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Doubly nonlocal system with

Hardy-Littlewood-Sobolev critical nonlinearity

J. Giacomoni∗, T. Mukherjee† and K. Sreenadh‡

Abstract

This article concerns about the existence and multiplicity of weak solutions for the follow-

ing nonlinear doubly nonlocal problem with critical nonlinearity in the sense of Hardy-

Littlewood-Sobolev inequality
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(−∆)su = λ|u|q−2u+

(

∫

Ω

|v(y)|2
∗

µ

|x− y|µ
dy

)

|u|2
∗

µ
−2u in Ω

(−∆)sv = δ|v|q−2v +

(

∫

Ω

|u(y)|2
∗

µ

|x− y|µ
dy

)

|v|2
∗

µ
−2v in Ω

u = v = 0 in R
n \ Ω,

where Ω is a smooth bounded domain in Rn, n > 2s, s ∈ (0, 1), (−∆)s is the well known

fractional Laplacian, µ ∈ (0, n), 2∗µ =
2n− µ

n− 2s
is the upper critical exponent in the Hardy-

Littlewood-Sobolev inequality, 1 < q < 2 and λ, δ > 0 are real parameters. We study

the fibering maps corresponding to the functional associated with (Pλ,δ) and show that

minimization over suitable subsets of Nehari manifold renders the existence of atleast two

non trivial solutions of (Pλ,δ) for suitable range of λ and δ.
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1 Introduction

Let Ω ⊂ R
n be a bounded domain with smooth boundary ∂Ω (at least C2), n > 2s and s ∈

(0, 1). We consider the following nonlinear doubly nonlocal system with critical nonlinearity:

(Pλ,δ)



































(−∆)su = λ|u|q−2u+

(

∫

Ω

|v(y)|2
∗
µ

|x− y|µ
dy

)

|u|2
∗
µ−2u in Ω

(−∆)sv = δ|v|q−2v +

(

∫

Ω

|u(y)|2
∗
µ

|x− y|µ
dy

)

|v|2
∗
µ−2v in Ω

u = v = 0 in R
n \ Ω,

where Ω is a smooth bounded domain in R
n, n > 2s, s ∈ (0, 1), µ ∈ (0, n), 2∗µ =

2n− µ

n− 2s
is

the upper critical exponent in the Hardy-Littlewood-Sobolev inequality, 1 < q < 2, λ, δ > 0

are real parameters and (−∆)s is the fractional Laplace operator defined as

(−∆)su(x) = 2Cn
s P.V.

∫

Rn

u(x)− u(y)

|x− y|n+2s
dy

where P.V. denotes the Cauchy principal value and Cn
s = π−

n
2 22s−1s

Γ(n+2s
2

)

Γ(1−s) , Γ being the

Gamma function. The fractional Laplacian is the infinitesimal generator of Lévy stable dif-

fusion process and arise in anomalous diffusion in plasma, population dynamics, geophysical

fluid dynamics, flames propagation, chemical reactions in liquids and American options in

finance, see [2] for instance. We also refer [21] to readers for a detailed study on variational

methods for fractional elliptic problems.

In the local case, authors in [3] studied the existence of of ground states for the nonlinear

Choquard equation

−∆u+ V (x)u =

(
∫

Ω

|u(y)|p

|x− y|µ
dy

)

|u|p−2u in R
n, (1.1)

where p > 1 and n ≥ 3. Recently, Ghimenti, Moroz and Schaftingen [14] proved the existence

of least action nodal solution for the problem

−∆u+ u = (Iα ∗ |u|2)u in R
n,

where ∗ denotes the convolution and Iα denotes the Riesz potential. Further results related to

Choquard equations can be found in the survey paper [22] and the references therein. Alves,

Figueiredo and Yang [1] proved existence of a nontrivial solution via penalization method for

the following Choquard equation

−∆u+ V (x)u = (|x|−µ ∗ F (u))f(u) in R
n,

where 0 < µ < N, N = 3, V is a continuous real valued function and F is the primitive

of function f . In the nonlocal case, Choquard equations involving fractional Laplacian is a
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recent topic of research. Authors in [7] obtained regularity, existence, nonexistence, symmetry

as well as decays properties for the problem

(−∆)su+ ωu = (|x|α−n ∗ |u|p)|u|p−2u in R
n,

where ω > 0, p > 1 and s ∈ (0, 1). Fractional Choquard equations also known as nonlinear

fractional Schrödinger equations with Hartree-type nonlinearity arise in the study of mean

field limit of weakly interacting molecules, physics of multi particle systems and the quantum

mechanical theory, etc. These are recently studied by some authors in [6, 8, 20].

Concerning the boundary value problems involving the Choquard nonlinearity, the Brezis-

Nirenberg type problem that is

−∆u = λu+

(∫

Ω

|u|2∗µ

|x− y|µ
dy

)

|u|2
∗
µ−2u in Ω, u = 0 in R

n \Ω

where Ω is bounded domain in R
n, was studied by Gao and Yang in [11]. They proved the

existence, multiplicity and nonexistence results for a range of λ. Moreover, in [12] authors

proved the existence results for a class of critical Choquard equations in critical case. Among

the very recent works, we cite [13] where Shen, Gao and Yang obtained existence of multiple

solutions for non-homogenous critical Choquard equation using the variational methods when

0 < λ < λ1, where λ1 denotes the first eigenvalue of −∆ with Dirichlet boundary condition.

Coming to the system of equations, elliptic systems involving fractional Laplacian and homo-

geneous nonlinearity has been studied in [16, 18, 9] using Nehari manifold techniques. Guo et

al. in [17] studied a nonlocal system involving fractional Sobolev critical exponent and frac-

tional Laplacian. We also cite [5, 10, 29] as some very recent works on the study of fractional

elliptic systems. However there is not much literature available on fractional elliptic system

involving Choquard type nonlinearity. And fractional elliptic system with critical Choquard

inequality has not been studied yet, to the best of our knowledge.

In this present paper, we discuss the existence and multiplicity result for the problem (Pλ,δ).

We seek help of the Nehari manifold techniques where minimization over suitable components

of Nehari manifold provide the weak solution to the problem. We divide the problem into

two cases that is 0 < µ ≤ 4s and µ > 4s and show existence of atleast two solution while

bounding the parameters λ and δ optimally. The existence results in the first case is optimal

in the sense of obtaining the constant Θ (defined in Lemma 3.3). We also reach the expected

first critical level that is

Iλ,δ(u1, v1) +
n− µ+ 2s

2n− µ

(

Cn
s S̃

H
s

2

)
2n−µ

n−µ+2s

where (u1, v1) denote the first solution of (Pλ,δ), in this case (see Lemma 4.9) analogously to

the local setting case (refer Lemma 2.4 in [12]). Whereas in the latter case, we obtain the
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multiplicity for a smaller range of λ and δ that is Θ0 (defined in Theorem 4.13) as compared

to Θ. We use the blow up analysis involving the minimizers of the embeddings to achieve the

goal. In the case 0 < µ ≤ 4s, our results are sharp in the sense that the restrictions on the

parameters λ and δ are used only to show that Nehari set is a manifold. Moreover using an

iterative scheme, regularity results known for nonlocal problems involving fractional laplacian

and strong maximum principle, we show the existence of a positive solution (see Proposition

4.8).

Theorem 1.1 Assume 1 < q < 2 and 0 < µ < n then there exists a positive constants Θ and

Θ0 such that

1. if µ ≤ 4s and 0 < λ
2

2−q + δ
2

2−q < Θ, the system (Pλ,δ) admits at least two nontrivial

solutions,

2. if µ > 4s and 0 < λ
2

2−q + δ
2

2−q < Θ0, the system (Pλ,δ) admits at least two nontrivial

solutions.

Moreover, there exists a positive solution for (Pλ,δ).

Remark 1.2 We remark that the solution obtained for (Pλ,δ) (other than the positive solu-

tion) is not even semi trivial. The proof follows along the same line as section 5(pp. 841) of

[4].

Our paper is organized as follows: Section 2 contains the functional setting and various

asymptotic estimates involving minimizers of best constants. We analyse the fibering maps

associated to the Nehari manifold in section 3. Lastly, section 4 contains the proof of main

result where we show the existence of atleast two non trivial solutions.

2 Function Spaces and some asymptotic estimates

Consider the function space Hs(Ω) as the usual fractional Sobolev space W s,2(Ω) defined by

Hs(Ω) =

{

u ∈ L2(Ω) :

∫

Ω

∫

Ω

|u(x)− u(y)|2

|x− y|n+2s
dxdy < +∞

}

.

Setting Q := R
2n \ (CΩ × CΩ) where CΩ = R

n \Ω, we define the Banach space

X :=

{

u : Rn → R measurable : u ∈ L2(Ω),

∫

Q

|u(x) − u(y)|2

|x− y|n+2s
dxdy < +∞

}

with the norm defined as

‖u‖X := ‖u‖L2(Ω) +

(
∫

Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)
1
2

= ‖u‖L2(Ω) +

(

1

Cn
s

∫

Ω
u(−∆)su dxdy

)1
2

.
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If we set X0 := {u ∈ X : u = 0 in R
n \ Ω}, then it can be shown that X0 forms a Hilbert

space with the inner product

〈u, v〉 =

∫

Q

(u(x)− u(y))(v(x) − v(y))

|x− y|n+2s
dxdy

for u, v ∈ X0 and thus the corresponding norm is

‖u‖X0 = ‖u‖ :=

(∫

Q

|u(x)− u(y)|2

|x− y|n+2s
dxdy

)
1
2

.

