
positive in 2 that is uy,v1 > 0 in Q. Moreover for each compact subset K of 2, there exists

a mg > 0 such that uy,v1 > mg in K.
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Proof. We divide the proof into two cases. Consider wuy first and v; can be shown to be

positive in exactly same way.
*
Case(1): Let

n
( s 0 > 5 then there exists a sequence {uc}eso C C2°(Q) such that ue — ug
q-— s

2*

in L% (Q) as € — 0. That means u? " — u?" " in LT () as e — 0. Now let
we == (—A) " (Aud™h).

Then using Proposition 1.4(i3i) of [25], we get that {w.} is a Cauchy sequence in C?(R")
where 3 = min{s,2s — 2} and

lwellcs@ny < Cllud Y 2 . (4.26)
L(qfl)(Q)

2
We know that there exists a h € La-1(£2) such that we < h, so by Lebesgue Dominated

convergence theorem we get

limsup/ ((—A)*we)we dx < 4o0.
e>0 n

This implies that {w,} is bounded in Xy, hence up to a subsequence, w, converges weakly to
aw € Xpin Xy as € — 0. Then w satisfies the equation

(—A)Yw =X u!"inQ w=0nR"\Q

then w, — w in C’(R") so passing on the limit as ¢ — 0 in (4.26) we obtain w € C(f2). Since
(u1,v1) solves (P ) it is clear that u; satisfies

(—A)u; > A in Q, uy =0in R™\ Q.

Therefore u; > w in €, thanks to comparison principle (refer Proposition 4.1 in [26]). Also
now by strong maximum principle (refer [27]), we conclude that w > 0 in 2 and there exists

a my > 0 for each K compact subset of € such that w > mg in K.
*

Case(2): Let ( 8 1 < 22 and consider the following iterative scheme
q— 5

(—A)’wy = )\wzj inQ, wp=0inR"\ Q

with wop = uj. Then take k = 1 at first and let {wp} C C2°(2) such that wg . — wo = u; in

25
L?(Q) as € — 0 which means w8;1 —u?"in L71(Q) as € — 0. We define

w,

T

= (=) (wf ).

Set 1 = q2_§1 and we get using Proposition 1.4(ii) of [25] that {w!} is a Cauchy sequence in

L%(Q) where go = —2— > ¢; and

n—2q1s

lwell o ) < Cllwg o @) (4.27)
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Necessarily w! — w; as € — 0 in L%(Q) so passing on the limit as € — 0 in (4.27) we obtain

Nqk—1
n—2q_15

wy € L2(Q). Proceeding similarly, at each stage we get wy € L% (Q) where g =
and note that wy # 0 for each k. Clearly {¢x} forms an increasing sequence and the map
t— n_"—ést has no fixed point. So obviously there exists a ko > 0 such that g, > 5 and for
this ko we get wy,+1 € CP(R™), by Proposition 1.4(iii) of [25]. By comparison principle we
already know that {wy} forms a non increasing sequence and u; > w;. Thus arguing same
as Case(1) we get

Uy > wy > wy > ... > Wiy > 0in QL

Also there exists a mg > 0 for each K compact subset of 2 such that wy,4+1 > mg in K. =

This result suggests that there is no harm to consider (uj,v;) as positive (as this property
of the first solution will be used further while proving the existence of second solution in the

case p < 4s).

4.2 Second solution

Now, we establish the existence of second solution for (P 5). We prove this by showing that
minimum of I, 5 is achieved over N WL We consider two cases separately that is when p < 4s
and when g > 4s. In the first case we are able to show that when 0 < AT + 57 < 0,
(Pys) has two weak solutions whereas in the other case for 1 > 4s we get another threshold
©¢ which may be ’less than or equal to’ © such that whenever 0 < )\ﬁ + 5ﬁ < Og, (Prs)

possesses two weak solutions.