Then X0 can be equivalently considered as completion of C∞
0 (Ω) under the norm ‖ · ‖X . It

holds that X0 →֒ Lr(Ω) continuously for r ∈ [1, 2∗s ] and compactly for r ∈ [1, 2∗s), where

2∗s =
2n

n− 2s
. Now consider the product space Y := X0 × X0 endowed with the norm

‖(u, v)‖2 := ‖u‖2 + ‖v‖2. Before defining the weak solution for (Pλ,δ), we need to certify that

whenever u ∈ X0, the term

∫

Ω
(|x|−µ ∗ |u|2

∗
µ)|u|2

∗
µdx =

∫

Ω

∫

Ω

|u(x)|2
∗
µ |v(y)|2

∗
µ

|x− y|µ
dxdy

is well defined. This is certified by the following well known Hardy-Littlewood-Sobolev in-

equality.

Proposition 2.1 (Hardy-Littlewood-Sobolev inequality) [pp. 106, Theorem 4.3, [19]]

Let t, r > 1 and 0 < µ < n with 1/t + µ/n + 1/r = 2, f ∈ Lt(Rn) and h ∈ Lr(Rn). There

exists a sharp constant C(t, n, µ, r), independent of f, h such that
∫

Rn

∫

Rn

f(x)h(y)

|x− y|µ
dxdy ≤ C(t, n, µ, r)‖f‖Lt(Rn)‖h‖Lr(Rn). (2.1)

If t = r = 2n
2n−µ then

C(t, n, µ, r) = C(n, µ) = π
µ
2
Γ
(

n
2 − µ

2

)

Γ
(

n− µ
2

)

{

Γ
(

n
2

)

Γ(n)

}−1+µ
n

.

In this case there is equality in (2.1) if and only if f ≡ (constant)h and

h(x) = A(γ2 + |x− a|2)
−(2n−µ)

2

for some A ∈ C, 0 6= γ ∈ R and a ∈ R
n.

Remark 2.2 For u ∈ Hs(Rn), if we let f = h = |u|p then by Hardy-Littlewood-Sobolev

inequality,
∫

Rn

∫

Rn

|u(x)|p|u(y)|p

|x− y|µ
dxdy

is well defined for all p satisfying

2µ :=

(

2n− µ

n

)

≤ p ≤

(

2n− µ

n− 2s

)

:= 2∗µ.
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Next result is a basic inequality whose proof can be worked out in a similar manner as proof

of Proposition 3.2(3.3) of [15].

Lemma 2.3 For u, v ∈ L
2n

2n−µ (Rn), we have

∫

Rn

∫

Rn

|u(x)|p|v(y)|p

|x− y|µ
dxdy ≤

(∫

Rn

∫

Rn

|u(x)|p|u(y)|p

|x− y|µ
dxdy

)
1
2
(∫

Rn

∫

Rn

|v(x)|p|v(y)|p

|x− y|µ
dxdy

)
1
2

,

where µ ∈ (0, n) and p ∈ [2µ, 2
∗
µ].

Proof. We recall the semigroup property of the Riesz potential which states that if Iα :

R
n → R denotes the Riesz potential given by

Iα =
Aα

|x|n−α
, where Aα =

Γ
(

n−α
2

)

Γ
(

α
2

)

πn/22α
.

Then Iα satisfies Iα = Iα/2 ∗ Iα/2. Using this alongwith Hölder’s inequality we obtain

∫

Rn

∫

Rn

|u(x)|p|v(y)|p

|x− y|µ
dxdy

=
1

An−µ

∫

Rn

(In−µ ∗ |u|p)|v|pdx =
1

An−µ

∫

Rn

(In−µ
2

∗ |u|p)(In−µ
2

∗ |v|p)dx

≤
1

An−µ

(
∫

Rn

(In−µ
2

∗ |u|p)2dx

)1/2(∫

Rn

(In−µ
2

∗ |v|p)2dx

)1/2

=

(
∫

Rn

∫

Rn

|u(x)|p|u(y)|p

|x− y|µ
dxdy

) 1
2
(
∫

Rn

∫

Rn

|v(x)|p|v(y)|p

|x− y|µ
dxdy

) 1
2

.

Therefore, it easily follows using Lemma 2.3 that for every (u, v) ∈ Y ,

∫

Ω
(|x|−µ∗|u|2

∗
µ)|v|2

∗
µdx <

+∞. In the context of Hardy- Littlewood-Sobolev inequality that is Proposition 2.1, for any

u ∈ X0 we get a constant C > 0 such that

∫

Ω
(|x|−µ ∗ |u|2

∗
µ)|u|2

∗
µdx =

∫

Ω

∫

Ω

|u(x)|2
∗
µ |u(y)|2

∗
µ

|x− y|µ
dxdy ≤ C‖u‖

22∗µ

L2∗s (Ω)
. (2.2)

For notational convenience, if u, v ∈ X0 we set

B(u, v) :=

∫

Ω
(|x|−µ ∗ |u|2

∗
µ)|v|2

∗
µ .

Definition 2.4 We say that (u, v) ∈ Y is a weak solution to (Pλ,δ) if for every (φ,ψ) ∈ Y ,

it satisfies

Cn
s (〈u, φ〉 + 〈v, ψ〉) =

∫

Ω
(λ|u|q−2uφ+ δ|v|q−2vψ)dx

+

∫

Ω
(|x|−µ ∗ |v|2

∗
µ)|u|2

∗
µ−2uφ dx+

∫

Ω
(|x|−µ ∗ |u|2

∗
µ)|v|2

∗
µ−2vψ dx.
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Equivalently, if we define the functional Iλ,δ : Y → R as

Iλ,δ(u) :=
Cn
s

2
‖(u, v)‖2 −

1

q

∫

Ω
(λ|u|q + δ|v|q)−

2

22∗µ
B(u, v)

then the critical points of Iλ,δ correspond to the weak solutions of (Pλ,δ). A direct computation

leads to Iλ,δ ∈ C1(Y,R) such that for any (φ,ψ) ∈ Y

(I ′λ,δ(u, v), (φ,ψ)) = Cn
s (〈u, φ〉 + 〈v, ψ〉) −

∫

Ω
(λ|u|q−2uφ+ δ|v|q−2vψ) dx

−

∫

Ω
(|x|−µ ∗ |v|2

∗
µ)|u|2

∗
µ−2uφ dx−

∫

Ω
(|x|−µ ∗ |u|2

∗
µ)|v|2

∗
µ−2vψ dx.

(2.3)

We define

Ss = inf
u∈X0\{0}

∫

R2n

|u(x)− u(y)|2

|x− y|n+2s
dxdy

(
∫

Rn

|u|2
∗
s dx

)2/2∗s
= inf

u∈X0\{0}

‖u‖2

‖u‖2
L2∗s (Rn)

.

Consider the family of functions {Uǫ} defined as

Uǫ(x) = ǫ−
(n−2s)

2 u∗
(x

ǫ

)

, x ∈ R
n (2.4)

where u∗(x) = ū

(

x

S
1
2s
s

)

, ū(x) = ũ(x)
‖ũ‖

L2∗s (Rn)

and ũ(x) = α(β2 + |x|2)−
n−2s

2 with α ∈ R \ {0}

and β > 0 are fixed constants. Then for each ǫ > 0, Uǫ satisfies

(−∆)su = |u|2
∗
s−2u in R

n

and verifies the equality
∫

Rn

∫

Rn

|Uǫ(x)− Uǫ(y)|
2

|x− y|n+2s
dxdy =

∫

Rn

|Uǫ|
2∗s dx = S

n
2s
s . (2.5)

For a proof, we refer to [24]. Next, in spirit of the inequality (2.2) we define the best constant

SH
s := inf

u∈X0\{0}

∫

R2n

|u(x) − u(y)|2

|x− y|n+2s
dxdy

(
∫

Rn

(|x|−µ ∗ |u|2
∗
µ)|u|2

∗
µdx

) 1
2∗µ

= inf
u∈X0\{0}

‖u‖2

B(u, u)
1
2∗µ

.

Lemma 2.5 The constant SH
s is achieved by u if and only if u is of the form

C

(

t

t2 + |x− x0|2

)
n−2s

2

, x ∈ R
n

for some x0 ∈ R
n, C > 0 and t > 0. Moreover,

SH
s =

Ss

C(n, µ)
1
2∗µ

. (2.6)
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Proof. By the Hardy-Littlewood-Sobolev inequality we easily get that

SH
s ≥

Ss

C(n, µ)
1
2∗µ

.

Also from Proposition 2.1 we know that the inequality in (2.1) is an equality if and only if u

is of the form

C

(

t

t2 + |x− x0|2

)
n−2s

2

, x ∈ R
n.

While we know that if u is of this form then it also forms a minimizer for the constant Ss,

thus we obtain the result and (2.6) follows directly.

We set

S̃H
s = inf

(u,v)∈Y \{(0,0)}

‖(u, v)‖2

(∫

Ω(|x|
−µ ∗ |u|2

∗
µ)|v|2

∗
µ dx

)

1
2∗µ

= inf
(u,v)∈Y \{(0,0)}

‖(u, v)‖2

B(u, v)
1
2∗µ

and show the relation between SH
s and S̃H

s in the following lemma. The argument follows

closely the line of Lemma 3.3 of [4] but for sake of completeness, we include it here.

Lemma 2.6 There holds S̃H
s = 2SH

s .