Lemma 4.9 If p < 4s and 0 < AT + 577 < O, then there exists (wo,z0) € Y \ {(0,0)}
such that wg, zg > 0 and

2n—p
n— gt 2s ((CRgH )T
sup I 5((u1,v1) + t(wo, 20)) < ¢1 := Iy s(ur,vi) + H 575 .
t>0 2n —pu 2
Proof. Using (2.10), we can find 1 > 0 such that
‘ue(x) _ue(y)‘2 n=2s _p 25 _92
/Rzn o — g dzdy< ((C(n,u))%wSS > + e (4.28)
Also using Proposition 2.8, we can find o > 0 such that
/(|<L"|_“ o JueZ) el da > Cn, p) % (SH) 55" — rpenn, (4.29)
Q

From proof of Lemma 5.1 of [23], we know that for fixed p such that 1 < p < " e have
s

n —

(n—2s)
/Iuel”érse a (4.30)
Q
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where r3 > 0 is an appropriate constant. Now let 0 < € < ¢ then u, = U, in B(0).
Claim: There exists a constant r4 > 0 such that

-1 2%
/ / fuc( Jue(y) ™ dzdy > rac" e (4.31)
|z|<e ‘.Z' - y‘#

To show this, we split the left hand side of (4.31) into two integrals and estimate them

separately. We recall the definition of u. and firstly consider

2% —1 2%
jal<e Jlyl<e |z =yl
(23711)(22;71)

e 2
- —— dydx
/1‘<5 /y|<5 ("726)(2M71) (n72.s)2H

”uHLZ* Rn 2 ? 2 ’
|z —ylr | 8%+ |5 B+
€S2s eSZ
(@s=m@2,-1)
€ 2
= / 3 / § w g, W0
lz|<e J|y|<e 1+|x 2 (1_|_|%|2) 2
n—2s
€ 2 n—2s
=E / / —25)(25i—1) (n—25)2) dydw:o(e ’ >
Zl<SUIYIST (T 4 222 (1 + |y]2) 2

where E7 > 0 is appropriate constant that changes value at each step. Secondly, in a similar

manner we get

2% —1
/ / el Fle] dydz
jol<e Jly]>e lﬂc—yl“
(2s—n) (227, —1)
ET ne ! S "
—92s *k " —os ¥ y x
]uHLz* Rn) |z|<e J|y|>e 9 % ) (n 22)2u
oy (524 |- 2|
S €S2

(2s—n)(22),—1)

e 2 K
dydz
—2s5)(2% —1 —25)2%
/le<6 /y>E (n=25)(2j,—1) w

(lyl+eom +[EP) = (1L+[2P)

n 2s

2
/ / 25)(2*7 ) n—2s)2%
1 01 (1 4 o) 1+ PRyl

dydz = O (en525> .

where E] > 0 is appropriate constant that changes value at each step. This establishes our
claim. We can find appropriate constants p; x, p1.5, p2 > 0 such that the following inequalities
holds :

(1) A <(C+Td)q a4 dcl_q> > _pd and § (M _a dcl_q> > _pred” , for all

q T3 q q 3
c>0,d>0.
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(2) For each € > 0, m < uj,v; on compact subsets of 2 where m > 0 is a constant, we get

1 2 2*—2 t
2—*B(u1—|—tue,v1—|—tuﬁ)— 2 ulyvl // ’U1 ‘ ’1)1 )’ (.Z') Ue(x) dydx

|z — y|
[ [ 0P ),
QJo |z — y|~

22, 2251 we(y ue 25 -1
> 2—*B(uﬁ,u6 p222* 0 / / | | )| dydz.
M = 1) Jizj<e |!17

We remark that such an m exists because of Proposition 4.8. From Theorem 4.6 we know
that (u1,v1) is a weak solution of (P 5). Therefore, we have

I s((ur,v1) 4+ t(ue, ue)) — Ins(ur,v1)

= I\ 5((ur,v1) + t(ue, ue)) — Ins(ur,vr) — t((ul,u5> + (v1, ue)

— / ()\|u1|q_2u1ue + 5|v1|q_2v1u6) dz — /(|:17|_“ % |u1|2:1)|v1|2ﬁ_2v1uE dz
Q Q

— 2|77 % oy |2 Jug [P 2ugue da
Q(\ !

12 tu. |4 — q
= Sl = (’“” uel? = Jul —t|u1|q—2u1ue> i
Q

q

B 5/ o1 + tu? = o |? oy 7oy, | dir — B(uy + tue, vy + tue) — B(ug, v1)
Q q 25

‘/ (Jao| = s Jua | %) o1 [% 2oy tue dae — / (e 7F % o1 [20) Jun [0~ 20 b dl‘)
Q Q

which on using inequality (2) with (4.28)-(4.31) gives

I s((ur,v1) 4+ t(ue, ue)) — Ins(ur,v1)

n(n—25) n e
<t?Cr (C(n,u)%‘(?"“) (8% + 7’16"_28> +(rat pratie
22,

t22:‘_1p2 n—2s
- G (CopE (S5 ) — e
2 ( (22, — 1)
Now we define the function h. : [0,00) — R as
2 n(n—=2s) HN\ 2 n—2s p (n— 2s)p
he(t) =1 Cs C(”? ,U,) 2s(2n—p) (Ss )25 + rie + (Pl P P1 5)t
1225 s

2n—p
= (OB (ST =) - e
2% ( (22:; -1)
Then h, attains its maximum at
n(n—2s) (n—2s)(n—p)

t, =(C7)Tm479 O, o)~ BoCry (SH ) Astaowiz)

. p27‘4(n—28) H n—2s n—2s
—4(n_u+28)0(n, p) 3= (SHY = Pl +o(e 2 ).




Doubly nonlocal equation with critical nonlinearity 29

Therefore we get

sup(xs((u1,v1) + t(ue, ue)) — Ins(ui, v1))

t>0
n—2s
n—pu+ 2s .\ —2n=n p2r4€T _ n(3n—2p+2s) " (p—n)(3n—2u+2s) n—2s
< - C”S n—p42s — 70 4s(2n—p) S 4s(n—p+2s) B)
n— _ nQH \ n— Lers
"_“+2S(C;‘Sf)n2—u+’3s:" w+2s [ CFS, .
(2n — p) (2n — p) 2

Choosing (wp, z0) = (ue, u), for appropriate choice of € as shown above, we obtain the result.
|

Corollary 4.10 It holds that 1;76 <cy.

Proof. For each (u,v) € Y, by Lemma 3.3 we know that there exists a t2(u,v) > 0 (notation
changed to show that ¢y depends on (u,v)) such that to(u,v)(u,v) € Ny 5. We consider two

sets

U, v

Uy ::{(u,v)eY: (u, )| <t2<HEu,U§H>} and
(u, v)

U,V

Upi= ) ¥ s ool > 0 () |

Claim: Y\./\/'A_’& =U, UUs,.

For any (u,v) € Y we define (4,0) := ”E 23” Now let (u,v) € Ny ;. Then we know that there
exists a t2(d, ) > 0 such that ¢5(4,9)(,9) € Ny 5. But (u,v) € Ny implies that it must be
that ﬁfi“vt)’ﬁ = 1 which means t3(a,?) = ||(u,v)||. On the other hand, let (u,v) € Y be such
that to(d,9) = [|(u,v)||. By definition t2(a,9)(d,9) € Ny 5 which implies that (u,v) € Ny .
This proves the claim.

Next let (u,v) € ./\f;f(S then by Lemma 3.3 we know that there exists a ¢1(u,0) > 0 such
that ¢ (a,0)(a,0) € ./\/';f(;. But (u,v) € ./\/';f(; implies that ﬁl(iuvt)’ﬁ = 1. This gives to(t,0) >
t1(t,0) = ||(u,v)|| that is (u,v) € U;. Therefore N;:(; C U; and thus (u1,v1) € U;.