Proof. Let {gk} ⊂ X0 be a minimizing sequence for SH
s . Let r1, r2 > 0 be specified later and

set the sequences uk = r1gk and vk = r2gk in X0. From the definition of SH
s we have

S̃H
s ≤

(

r21 + r22
r1r2

)





‖gk‖
2

B(gk, gk)
1
2∗µ



 =

(

r1
r2

+
r2
r1

)





‖gk‖
2

B(gk, gk)
1
2∗µ



 . (2.7)

Let us define the function f : R+ → R
+ by setting f(x) = x + x−1. Then it is easy to see

that f attains its minimum at x0 = 1 with the minimum value f(1) = 2. We choose r1, r2 in

(2.7) such that r1 = r2 and letting k → ∞ in (2.7) we get

S̃H
s ≤ 2SH

s . (2.8)

To prove the reverse inequality we consider the minimizing sequence {(uk, vk)} ⊂ Y \ {(0, 0)}

for S̃H
s . We set wk = rkvk for rk > 0 with B(uk, uk) = B(wk, wk). This alongwith Lemma

2.3 gives

B(uk, wk) ≤ B(uk, uk)
1
2B(wk, wk)

1
2 = B(uk, uk) = B(wk, wk).

Thus we obtain

‖(uk, vk)‖
2

B(uk, vk)
1
2∗µ

= rk
‖(uk, vk)‖

2

B(uk, wk)
1
2∗µ

≥ rk
‖uk‖

2

B(uk, uk)
1
2∗µ

+ rkr
−2
k

‖wk‖
2

B(wk, wk)
1
2∗µ

≥ f(rk)S
H
s ≥ 2SH

s .
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Now passing on the limit as k → ∞ we get

2SH
s ≤ S̃H

s . (2.9)

Finally from (2.8) and (2.9) it follows that SH
s = 2S̃H

s .

We recall the definition of Uǫ from (2.4). Without loss of generality, we assume 0 ∈ Ω and

fix δ > 0 such that B4δ ⊂ Ω. Let η ∈ C∞(Rn) be such that 0 ≤ η ≤ 1 in R
n, η ≡ 1 in Bδ and

η ≡ 0 in R
n \B2δ. For ǫ > 0, we denote by uǫ the following function

uǫ(x) = η(x)Uǫ(x),

for x ∈ R
n, where Uǫ is defined in section 2. We have the following results for uǫ from

Proposition 21 and 22 of [24].

Proposition 2.7 Let s ∈ (0, 1) and n > 2s. Then, the following estimates holds true as ǫ→ 0

(i)

∫

R2n

|uǫ(x)− uǫ(y)|
2

|x− y|n+2s
dxdy≤S

n
2s
s +O(ǫn−2s),

(ii)

∫

Ω
|uǫ|

2∗s dx = S
n
2s
s +O(ǫn),

(iii)

∫

Ω
|uǫ(x)|

2 dx≥











Csǫ
2s +O(ǫn−2s) if n > 4s

Csǫ
2s| log ǫ|+O(ǫ2s) if n = 4s

Csǫ
n−2s +O(ǫ2s) if n < 4s

,

for some positive constant Cs, depending on s.

Using (2.6), Proposition 2.7(i) can be written as

∫

Rn

|uǫ(x)− uǫ(y)|
2

|x− y|n+2s
dxdy ≤ S

n
2s
s +O(ǫn−2s) =

(

(C(n, µ))
n−2s
2n−µSH

s

)
n
2s

+O(ǫn−2s). (2.10)

Proposition 2.8 The following estimates holds true:

(

∫

Ω

∫

Ω

|uǫ(x)|
2∗µ |uǫ(y)|

2∗µ

|x− y|µ
dxdy

)
n−2s
2n−µ

≤ (C(n, µ))
n(n−2s)
2s(2n−µ) (SH

s )
n−2s
2s +O(ǫn),

and

(

∫

Ω

∫

Ω

|uǫ(x)|
2∗µ |uǫ(y)|

2∗µ

|x− y|µ
dxdy

)
n−2s
2n−µ

≥
(

(C(n, µ))
n
2s (SH

s )
2n−µ
2s −O

(

ǫ2n−µ
)

)
n−2s
2n−µ

.



10

Proof. By Hardy-Littlewood-Sobolev inequality, Proposition 2.7(ii) and 2.6, we get

(

∫

Ω

∫

Ω

|uǫ(x)|
2∗µ |uǫ(y)|

2∗µ

|x− y|µ
dxdy

)
n−2s
2n−µ

≤ (C(n, µ))
n−2s
2n−µ ‖uǫ‖

2
L2∗s (Ω)

= (C(n, µ))
n−2s
2n−µ

(

S
n
2s
s +O(ǫn)

)
n−2s

n

= (C(n, µ))
n−2s
2n−µ

(

(C(n, µ))
n(n−2s)
2s(2n−µ) (SH

s )
n
2s +O(ǫn)

)
n−2s

n

= (C(n, µ))
n(n−2s)
2s(2n−µ) (SH

s )
n−2s
2s +O(ǫn).

Next, we consider

∫

Ω

∫

Ω

|uǫ(x)|
2∗µ |uǫ(y)|

2∗µ

|x− y|µ
dxdy

≥

∫

Bδ

∫

Bδ

|uǫ(x)|
2∗µ |uǫ(y)|

2∗µ

|x− y|µ
dxdy =

∫

Bδ

∫

Bδ

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy

=

∫

Rn

∫

Rn

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy − 2

∫

Rn\Bδ

∫

Bδ

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy

−

∫

Rn\Bδ

∫

Rn\Bδ

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy.

(2.11)

We estimate the integrals in right hand side of (2.11) separately. Firstly to estimate the first

integral, by Lemma 2.5 we get that {Uǫ} forms minimizers of SH
s . Therefore using (2.5) we

get

∫

Rn

∫

Rn

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy =

(

‖Uǫ‖
2

SH
s

)2∗µ

=

(

S
n/2s
s

SH
s

)2∗µ

= C(n, µ)n/2s(SH
s )

2n−µ
2s

(2.12)

Secondly, consider

∫

Rn\Bδ

∫

Bδ

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy

≤ C2,s

∫

Rn\Bδ

∫

Bδ

ǫµ−2n

|x− y|µ
(

1 + |xǫ |
2
)

2n−µ
2
(

1 + |yǫ |
2
)

2n−µ
2

dxdy

= ǫ2n−µC2,s

∫

Rn\Bδ

∫

Bδ

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy.

where C2,s is an appropriate positive constant. Let D := Bδ × (Rn \Bδ) then

ǫ2n−µC2,s

∫

Rn\Bδ

∫

Bδ

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy

= ǫ2n−µC2,s

(

∫

D∩{|x−y|≤1}
+

∫

D∩{|x−y|>1}

)

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy.
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Consider

ǫ2n−µC2,s

∫

D∩{|x−y|>1}

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy

= ǫ2n−µC2,s

∫

D∩{|x−y|>1}

1

(ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy

≤ ǫ2n−µC2,s

∫

Bδ

dx

(ǫ2 + |x|2)
2n−µ

2

∫

Rn\Bδ

dy

(ǫ2 + |y|2)
2n−µ

2

≤ ǫ2n−µC2,s

∫ δ/ǫ

0

ǫµ−ntn−1dt

(1 + t2)2n−µ

∫

Rn\Bδ

dy

(|y|2)
2n−µ

2

= O(ǫn).

Next we observe that the set D ∩ {|x − y| > 1} is bounded and if x, y ∈ D ∩ {|x − y| > 1}

then there exist constants α, β > 0 such that α ≤ |x|, |y| ≤ β. This implies that

ǫ2n−µC2,s

∫

D∩{|x−y|>1}

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy

≤ ǫ2n−µC2,s

∫

D∩{|x−y|>1}

1

|x− y|µ (|x|2)
2n−µ

2 (|y|2)
2n−µ

2

dxdy

≤ O(ǫ2n−µ)

∫

D∩{|x−y|>1}

1

|x− y|µ
dxdy = O(ǫ2n−µ)

since µ ∈ (0, n). Therefore

∫

Rn\Bδ

∫

Bδ

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy ≤ O(ǫ2n−µ). (2.13)

Lastly, in a similar manner we have

∫

Rn\Bδ

∫

Rn\Bδ

|Uǫ(x)|
2∗µ |Uǫ(y)|

2∗µ

|x− y|µ
dxdy

≤ C ′
2,s

∫

Rn\Bδ

∫

Rn\Bδ

ǫµ−2n

|x− y|µ
(

1 + |xǫ |
2
)

2n−µ
2
(

1 + |yǫ |
2
)

2n−µ
2

dxdy

= ǫ2n−µC ′
2,s

∫

Rn\Bδ

∫

Rn\Bδ

1

|x− y|µ (ǫ2 + |x|2)
2n−µ

2 (ǫ2 + |y|2)
2n−µ

2

dxdy

≤ ǫ2n−µC ′
2,s

∫

Rn\Bδ

∫

Rn\Bδ

1

|x− y|µ|x|2n−µ|y|2n−µ
dxdy = O(ǫ2n−µ).

(2.14)

where C ′
2,s is an appropriate positive constant. Using the estimates (2.12), (2.13) and (2.14)

in (2.11), we get

(

∫

Ω

∫

Ω

|uǫ(x)|
2∗µ |uǫ(y)|

2∗µ

|x− y|µ
dxdy

)
n−2s
2n−µ

≥
(

(C(n, µ))
n
2s (SH

s )
2n−µ
2s −O(ǫ2n−µ)

)
n−2s
2n−µ

.

This completes the proof.
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3 Analysis of fibering maps

In this section we study the fibering maps and establish some preliminaries for the Nehari

manifold. It is easy to see that the energy functional Iλ,δ is not bounded below on the whole

domain Y , so we minimize Iλ,δ over proper subsets of the Nehari manifold. We define the set

Nλ,δ := {(u, v) ∈ Y \ {0} : (I ′λ,δ(u, v), (u, v)) = 0}

and find that the functional Iλ,δ is bounded below on Nλ,δ. Therefore we state the following

Lemma without giving the proof.