We consider the map vy € C([0,1],Y) defined by yar(t) := (u1,v1) + tM (wo, 29) for M > 0,
where (wy, 29) is defined Lemma 4.9. Clearly v(0) = (u1,v1) and v(1) = (u1,v1) + M (wo, 20).
There exists a R > 0 such that 0 < t2(u,v) < R on the set {(u,v) € Y : |(u,v)|| = 1}. Let
us choose My > 0 such that

R? — ||(ug, vo)||?|

|
My >
| (wo, 20)|[?

Then

(w1, v1) + Mo (wo, 20)||I” > || (w1, v1)||* + M ||(wo, 20)||* + O(Mop)

2ﬁ>@@&ﬁﬁﬁﬁ$&»2
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which implies (u1,v1) + Mo(wo, z0) € Us. Now since 7, is a continuous path starting
from (u1,v1) to (u,v1) + Mo(wo,z0) and Y \ N, 3 = Uy U U, there must exists a t >0

such that ||(u1,v1) + My(wo, 20)|| = t2 Qégiﬁgi%ﬁ%ggzgg”) that is vy, () € N5 Therefore

(u1,v1) + tMo(wo, 29) € N, s. Finally using Lemma 4.9 we obtain

Iy < Ins((ur,01) + Mo (wo, 20)) < sup Iy s((u1,v1) + t(wo, 20)) < c1.
t>

This completes the proof. [ |

Lemma 4.11 If p > 4s then there exists a T > 0 such that whenever 0 < )\ﬁ + 5ﬁ <7,

we have
2n—p

_ 2 nQH \ n—nt2s 2 2
l;6<cozzn gt S<CSSS> —Do<)\23q +52Ef1)

(2n — p) 2

where Dy has been defined in Lemma 4.2.

Proof. Let wg = 29 = u. and define

cr |
Ins(u,v) = 7\|(U,U)H2 - 2—*3(%”) and f(t) = Jis(two, t2o).
In

1
* O (wo. 2 2\ 579%F 97
Then £(0) = 0 and f(t) < 0if t € (0,T), f(t) > 0if t > T where T = (M>2(2“ v

2B(wo,20)
1
7 2\ 202F _1)
It is next easy thing to verify that f attains its maximum at t, = (%) 2

Therefore using (2.10) and Proposition 2.8 we have

sup Jy s (two, t2)

t>0
2
- 2% 1
cre & noptos) (oo |
:f(t*): 32 ”(w0720)”2_ o B(w(),Z()):< on — SE =
M neH B(ueyue)2z
2
2F 1

< (n —pt 2s> CI(Cn, )i 3 (SH) % + 0("2))

2n — n n— n;f
R I\ (ClmE TR - o)

m

(4.32)

n—u+2s i _ i
S( 2n — >(C?)2“ TS+ o(enT)

_ (n—u+2s> <0:Sf>2“ o
2n — 2

2 2
Recalling the definition of ¢y, we note that if 0 < A2=¢ + §2-¢ < Y| where Y > 0 is chosen
~ 2n—p
n—p+2s (Cgsf

such that ¢y > 0 for example T =

n—p+2s
. Since I s(twp, tzg) <
2Dg(2n —p) \ 2 ) ince Iy 4(two, tz0) <



Doubly nonlocal equation with critical nonlinearity 31

%H(wo,zo)H2 for t > 0, we can find ¢ > 0 such that sup I s(two,tz9) < ¢o whenever 0 <
te(0,1]