Lemma 3.1 Iλ,δ is coercive and bounded below on Nλ,δ for any λ, δ > 0.

Proof. Let λ, δ > 0 and (u, v) ∈ Nλ,δ. Then it holds that

Iλ,δ(u, v) = Cn
s

(

1

2
−

1

22∗µ

)

‖(u, v)‖2 −

(

1

q
−

1

22∗µ

)∫

Ω
(λ|u|q + δ|v|q)dx

≥ Cn
s

(

1

2
−

1

22∗µ

)

‖(u, v)‖2 −

(

1

q
−

1

22∗µ

)

|Ω|
2∗s−q

2∗s (λ
2

2−q + δ
2

2−q )S
− q

2
s ‖(u, v)‖q

and this yields the assertion because 1 < q < 2.

From the definition of Nλ,δ, it is obvious that (u, v) ∈ Nλ,δ if and only if (u, v) 6= (0, 0) and

Cn
s ‖(u, v)‖

2 =

∫

Ω
(λ|u|q + δ|v|q)dx+ 2B(u, v).

Let us define the fibering map ϕu,v : R+ → R as

ϕu,v(t) = Iλ,δ(tu, tv) =
t2Cn

s

2
‖(u, v)‖2 −

tq

q

∫

Ω
(λ|u|q + δ|v|q)dx−

t22
∗
µ

2∗µ
B(u, v).

This gives another characterization of Nλ,δ as follows

Nλ,δ = {(tu, tv) ∈ Y \ {(0, 0)} : ϕ′
u,v(t) = 0}

because ϕ′
u,v(t) = (I ′λ,δ(tu, tv), (u, v)). An easy computation yields

ϕ′
u,v(t) = tCn

s ‖(u, v)‖
2 − tq−1

∫

Ω
(λ|u|q + δ|v|q)dx− 2t22

∗
µ−1B(u, v) (3.1)

and ϕ′′
u,v(t) = Cn

s ‖(u, v)‖
2 − (q − 1)tq−2

∫

Ω
(λ|u|q + δ|v|q)dx− 2(22∗µ − 1)t22

∗
µ−2B(u, v). (3.2)

If (u, v) ∈ Nλ,δ then (3.1) and (3.2) gives

ϕ′′
u,v(1) = (2− q)Cn

s ‖(u, v)‖
2 + 2(q − 22∗µ)B(u, v)

= (2− 22∗µ)C
n
s ‖(u, v)‖

2 + (22∗µ − q)

∫

Ω
(λ|u|q + δ|v|q)dx.
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Naturally, our next step is to divide Nλ,δ into three subsets corresponding to local minima,

local maxima and point of inflexion of ϕu,v namely

N±
λ,δ := {(u, v) ∈ Nλ,δ : ϕ

′′
u,v(1) ≷ 0} and N 0

λ,δ := {(u, v) ∈ Nλ.δ : ϕ
′′
u,v(1) = 0}.

Our next lemma says that the local minimizers of Iλ,δ on the Nehari manifold Nλ,δ are actually

its critical points. So it is enough to prove the existence of minimizers of Iλ,δ on Nλ,δ.

Lemma 3.2 Let (u1, v1) and (u2, v2) are minimizers of Iλ,δ on N+
λ,δ and N−

λ,δ respectively.

Then (u1, v1) and (u2, v2) are nontrivial weak solutions of (Pλ,δ).

Proof. Let (u1, v1) ∈ N+
λ,δ such that Iλ,δ(u1, v1) = inf Iλ,δ(N

+
λ,δ) and define V := {(u, v) ∈

Y : (J ′
λ,δ(u, v), (u, v)) > 0} where Jλ,δ(u, v) = (I ′λ,δ(u, v), (u, v)). So, N+

λ,δ = {(u, v) ∈ V :

Jλ,δ(u, v) = 0} because for each (u, v) such that Jλ,δ(u, v) = 0, we have (J ′
λ,δ(u, v), (u, v)) > 0

if and only if ϕ′′
u,v(1) > 0. Therefore there exists Lagrangian multiplier ρ ∈ R such that

I ′λ,δ(u1, v1) = ρJ ′
λ,δ(u1, v1).

Since (u1, v1) ∈ N+
λ,δ, (I

′
λ,δ(u1, v1), (u1, v1)) = 0 and (J ′

λ,δ(u1, v1), (u1, v1)) > 0. This implies

ρ = 0. Therefore, (u1, v1) is a nontrivial weak solution of (Pλ,δ). Similarly, we can prove

that if (u2, v2) ∈ N−
λ,δ is such that Iλ,δ(u2, v2) = inf Iλ,δ(N

−
λ,δ) then (u2, v2) is also a nontrivial

weak solution of (Pλ,δ).

For fixed (u, v) ∈ Y \ {(0, 0)}, we write ϕ′
u,v(t) = t22

∗
µ−1(mu,v(t)− 2B(u, v)) where

mu,v(t) := t2−22∗µCn
s ‖(u, v)‖

2 − tq−22∗µ

∫

Ω
(λ|u|q + δ|v|q)dx.

Clearly, ϕ′
u,v(t) = 0 if and only if mu,v(t) = 2B(u, v) if and only if (tu, tv) ∈ Nλ,δ. So in order

to understand the fibering maps, we study the map mu,v. Since 2 < 22∗µ and 1 < q < 2, we

get

lim
t→0+

mu,v(t) = −∞ and lim
t→+∞

mu,v(t) = 0.

Claim: The map mu,v(t) has a unique critical point at

tmax(u, v) :=









(22∗µ − q)

∫

Ω
(λ|u|q + δ|v|q)dx

(22∗µ − 2)Cn
s ‖(u, v)‖

2









1
2−q

.

This follows from

m′
u,v(t) = (2− 22∗µ)t

1−22∗µCn
s ‖(u, v)‖

2 − (q − 22∗µ)t
q−1−22∗µ

∫

Ω
(λ|u|q + δ|v|q)dx.

We can check that tmax(u, v) solves the equation m′
u,v(t) = 0. Also we can verify that since

1 < q < 2

m′′
u,v(tmax(u, v)) =

(q − 2)(22∗µ − 2)
2+22∗µ−q

2−q (Cn
s ‖(u, v)‖

2)
2+22∗µ−q

2−q

(22∗µ − q)
22∗µ
2−q
(∫

Ω(λ|u|
q + δ|v|q)dx

)

22∗µ
2−q

< 0
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implying that tmax(u, v) is the point of maximum for the map mu,v(t). The uniqueness

of the critical point of mu,v at tmax(u, v) guarantees that mu,v(t) is strictly increasing in

(0, tmax(u, v)) and strictly decreasing in (tmax(u, v),+∞). If (tu, tv) ∈ Nλ,δ then

t22
∗
µ−1m′

u,v(t) = ϕ′′
u,v(t) = t−2ϕ′′

tu,tv(1)

which implies that (tu, tv) ∈ N+
λ,δ(or N

−
λ,δ) if and only if m′

u,v(t) > 0(or m′
u,v(t) < 0).

Lemma 3.3 For every (u, v) ∈ Y \ {(0, 0)} and λ, δ satisfying 0 < λ
2

2−q + δ
2

2−q < Θ, where

Θ :=





22
∗
µ−1(Cn

s )
22∗µ−q

2−q

C(n, µ)

(

2− q

22∗µ − q

)(

22∗µ − 2

22∗µ − q

)

22∗µ−2

2−q

S

q(2∗µ−1)

2−q
+2∗µ

s |Ω|
−

(2∗s−q)(22∗µ−2)

2∗s (2−q)





1
2∗µ−1

, (3.3)

there exists unique t1, t2 > 0 such that t1 < tmax(u, v) < t2, (t1u, t1v) ∈ N+
λ,δ and (t2u, t2v) ∈

N−
λ,δ. Moreover,

Iλ,δ(t1u, t1v) = inf
t∈[0,t

max(u,v)]
Iλ,δ(tu, tv) and Iλ,δ(t2u, t2v) = sup

t≥0
Iλ,δ(tu, tv).

Proof. Let (u, v) ∈ Y \ {(0, 0)}. Then we have already seen that

mu,v(t) = 2B(u, v) (3.4)

if and only if (tu, tv) ∈ Nλ,δ. Since B(u, v) > 0, we say that (3.4) can never hold if we choose

λ and δ such that 2B(u, v) > mu,v(tmax(u, v)) and vice-versa. In this case, (u, v) 6∈ Nλ,δ and

hence not a weak solution to (Pλ,δ). Using Hölder’s inequality and the definition of Ss, we

get
∫

Ω
(λ|u|q + δ|v|q)dx ≤ S

− q
2

s |Ω|
2∗s−q

2∗s (λ‖u‖q + δ‖v‖q)≤ S
− q

2
s |Ω|

2∗s−q

2∗s ‖(u, v)‖q(λ
2

2−q + δ
2

2−q )
2−q
2 .

(3.5)

Also from the definition of S̃H
s and Lemma 2.6, we get

2B(u, v) ≤ 2(S̃H
s )−2∗µ‖(u, v)‖22

∗
µ = 21−2∗µS

−2∗µ
s C(n, µ)‖(u, v)‖22

∗
µ . (3.6)

Using (3.5) we can estimate mu,v(tmax) as follows

mu,v(tmax(u, v)) =





(

22∗µ − 2

22∗µ − q

)

22∗µ−2

2−q

−

(

22∗µ − 2

22∗µ − q

)

22∗µ−q

2−q





(Cn
s ‖(u, v)‖

2)
22∗µ−q

2−q

(∫

Ω(λ|u|
q + δ|v|q)dx

)

22∗µ−2

2−q

=

(

22∗µ − 2

22∗µ − q

)

22∗µ−2

2−q
(

2− q

22∗µ − q

)

(Cn
s ‖(u, v)‖

2)
22∗µ−q

2−q

(∫

Ω(λ|u|
q + δ|v|q)dx

)

22∗µ−2

2−q

≥

(

22∗µ − 2

22∗µ − q

)

22∗µ−2

2−q
(

2− q

22∗µ − q

)

(Cn
s )

22∗µ−q

2−q ‖(u, v)‖22
∗
µ

(

λ
2

2−q + δ
2

2−q

)2∗µ−1
(Ss)

−
q(2∗µ−1)

2−q |Ω|
(2∗s−q)(22∗µ−2)

2∗s (2−q)

.