2 2 1
AT 4§70 < T;. Let us define function Hys: Y — R as Hy 5(u,v) := — / (A|ul?+0|v|?)dz.
q.Ja
Now using (4.32) we have

sup I s(two, tzo) = su[_)(J,\,(;(two, tzo) — H) 5(two, t2g))
t>1 >7

o

N _n 3

n—p+2s CnSH\ Zit 5 £ /
< (PR ZsOs n—2sy | _ o q
_< I ) < 5 + O(e"*) q(/\—|-5) |ue|? dz

n

*

~ *—'u _
n—p+2s crSH\ 2zt _9 4 /5*
< "TEY— —(A 46 ]9 d
_< i >< 5 + O(e" %) q( +6) ; |ue|? da

for any d, > 0. Fix ., < ¢ and letting 0 < € < §, we estimate

dx

(n—2s)q e Tn_l
[ wdrde= [ ez Gilsale T [T
B(0,6+) B(0,6+) 0 (1_,_742)#
Ox

_(n=2s)q € 1—(n—
> 02’Sn_1’6n 5 rn 1—(n—2s)q dr

s e ,.n—1—(n—2s)q ifn < —9
> Gyl LI dr ifn< (n=2s)g

Joo rPTim(=29)a drifn > (n — 2s)g
en (7%223)(1, ifn < (n—2s)q
~ Cjy e2|loge|, if n = (n — 2s)q

(n—2s)q

e 2 ,ifn>(n—2s)q

where C', Cy and ('3 are appropriate positive constants. Therefore using 1 < ¢ < 2 we obtain

sup I 5(two, tzp)

t>to

N\ O("=2) — (A + 5)0(e= "3 ™), ifn < (n— 25)q
< (foptze) (S + ~(\+08)O(ez|loge]), ifn = (n—2s)q
- 2n = H 2 (n—2s)q 7

—(A+0)0(e =z ), ifn>(n—2s)q

1

This implies for € = ()\ﬁ + 5%)@ < 4,

%
_ nGH\ %-1
sup Iy 5(two, t20) < <n M+2S> (CS i )
t>to 2n —p 2
2 221, (n=29)q)
C(Az=a +2-9) —=C(A+0)(A\2-a 4 §2-a)n-2s = ifn < (n—2s)q
+4 OO+ 0T 4 670) %0 |log (A7 +670)m%)|, if n = (n — 25)q -

A+
—C’()\—|—5)(/\ﬁ +5ﬁ)%, ifn > (n—2s)q
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Let n < (n —2s)q then 1+ m <n - w> < 2%(1 which implies that we can choose
a Y9 > 0 small enough such that if 0 < )\2%‘1 + 52%‘1 < Ty then

1 (n_ (7L7223)Q)

_2 _2 _2 _2 _2 _2
C (Azfq + 52711) — C(A+0)(\Td 4 §7a) = < Dy <>\27q + 52—q) .

As X\, 6 — 0, llog(()\ﬁ +5ﬁ)ﬁ)\ — 00 80 in case n = (n — 2s)g we can obtain a Ty > 0

small enough such that

OO+ ) (AT 4 6727) 705 | log (A7 + 6723 )% )| < — Dy ()\T + 5T> .

Else if n > (n — 2s)q then (A + 5)()\2%11 + 5ﬁ)% ~ ()\2%11 + 5ﬁ) and hence clearly we can
obtain a Y9 > 0 small enough such that

2 2 g 2 2
—C(A+9)(A2=a +§2-9)2 < —Dy ()\2*1 +52*Q> .
Setting ¥ = min{Yy, T2,6" 2} > 0 we finally get that

sup Iy s(two, tz0) < co
>0

2 2
whenever 0 < A\2=9 4+ §2-¢ < Y. To prove the last part of the Lemma, we note that there
exists ta > 0 such that (towo,t220) € N, 5 and

Ihs < Dys(tawo, tazg) < Sglo)lx\ﬁ(two’t%) < o
t=>

when 0 < )\2%‘1 +4 = < Y. This concludes the proof. [

Before proving the existence of second solution, we make a remark at this stage.

Remark 4.12 Using Lemma 4.2 it is easy to see that ¢y > cg, where ¢1 is defined in Lemma
4.9 and cy is defined in Lemma 4.11.

Theorem 4.13 There exists a (uz,v2) € N5 such that Iys(uz,v2) = I, 5 in each of the

following cases:

(i) 0< AT 4—5ﬁ < © when p < 4s and

(ii) 0 < AT + 577 < ©p := min{O, T} when p > 4s.
Moreover, (ugz,v2) is a weak solution of (Pyg).

Proof. Let {(ug,vr)} C Ny 5 be a minimizing sequence such that klim Iy s(ug, vg) = 13 5.
k) _)m )
By Lemma 4.3(ii), we know that {(ux,vx)} is a bounded sequence in Xy. Hence there exists

a (ug,v2) € Y such that, upto a subsequence, (ug,vr) — (ug,v) weakly in X as k — oc.
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Claim(1): As k — oo, up — ug and vy — v strongly in X.

If not, we define 2z, = up — us and wy, = v — v9 and assume that as k — oo
| (2, wi)||> = ¢ and Bz, wy) — d?%.
for some ¢,d # 0. Then as k — oo we have
gy vi) 12 = 1| Gy wie) [ + | (iz, w2) [ + 0g (1),

Before proving claim (1) we state and prove the following.
Claim(2): As k — oo, B(ug,v) — B(zg, wr) — B(ug,v9).
From fractional Sobolev embedding we have that

o2 — g = ol and w2 — fogl% = ol in L2257 (R™).
By Proposition 2.1, we have
K

* * * 2n
] (L2 % = s P5) = [ ¥ | and. ] (fu 5 — o] %) = [ ¢ [oa % in Lo (R™).

Also from boundedness of {uy } and {vy} in Lis (R™) we know that |z|%* — 0 and |wy|* — 0
2n
in L2»=#(R™). This gives B(uy — 2z, wr) — 0 and B(vp — wg,2;) — 0 as k — oo. This

altogether proves claim(2) because we can write
B(uk,vk) — B(zk,wk) = B(uk — 2k, U — wk) + B(Uk — Wk, Zk) + B(uk - zk,wk).
Since {(ug,vk)} C Ny, kll_}H(;lo Py v (1) = 0. This gives
(1) + Cle® —2d%n =0 4.33
(pug,vg()—’_ sc r=".. ( )

Claim(3): (ug2,v2) is non-trivial.
Suppose not and uy = 0 = vy. This implies ¢ # 0 because of Lemma 4.3(i7). Also using
definition of S and C7c? = 2d*%: (by (4.33)), we get

22%

il I
é - CsnSSH 2025-1)
2 = 2 ’

cne? 2d%2%

S —_—

2 22
~ 2n—pup

e Lo (nont2s CnoH \ nomtze

S22 2) =\ 2n—p 2 '

If p < 4s, then using (4.34) with Lemma 4.9, we have that I) 5(u1,v1) > 0 but this is a
contradiction to I s(u1,v1) = I ; < 0 (by Lemma 4.3(:)). Otherwise if ¢ > 4s, then using

Therefore

Lis= kliﬂgo Iy 5(ug,vi) = 15 5(0,0) +

(4.34)
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(4.34) with Lemma 4.11, we get —Do()\ﬁ +46 2%11) > 0 which is again a contradiction. This
2 2
proves claim(3). Since (ug,v2) € Y \ {(0,0)} and 0 < A?=¢ 4+ §2=¢ < O for both the cases
1 < 4s as well as ;4 > 4s, by Lemma 3.3 we know that there exists ¢1,to such that 0 < t; < to,
t1(ug,v2) € ./\/';f(; and to(u2,v2) € Ny 5. That is ¢y, , (t1) = 0 = ¢, ,, (t2). Let us define the
following two functions
ore? P2

f(#) 5 o
"

and g(t) = Puy.,(t) + F(1).

Then we consider the three cases as below:
(i) t2 <1,
(ii) to > 1 and d > 0,

(iii) t2 > 1 and d = 0.