(3.7)
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Now if λ and δ satisfies 0 < λ
2

2−q + δ
2

2−q < Θ, where Θ is given in (3.3), then

21−2∗µS
−2∗µ
s C(n, µ) ≤

(

22∗µ − 2

22∗µ − q

)

22∗µ−2

2−q
(

2− q

22∗µ − q

)

(Cn
s )

22∗µ−q

2−q

(

λ
2

2−q + δ
2

2−q

)2∗µ−1
S
−

q(2∗µ−1)

2−q
s |Ω|

(2∗s−q)(22∗µ−2)

2∗s (2−q)

(3.8)

which along with (3.7) implies that

0 < 2B(u, v) < 21−2∗µS
−2∗µ
s C(n, µ)‖(u, v)‖22

∗
µ < mu,v(tmax(u, v)). (3.9)

Therefore there exist unique t1, t2 > 0 with t1 < tmax(u, v) < t2 such that

mu,v(t1) = mu,v(t2) = 2B(u, v)

and m′
u,v(t1) > 0 and m′

u,v(t1) < 0. This implies (t1u, t1v) ∈ N+
λ,δ and (t2u, t2v) ∈ N−

λ,δ and

also ϕ′′
u,v(t1) > 0 and ϕ′′

u,v(t2) < 0. From the definition of ϕu,v, we get

Iλ,δ(t2u, t2v) ≥ Iλ,δ(tu, tv) ≥ Iλ,δ(t1u, t1v) for each t ∈ [t1, t2];

Iλ,δ(t1u, t1v) ≤ Iλ,δ(tu, tv) for each t ∈ [0, t1].

Thus

Iλ,δ(t1u, t1v) = inf
t∈[0,tmax(u,v)]

Iλ,δ(tu, tv) and Iλ,δ(t2u, t2v) = sup
t≥0

Iλ,δ(tu, tv).

holds true.

We end this section with the following important lemma.

Lemma 3.4 If 0 < λ
2

2−q + δ
2

2−q < Θ, where Θ is as in (3.3) then N 0
λ,δ = ∅.

Proof. We prove this by contradiction, so let (u, v) ∈ N 0
λ,δ. By Lemma 3.3 we know that

there exist t1, t2 > 0 such that ϕ′
u,v(t1) = 0 = ϕ′

u,v(t2) and ϕ′′
u,v(t1) > 0 > ϕ′′

u,v(t2). But

(u, v) ∈ N 0
λ,δ means that ϕ′′

u,v(1) = 0 = ϕ′
u,v(1). This is possible when either t1 = 1 or t2 = 1.

But this again implies that ϕ′′
u,v(1) > 0 or ϕ′′

u,v(1) < 0, a contradiction.

4 Existence of minimizers on N+
λ,δ and N−

λ,δ

Lastly, in this section we present the proof of Theorem 1.1. We divide this section into two

subsections where we prove existence of first and second solutions respectively.

Lemma 4.1 Let {(uk, vk)} ⊂ Y be a (PS)c sequence that is

Iλ,δ(uk, vk) → c in R and I ′λ,δ(uk, vk) → 0 in Y ∗ as k → ∞.

Then {uk, vk} is bounded in Y .
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Proof. Let {(uk, vk)} ⊂ Y be a (PS)c sequence for Iλ,δ such that

Iλ,δ(uk, vk) → c in R and I ′λ,δ(uk, vk) → 0 in Y ∗ as k → ∞.

This can be equivalently written as

Cn
s

2
‖(uk, vk)‖

2 −
1

q

∫

Ω
(λ|uk|

q + δ|vk|
q)dx−

1

2∗µ
B(uk, vk) = c+ ok(1), (4.1)

Cn
s ‖(uk, vk)‖

2 −

∫

Ω
(λ|uk|

q + δ|vk|
q)dx− 2B(uk, vk) = ok(‖(uk, vk)‖) (4.2)

as k → ∞. We show the boundedness of the sequence {(uk, vk)} in Y using the method of

contradiction. So assume, on contrary, ‖(uk, vk)‖ → ∞ as k → ∞ and set

wk :=
uk

‖(uk, vk)‖
, zk :=

vk
‖(uk, vk)‖

.

Clearly, ‖(wk, zk)‖ = 1, for all k which implies that there exists a subsequence, still denoted

by {(wk, zk)}, such that (wk, zk) ⇀ (w, z) weakly in Y as k → ∞, for some (w, z) ∈ Y . By

fractional Sobolev embedding results, we get
∫

Ω
(λ|wk|

q + δ|zk|
q)dx→

∫

Ω
(λ|w|q + δ|z|q)dx as k → ∞. (4.3)

Putting uk = wk‖(uk, vk)‖ and vk = zk‖(uk, vk)‖ in (4.1) and (4.2) and solving we get

Cn
s

2
‖(wk, zk)‖

2 −
‖(uk, zk)‖

q−2

q

∫

Ω
(λ|wk|

q + δ|zk|
q)dx−

1

2∗µ
‖(uk, vk)‖

22∗µ−2B(wk, zk) = ok(1),

Cn
s ‖(wk, zk)‖

2 − ‖(uk, vk)‖
q−2

∫

Ω
(λ|wk|

q + δ|zk|
q)dx− 2‖(uk, vk)‖

22∗µ−2B(wk, zk) = ok(1).

From above these two equations and (4.3), we get

Cn
s ‖(wk, zk)‖

2 =
(22∗µ − q)

q(2∗µ − 1)
‖(uk, vk)‖

q−2

∫

Ω
(λ|wk|

q + δ|zk |
q)dx+ ok(1)

=
(22∗µ − q)

q(2∗µ − 1)
‖(uk, vk)‖

q−2

∫

Ω
(λ|w|q + δ|z|q)dx+ ok(1).

Since 1 < q < 2 and ‖(uk, vk)‖ → ∞ we get ‖(wk, zk)‖
2 → 0 as k → ∞ which contradicts

‖(wk, zk)‖ = 1 for all k. This completes the proof.

Lemma 4.2 If {(uk, vk)} is a (PS)c sequence for Iλ,δ with (uk, vk) ⇀ (u, v) weakly in Y

as k → ∞, then I ′λ,δ(u, v) = 0. Moreover there exists a positive constant D0 depending on

µ, q, s, n, Ss and Ω such that

Iλ,δ(u, v) ≥ −D0(λ
2

2−q + δ
2

2−q ), (4.4)

where

D0 :=
(2− q)(22∗µ − q)

42∗µq

[

(

22∗µC
n
s Ss(n− µ+ 2s)

(2n − µ)(22∗µ − q)

)− q
2

|Ω|
2∗s−q

2∗s

]
2

2−q

.
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Proof. Let {(uk.vk)} ⊂ Y be a (PS)c sequence for Iλ,δ such that (uk, vk)⇀ (u, v) weakly in

Y as k → ∞. This implies I ′λ,δ(uk, vk) = ok(1) in Y
∗ as k → ∞. Let (φ,ψ) ∈ Y . From weak

convergence it follows that

lim
k→∞

〈uk, φ〉 = 〈u, φ〉 and lim
k→∞

〈vk, ψ〉 = 〈v, ψ〉. (4.5)

For q′ =
q

q − 1
we also have

|uk|
q−2uk ⇀ |u|q−2u, |vk|

q−2vk ⇀ |v|q−2v in Lq′(Ω) and uk ⇀ u, vk ⇀ v in L2∗s (Ω). (4.6)

as k → ∞, thanks to the embedding of X0 into Lm(Ω) for all 1 ≤ m ≤ 2∗s. Since we assumed

φ,ψ ∈ X0 which is contained in Lq(Ω) ∩ L2∗s (Ω), so from (4.6) it follows that as k → ∞

∫

Ω
|uk|

q−2ukφdx→

∫

Ω
|u|q−2uφdx. (4.7)

Also since 2∗µ − 1 =
n− µ+ 2s

n− 2s
and |uk|

2∗µ ⇀ |u|2
∗
µ , |vk|

2∗µ ⇀ |v|2
∗
µ in L

2n
2n−µ (Ω), we get

|uk|
2∗µ−2uk ⇀ |u|2

∗
µ−2u and|vk|

2∗µ−2vk ⇀ |v|2
∗
µ−2v in L

2n
n−µ+2s (Ω).

By Hardy-Littlewood-Sobolev inequality, the Riesz potential defines a linear and continuous

map from L
2n

2n−µ (Ω) to L
2n
µ (Ω) which gives

|x|−µ ∗ |uk|
2∗µ ⇀ |x|−µ ∗ |u|2

∗
µ and |x|−µ ∗ |vk|

2∗µ ⇀ |x|−µ ∗ |v|2
∗
µ in L

2n
µ (Ω). (4.8)

This implies that the sequences (|x|−µ ∗ |uk|
2∗µ)|vk|

2∗µ−2vk and (|x|−µ ∗ |vk|
2∗µ)|uk|

2∗µ−2uk con-

verges weakly in L
2n

n+2s (Ω). Through Sobolev embedding we know that

|uk|
2∗µ−2uk → |u|2

∗
µ−2u and|vk|

2∗µ−2vk → |v|2
∗
µ−2v in L

2n
2n−µ (Ω) (4.9)

Taking into account (4.8) and (4.9), for any ψ̃ ∈ L∞(Ω) we obtain

∫

Ω
(|x|−µ ∗ |uk|

2∗µ)|vk|
2∗µ−2vkψ̃ dx→

∫

Ω
(|x|−µ ∗ |u|2

∗
µ)|v|2

∗
µ−2vψ̃ dx

and

∫

Ω
(|x|−µ ∗ |vk|

2∗µ)|uk|
2∗µ−2ukψ̃ dx→

∫

Ω
(|x|−µ ∗ |v|2

∗
µ)|u|2

∗
µ−2uψ̃ dx.

Therefore the sequences (|x|−µ ∗ |uk|
2∗µ)|vk|

2∗µ−2vk and (|x|−µ ∗ |vk|
2∗µ)|uk|

2∗µ−2uk converges

in the distributional sense. Since the weak limit and the distributional limit coincides, for

φ,ψ ∈ X0(Ω) ⊂ L2∗s (Ω), we get that as k → ∞

∫

Ω
(|x|−µ ∗ |uk|

2∗µ)|vk|
2∗µ−2vkψ dx→

∫

Ω
(|x|−µ ∗ |u|2

∗
µ)|v|2

∗
µ−2vψ dx,

∫

Ω
(|x|−µ ∗ |vk|

2∗µ)|uk|
2∗µ−2ukφ dx→

∫

Ω
(|x|−µ ∗ |v|2

∗
µ)|u|2

∗
µ−2uφ dx.

(4.10)
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So using (2.3), (4.5), (4.7) and (4.10) we get (I ′λ,δ(uk, vk)− I ′λ,δ(u, v), (φ,ψ)) → 0 as k → ∞,

for all (φ,ψ) ∈ Y which implies that I ′λ,δ(u, v) = 0. Therefore (u, v) is a weak solution of

(Pλ,δ) and (u, v) ∈ Nλ,δ. That is

Cn
s ‖(u, v)‖

2 =

∫

Ω
(λ|u|q + δ|v|q)dx+ 2B(u, v)

which gives

Iλ,δ(u, v) =
(2∗µ − 1)Cn

s

22∗µ
‖(u, v)‖2 −

22∗µ − q

22∗µq

∫

Ω
(λ|u|q + δ|v|q)dx. (4.11)

Let D =

[

2

q
·
n− µ+ 2s

2(2n − µ)

(

1

q
−

1

22∗µ

)−1
]

Using Hölder’s inequality, fractional Sobolev in-

equality, definition of Ss and Young’s inequality we get the following estimate

∫

Ω
(λ|u|q + δ|v|q)dx ≤ |Ω|

2∗s−q

2∗s S
− q

2
s (λ‖u‖q + δ‖v‖q)

=
(

D
q
2 (Cn

s )
q
2‖u‖q

)

(

D− q
2λ|Ω|

2∗s−q

2∗s (Cn
s Ss)

− q
2

)

+
(

D
q
2 (Cn

s )
q
2‖v‖q

)

(

D− q
2 δ|Ω|

2∗s−q

2∗s (Cn
s Ss)

− q
2

)

≤
n− µ+ 2s

2(2n − µ)

(

1

q
−

1

22∗µ

)−1

Cn
s (‖u‖

2 + ‖v‖2) + D̃
(

λ
2

2−q + δ
2

2−q

)

=
n− µ+ 2s

2(2n − µ)

(

1

q
−

1

22∗µ

)−1

Cn
s ‖(u, v)‖

2 + D̃
(

λ
2

2−q + δ
2

2−q

)

,

(4.12)

where D̃ :=
2− q

2

(

D− q
2 |Ω|

2∗s−q

2∗s (Cn
s Ss)

− q
2

)
2

2−q

. Using (4.12) in (4.11), we finally obtain (4.4)

with D0 =

(

22∗µ − q

22∗µq

)

D̃. This completes the proof.

As a consequence of Lemma 3.4 we infer that for any λ, δ satisfying 0 < λ
2

2−q + δ
2

2−q < Θ,

Nλ,δ = N+
λ,δ ∪ N−

λ,δ.

In spirit of Lemma 3.1, we define the following

lλ,δ = inf
Nλ,δ

Iλ,δ and l
±
λ,δ = inf

N±
λ,δ

Iλ,δ.

Then we have the following result.

Lemma 4.3 The following holds true:

(i) If 0 < λ
2

2−q + δ
2

2−q < Θ, then lλ,δ ≤ l+λ,δ < 0,

(ii) inf{‖(u, v)‖ : (u, v) ∈ N−
λ,δ} > 0 and sup{‖(u, v)‖ : (u, v) ∈ N−

λ,δ, Iλ,δ(u, v) ≤ M} <

+∞ for each M > 0.



Doubly nonlocal equation with critical nonlinearity 19

Proof.

(i) Let (u, v) ∈ N+
λ,δ implying that ϕ′

u,v(1) = 0 and ϕ′′
u,v(1) > 0. Therefore

(2− q)Cn
s

2(22∗µ − q)
‖(u, v)‖2 > B(u, v).

Using this we deduce that

Iλ,δ(u, v) =

(

1

2
−

1

q

)

Cn
s ‖(u, v)‖

2 +

(

2

q
−

1

2∗µ

)

B(u, v)

<

(

q − 2

2q
+

2− q

22∗µq

)

Cn
s ‖(u, v)‖

2 =
2− q

2q

(

1

2∗µ
− 1

)

‖(u, v)‖2 < 0.

This alongwith the definition of lλ,δ and l+λ,δ implies that lλ,δ ≤ l+λ,δ < 0.

(ii) Let (u, v) ∈ N−
λ,δ then using Lemma 2.3 and (2.2) we get

0 > ϕ′′
u,v(1) ≥ (2− q)Cn

s ‖(u, v)‖
2 − 2(22∗µ − q)(S̃H

s )−2∗µ‖(u, v)‖22
∗
µ .

This gives

‖(u, v)‖ ≥

(

(2− q)Cn
s

2(22∗µ − q)(SH
s )−2∗µ

)
1

22∗µ−2

> 0

which implies that inf{‖(u, v)‖ : (u, v) ∈ N−
λ,δ} > 0. Therefore inf{‖(u, v)‖ : (u, v) ∈

N−
λ,δ} > 0. Now let Iλ,δ(u, v) ≤M for some M > 0 then an easy computation yields

(

1

2
−

1

22∗µ

)

Cn
s ‖(u, v)‖

2 −Kλ,δ

(

1

q
−

1

22∗µ

)

‖(u, v)‖q ≤M

where Kλ,δ = S
− q

2
s |Ω|

2∗s−q

2∗s (λ+ δ) which completes the proof.

Our next result is established by using the implicit function theorem and it plays a crucial

role in proving Theorem 4.5.

Proposition 4.4 Assume 0 < λ
2

2−q + δ
2

2−q < Θ and w = (u, v) ∈ Nλ,δ. Then there exist

ǫ > 0 and a differentiable function ζ : Bǫ(0) ⊂ Y → R
+ (Bǫ(0) denotes ball of radius ǫ with

center origin) such that ζ(0) = 1, ζ(z)(w − z) ∈ Nλ,δ and

(ζ ′(0), z) = −
2(〈u, z1〉+ 〈v, z2〉)− Tλ,δ(w, z) − 2M(z)

(2− q)Cn
s ‖(u, v)‖

2 − 2(22∗µ)B(u, v)
(4.13)

for all z = (z1, z2) ∈ Bǫ(0), where

Tλ,δ(w, z) = q

∫

Ω
(λ|u|q−2uz1 + δ|v|q−2vz2)dx,

M(z) =

∫

Ω
((|x|−µ ∗ |v|2

∗
µ)|u|2

∗
µ−2uz1 + (|x|−µ ∗ |u|2

∗
µ)|v|2

∗
µ−2vz2)dx.
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Proof. For w = (u, v) ∈ Nλ,δ, let us define Fw : R+ × Y → R
n by

Fw(ρ, z) := (I ′λ,δ(ρ(w − z)), (ρ(w − z)))

= ρ2Cn
s ‖(u− z1, v − z2)‖

2 − ρq
∫

Ω
(λ|u− z1|

q + δ|v − z2|
q)dx− 2ρ22

∗
µB(u− z1, v − z2)

where ρ ∈ R
+ and z = (z1, z2) ∈ Y . Then clearly Fw(1, (0, 0)) = (I ′λ,δ(w), w) = 0 since

w ∈ Nλ,δ. Also

d

dρ
Fw(1, (0, 0)) = 2Cn

s ‖(u, v)‖
2 − q

∫

Ω
(λ|u|q + δ|v|q)dx− 2(22∗µ)B(u, v)

= (2− q)Cn
s ‖(u, v)‖

2 − 2(22∗µ − q)

∫

Ω
(λ|u|q + δ|v|q)dx = ϕ′′

u,v(1) 6= 0

because of Lemma 3.4. Therefore we can apply the implicit function theorem to obtain a

ǫ > 0 and a differentiable map ζ : Bǫ(0) ⊂ Y → R
+ with ζ(0) = 1 and satisfies (4.13). Also

Fw(ζ) = 0 for all z ∈ Bǫ(0) which is equivalent to

(I ′λ,δ(ζ(z)(w − z)), ζ(z)(w − z)) = 0, for all z ∈ Bǫ(0),

that is ζ(z)(w − z) ∈ Nλ,δ.