(i) Using (4.33) we get ¢'(1) = ¢, ,,(1) + CI'¢* — 2d**» = 0. Since {(uy,vg)} C Ny 4, for all
t > 0 we get

Pug,o (1) < Pup (1) (4.35)
Since g(t) = kl;ngo ©uyvp (), passing on the limits as k — oo in (4.35) we obtain g(t) < g(1),
for ¢ > 0. Therefore

. t3 - _
Ins = 1m ouy (1) = g(1) > g(ta) > I s(tau, tova)+ 5 (C5c®=2d%0) > Iy g(taus, tova) > I 5

which is a contradiction.

n 2 22F — 9
(ii) We define t, = <26;52§p > 2672 and then it is easy to compute that f(t) attains its maximum

at t = t,. Also we compute and find that

2 Lok
n—p+2s (C5c? Til>n—u+2s CcrSH \ %
2n —p 2d? 2n — u 2 :

fte) =

Moreover f'(t) = t(C7c? — 2d?%t?%:72) > 0 if t € (0,t,) and f'(t) < 0 if t > t,. Moreover
g(1) = rilfgig(t) > g(ty). Soif t, <1 then

o

T
n—pu+2s <C’;‘S§> et

Ls =9(1) = g(t) = Dys(tsug, tivz) + f () = Ins(tiug, tivz) +

2n —pu 2
_o o\
n—p+2s [CPSH\ %! n—p+2s [CPSH\ %!
> l—',— sMs > I sMs —
>l5s+ - ( 5 > Iy s(ur,v1) + ST 5 c1

(4.36)

which is a contradiction to Lemma 4.9 in the case u < 4s. Whereas when p > 4s, using
Remark 4.12 and (4.36) we get that [\ ; > ¢; > ¢y which is a contradiction to Lemma 4.11.
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Therefore we must have t, > 1. Since ¢'(t) < 0 for ¢ > 1, whenever ¢ € [1,t,] we get
Oy p(t) < —f'(t) < 0. This gives either ¢, < ¢ or to = 1. If ¢, < #; then (4.36) holds
true and we arrive at a contradiction whereas if to = 1 then (ug,vs) € N, /\_ s Which implies
Cne? = 2d*%: (by (4.33)). This gives
%
n—p+2s [ CPSH\ %!
2n — ( 2 >

_K _H
2t n—pu+2s [ CrSHY\ 21
) > Iy s(ui,v1) + 2nu_ . 52 2

_ * 1
v = 9(1) = Iy s(u2,v2) + d* (1 — 2—*> > I s5(ug,v2) +
m

n—u+2s (CrSH
> Iy s(tiug, t1va) + K < ==

2n —p 2

which contradicts Lemma 4.9 in the case u < 4s. Whereas when p > 4s, using Remark 4.12
and (4.36) we get that lys = ¢1 > co which is a contradiction to Lemma 4.11.

Hence, only possibility is that (ii7i) holds true that is to > 1 and d = 0. If ¢ # 0 then (4.33)
ma.0p (1) < 0 which is a contradiction since ¢ > 1. Thus

¢ = 0 and this proves claim(1). Therefore I) s(ug,v2) = I, 5 and obviously (ug,v2) € N .

implies ¢/, ,,,(1) = —c* < 0 and also ¢

Finally, (u2,v2) is a weak solution of (P ) follows from Lemma 3.2. |

4.3 Proof of Main Theorem

Proof of Theorem 1.1: By Theorem 4.6 and 4.13 we know that (P) ) has two solutions
2 2
(u1,v1) € Ny 5 and (ug,v2) € Ny s whenever 0 < A2¢ +§2-¢ < © if y < 4s and whenever

2 2
0 < A2-a+44§2-a < O if > 4s. Obviously they are distinct solutions because N;r(; NNy s =0.
The proof is then completed using Proposition 4.8. [ |
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