Theorem 4.5 If 0 < λ
2

2−q +δ
2

2−q < Θ then there exists a (PS)lλ,δ sequence {(uk, vk)} ⊂ Nλ,δ

for Iλ,δ.

Proof. We use the Ekeland Variational principle to say that there exists a minimizing

sequence {(uk, vk)} ⊂ Nλ,δ such that

Iλ,δ(uk, vk) < lλ,δ +
1

k
and Iλ,δ(uk, vk) < Iλ,δ(w1, w2) +

1

k
‖(w1, w2)− (uk, vk)‖, (4.14)

for each (w1, w2) ∈ Nλ,δ. From Lemma 4.3(i) we know that lλ,δ < 0, therefore we can find k

sufficiently large such that

Iλ,δ(uk, vk) =

(

1

2
−

1

22∗µ

)

Cn
s ‖(u, v)‖

2 −

(

1

q
−

1

22∗µ

)∫

Ω
(λ|u|q + δ|v|q)dx <

lλ,δ
2
. (4.15)

This gives us

−
2∗µq

(22∗µ − q)
lλ,δ <

∫

Ω
(λ|u|q + δ|v|q)dx < S

− q
2

s |Ω|
2∗s−q

2∗s (λ
2

2−q + δ
2

2−q )
2−q
2 ‖(uk, vk)‖

q. (4.16)

Consequently (uk, vk) 6= 0. From (4.16) we get

‖(uk, vk)‖ >

(

−
2∗µqlλ,δ

22∗µ − q
S

q
2
s |Ω|

−
2∗s−q

2∗s

(

λ
2

2−q + δ
2

2−q

)
q−2
2

)

1
q

(4.17)

and from (4.15) we get

‖(uk, vk)‖ <

(

(22∗µ − q)

q(2∗µ − 1)
S
− q

2
s |Ω|

2∗s−q

2∗s

(

λ
2

2−q + δ
2

2−q

)
2−q
2

)

1
2−q

. (4.18)
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Claim: I ′λ,δ(uk, vk) → 0 in Y ∗ as k → ∞.

Let us fix k ∈ N then by applying Proposition 4.4 to wk = (uk, vk), we get that there

exists a function ζk : Bǫk(0) → R
+ for some ǫk > 0 such that ζk(h)(wk − h) ∈ Nλ,δ for

h = (h1, h2) ∈ Bǫk(0). Let us take τ ∈ (0, ǫk) and z ∈ Y with z 6≡ 0 in Y . We set

z̃ =
τz

‖z‖
and hτ = ζk(z̃)(wk − z̃).

Then Lemma 4.4 implies that z̃ ∈ Nλ,δ and using (4.14) with (w1, w2) = hτ we get

Iλ,δ(hτ )− Iλ,δ(wk) ≥ −
1

k
‖(hτ − wk)‖.

Now applying the Mean Value theorem we obtain

(I ′λ,δ(wk), hτ − wk) + o(‖hτ − wk‖) ≥ −
1

k
‖hτ − wk‖.

Substituting the value of hτ in this, we get

(I ′λ,δ(wk),−z̃) + (ζk(z̃)− 1)(I ′λ,δ(wk), wk − z̃) ≥ −
1

k
‖hτ − wk‖+ o(‖hτ − wk‖).

Then using the fact that ζ ′k(h̃)(wk − h̃) ∈ Nλ,δ, we get

− τ

(

I ′λ,δ(wk),
z

‖z‖

)

+(ζk(z̃)−1)(I ′λ,δ(wk)− I
′
λ,δ(hτ ), wk− h̃) ≥ −

1

k
‖hτ −wk‖+o(‖hτ −wk‖).

(4.19)

Since ‖hτ −wk‖ ≤ τ |ζk(h̃)|+ |ζk(h̃)− 1|‖wk‖ and

lim
τ→0

|ζk(h̃)− 1|

τ
≤ ‖ζ ′k(0)‖.

On passing the limit τ → 0 in (4.19), for some constant M > 0 we get
(

I ′λ,δ(wk),
z

‖z‖

)

≤
M

k
(1 + ‖ζ ′k(0)‖).

This will prove our claim once we are able to show that sup
k

‖ζ ′k(0)‖ < +∞. Let w = (w1, w2) ∈

Y then using Hölder’s inequality we get
∫

Ω
(λ|uk|

q−1w1 + δ|vk|
q−1w2)dx ≤ (λ+ δ)Cq

q ‖(uk, vk)‖
q−1‖(w1, w2)‖, (4.20)

where Cq = sup{
∫

Ω u
q : ‖uk‖ = 1}. Again using Hölder inequality, Hardy-Littlewood-Sobolev

inequality and fractional Sobolev embeddings, we can estimate the following
∫

Ω
(|x|µ ∗ |uk|

2∗µ)|vk|
2∗µ−1w1 dx

≤ C(n, µ)

(
∫

Ω

(

|vk|
2∗µ−1w1

)
2n

2n−µ

)

2n−µ
2n
(
∫

Ω
|uk|

2∗µ·
2n

2n−µ

)
2n−µ
2n

≤ C(n, µ)

[

(∫

Ω
|vk|

2∗s

)
n−µ+2s
2n−µ

(∫

Ω
|w1|

2∗s

)
1
2∗µ

]

2n−µ
2n (∫

Ω
|uk|

2∗s

)
2n−µ
2n

≤M1‖(uk, vk)‖
α‖(w1, w2)‖,

(4.21)
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where α = 2∗s

(

3n− 2µ + 2s

2n

)

and M1 > 0 is a constant. Similarly we can show that there

exist M2 > 0 such that
∫

Ω
(|x|µ ∗ |vk|

2∗µ)|uk|
2∗µ−1w2 dx ≤M2‖(uk, vk)‖

α‖(w1, w2)‖. (4.22)

Consequently using (4.20), (4.21) and (4.22) in (4.13) we get

|(ζ ′k(0), w)| ≤
M3‖(w1, w2)‖

|(2− q)Cn
s ‖(uk, vk)‖

2 − 2(22∗µ − q)B(uk, vk)|

where M3 > 0 is a constant independent of (uk, vk), thanks to (4.17).

Claim: There exists a M4 > 0 such that

∣

∣(2− q)Cn
s ‖(uk, vk)‖

2 − 2(22∗µ − q)B(uk, vk)
∣

∣ ≥M4.

On contrary, let us assume that there exist a subsequence still denoted by {(uk, vk)} ⊂ Nλ,δ

such that
∣

∣(2− q)Cn
s ‖(uk, vk)‖

2 − 2(22∗µ − q)B(uk, vk)
∣

∣ = ok(1). (4.23)

Since (uk, vk) ∈ Nλ,δ, we have

Cn
s ‖(uk, vk)‖

2 =

(

22∗µ − q

22∗µ − 2

)∫

Ω
(λ|uk|

q + δ|vk|
q)dx+ ok(1)

≤

(

22∗µ − q

22∗µ − 2

)

S
− q

2
s |Ω|

2∗s−q

2∗s (λ
2

2−q + δ
2

2−q )
2−q
2 ‖(uk, vk)‖

q + ok(1)

which implies that

Cn
s ‖(uk, vk)‖

2−q ≤

(

22∗µ − q

22∗µ − 2

)

S
− q

2
s |Ω|

2∗s−q

2∗s (λ
2

2−q + δ
2

2−q )
2−q
2 + ok(1). (4.24)

Also (4.23) gives us

Cn
s ‖(uk, vk)‖

2 =

(

2(22∗µ − q)

2− q

)

B(uk, vk) + ok(1) ≤

(

2(22∗µ − q)

2− q

)

(S̃H
s )−2∗µ‖(uk, vk)‖

22∗µ + ok(1)

which implies that

‖(uk, vk)‖ ≥

(

Cn
s (2− q)(S̃H

s )2
∗
µ

2(22∗µ − q)

)
1

22∗µ−2

+ ok(1) (4.25)

where we used the fact that ‖(uk, vk)‖ 6= ok(1) because of (4.17). From (4.24) and (4.25), for

large k we obtain

Cn
s

(

Cn
s (2− q)(S̃H

s )2
∗
µ

2(22∗µ − q)

)
2−q

22∗µ−2

≤

(

22∗µ − q

22∗µ − 2

)

S
− q

2
s |Ω|

2∗s−q

2∗s (λ
2

2−q + δ
2

2−q )
2−q
2



Doubly nonlocal equation with critical nonlinearity 23

Then using Lemma 2.6 and (2.6), the above inequality yields

(λ
2

2−q+δ
2

2−q ) ≥





22
∗
µ−1(Cn

s )
22∗µ−q

2−q

C(n, µ)

(

2− q

22∗µ − q

)(

22∗µ − 2

22∗µ − q

)

22∗µ−2

2−q

Ss
q(2∗µ−1)

2−q
+2∗µ |Ω|

−
(2∗s−q)(22∗µ−2)

2∗s (2−q)





1
2∗µ−1

This contradicts the assumption that 0 < λ
2

2−q + δ
2

2−q < Θ. Hence the claim holds true and

we finally obtain
(

I ′λ,δ(wk),
z

‖z‖

)

≤
M

k
.

This establishes our first claim and completes the proof.

4.1 First solution

We now prove the existence of first solution for the problem (Pλ,δ).

Theorem 4.6 Let 0 < λ
2

2−q +δ
2

2−q < Θ. Then there exists a (u1, v1) ∈ N+
λ,δ such that (u1, v1)

is a weak solution of (Pλ,δ). Moreover, (u1, v1) satisfies Iλ,δ(u1, v1) = lλ,δ = l+λ,δ < 0.

Proof. By Theorem 4.5 we know that there exists a (PS)lλ,δ sequence {(uk, vk)} ⊂ Nλ,δ for

Iλ,δ that is

lim
k→∞

Iλ,δ(uk, vk) = lλ,δ ≤ l+λ,δ < 0 and lim
k→∞

I ′λ,δ(uk, vk) = 0 in Y ∗.

By Lemma 4.1 we know that this sequence {(uk, vk)} is bounded in Y . Therefore there exists

(u1, v1) ∈ Y such that upto a subsequence, (uk, vk) ⇀ (u1, v1) weakly in Y and (uk, vk) →

(u1, v1) strongly in Lm(Ω), for m ∈ [1, 2∗s) as k → ∞. Therefore lim
k→∞

∫

Ω(λ|uk|
q + δ|vk|

q)dx =
∫

Ω(λ|u|
q + δ|v|q)dx. We already know that (u1, v1) is a weak solution of (Pλ,δ), by Lemma

4.2. Since {(uk, vk)} ⊂ Nλ,δ we obtain

Iλ,δ(uk, vk) =

(

1

2
−

1

22∗µ

)

Cn
s ‖(uk, vk)‖

2 −

(

1

q
−

1

22∗µ

)
∫

Ω
(λ|uk|

q + δ|vk|
q)dx

≥ −

(

1

q
−

1

22∗µ

)∫

Ω
(λ|uk|

q + δ|vk|
q)dx.

From Lemma 4.3 we know that lλ,δ < 0, so passing on the limit k → ∞ we get

∫

Ω
(λ|u1|

q + δ|v1|)dx ≥ −
22∗µ

(22∗µ − q)
lλ,δ > 0.

This implies that (u1, v1) ∈ Nλ,δ is non-trivial solution of (Pλ,δ).

Claim: (uk, vk) → (u1, v1) strongly in Y as k → ∞ and Iλ,δ(u1, v1) = l+λ,δ.
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Using (u1, v1) ∈ Nλ,δ and Fatou’s Lemma we have

lλ,δ ≤ Iλ,δ(u1, v1) =

(

2∗µ − 1

22∗µ

)

Cn
s ‖(u1, v1)‖

2 −

(

22∗µ − q

22∗µq

)
∫

Ω
(λ|u1|

q + δ|v1|
q) dx

≤ lim inf
k→∞

((

2∗µ − 1

22∗µ

)

Cn
s ‖(uk, vk)‖

2 −

(

22∗µ − q

22∗µq

)∫

Ω
(λ|uk|

q + δ|vk|
q)dx

)

= lim inf
k→∞

Iλ,δ(uk, vk) = lλ,δ.

This implies that Iλ,δ(u1, v1) = lλ,δ and ‖(uk, vk)‖ → ‖(u1, v1)‖ as k → ∞. We have

‖(uk − u1, vk − v1)‖
2 = ‖(uk, vk)‖

2 − ‖(u1, v1)‖
2 + ok(1).

Therefore (uk, vk) → (u1, v1) strongly in Y as k → ∞. To establish our claim, it remains to

show that (u1, v1) ∈ N+
λ,δ. On the contrary, if (u1, v1) ∈ N−

λ,δ then by Lemma 3.3, there exist

unique t2 > t1 > 0 such that

(t1u, t1v) ∈ N+
λ,δ and (t2u1, t2v1) ∈ N−

λ,δ.

Particularly, t1 < t2 = 1. Since ϕ′
u,v(t1) = 0 and ϕ′′(t1) > 0, so t1 is local minimum of ϕu,v.

Therefore there exists a t̂ ∈ (t1, 1] such that Iλ,δ(t1u1, t1v1) < Iλ,δ(t̂u1, t̂v1). Hence

lλ,δ ≤ Iλ,δ(t1u1, t1v1) < Iλ,δ(t̂u1, t̂v1) ≤ Iλ,δ(u1, v1) = lλ,δ

which contradicts that (u1, v1) ∈ N−
λ,δ.

Lemma 4.7 There exists a non negative local minimum of Iλ,δ.

Proof. Suppose (u1, v1) be as obtained in Theorem 4.6. Then it is also a local minimum for

Iλ,δ, the proof follows as [pp. 291,[28]]. If u1, v1 ≥ 0 then we are done. Else consider (|u1|, |v1|)

then by Lemma 3.3 we know that there exist a t1 such that (t1|u1|, t1|v1|) ∈ N+
λ,δ. Since

m|u1|,|v1|(1) ≤ mu1,v1(1) = 2B(u1, v1) = 2B(|u1|, |v1|) = m|u1|,|v1|(t1) and 0 < m′
u1,v1(1) ≤

m′
|u1|,|v1|

(1). This implies t1 ≥ 1 and thus we have

Iλ,δ(t1|u1|, t1|v1|) ≤ Iλ,δ(|u1|, |v1|) ≤ Iλ,δ(u1, v1) = inf Iλ,δ(N
+
λ,δ).

Hence we obtain a non negative local minimum of Iλ,δ over N+
λ,δ.

We prove positivity of the solution (u1, v1) of (Pλ,δ).

Proposition 4.8 The non negative weak solution (u1, v1) of (Pλ,δ) obtained in Lemma 4.7 is

positive in Ω that is u1, v1 > 0 in Ω. Moreover for each compact subset K of Ω, there exists

a mK > 0 such that u1, v1 ≥ mK in K.
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Proof. We divide the proof into two cases. Consider u1 first and v1 can be shown to be

positive in exactly same way.

Case(1): Let
2∗s

(q − 1)
>

n

2s
then there exists a sequence {uǫ}ǫ>0 ⊂ C∞

c (Ω) such that uǫ → u1

in L2∗s (Ω) as ǫ→ 0. That means uq−1
ǫ → uq−1

1 in L
2∗s

(q−1) (Ω) as ǫ→ 0. Now let

wǫ := (−∆)−s(λuq−1
ǫ ).

Then using Proposition 1.4(iii) of [25], we get that {wǫ} is a Cauchy sequence in Cβ(Rn)

where β = min{s, 2s − n
p} and

‖wǫ‖Cβ(Rn) ≤ C‖uq−1
ǫ ‖

L
2∗s

(q−1) (Ω)

. (4.26)

We know that there exists a h ∈ L
2∗s
q−1 (Ω) such that wǫ ≤ h, so by Lebesgue Dominated

convergence theorem we get

lim sup
ǫ>0

∫

Rn

((−∆)swǫ)wǫ dx < +∞.

This implies that {wǫ} is bounded in X0, hence up to a subsequence, wǫ converges weakly to

a w ∈ X0 in X0 as ǫ→ 0. Then w satisfies the equation

(−∆)sw = λuq−1
1 in Ω, w = 0 in R

n \ Ω

then wǫ → w in Cβ(Rn) so passing on the limit as ǫ→ 0 in (4.26) we obtain w ∈ C(Ω̄). Since

(u1, v1) solves (Pλ,δ) it is clear that u1 satisfies

(−∆)su1 ≥ λuq−1
1 in Ω, u1 = 0 in R

n \Ω.

Therefore u1 ≥ w in Ω, thanks to comparison principle (refer Proposition 4.1 in [26]). Also

now by strong maximum principle (refer [27]), we conclude that w > 0 in Ω and there exists

a mK > 0 for each K compact subset of Ω such that w > mK in K.

Case(2): Let
2∗s

(q − 1)
≤

n

2s
and consider the following iterative scheme

(−∆)swk = λwq−1
k−1 in Ω, wk = 0 in R

n \ Ω

with w0 = u1. Then take k = 1 at first and let {w0,ǫ} ⊂ C∞
c (Ω) such that w0,ǫ → w0 = u1 in

L2∗s (Ω) as ǫ→ 0 which means wq−1
0,ǫ → uq−1

1 in L
2∗s
q−1 (Ω) as ǫ→ 0. We define

w1
ǫ := (−∆)−s(λwq−1

0,ǫ ).

Set q1 = 2∗s
q−1 and we get using Proposition 1.4(ii) of [25] that {w1

ǫ } is a Cauchy sequence in

Lq2(Ω) where q2 =
nq1

n−2q1s
> q1 and

‖w1
ǫ ‖Lq2 (Ω) ≤ C‖wq−1

0,ǫ ‖Lq1 (Ω). (4.27)
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Necessarily w1
ǫ → w1 as ǫ→ 0 in Lq2(Ω) so passing on the limit as ǫ→ 0 in (4.27) we obtain

w1 ∈ Lq2(Ω). Proceeding similarly, at each stage we get wk ∈ Lqk(Ω) where qk =
nqk−1

n−2qk−1s

and note that wk 6≡ 0 for each k. Clearly {qk} forms an increasing sequence and the map

t 7→ nt
n−2st has no fixed point. So obviously there exists a k0 > 0 such that qk0 >

n
2s and for

this k0 we get wk0+1 ∈ Cβ(Rn), by Proposition 1.4(iii) of [25]. By comparison principle we

already know that {wk} forms a non increasing sequence and u1 ≥ w1. Thus arguing same

as Case(1) we get

u1 ≥ w1 ≥ w2 ≥ . . . ≥ wk0+1 > 0 in Ω.

Also there exists a mK > 0 for each K compact subset of Ω such that wk0+1 > mK in K.

This result suggests that there is no harm to consider (u1, v1) as positive (as this property

of the first solution will be used further while proving the existence of second solution in the

case µ ≤ 4s).

4.2 Second solution

Now, we establish the existence of second solution for (Pλ,δ). We prove this by showing that

minimum of Iλ,δ is achieved over N−
λ,δ. We consider two cases separately that is when µ ≤ 4s

and when µ ≥ 4s. In the first case we are able to show that when 0 < λ
2

2−q + δ
2

2−q < Θ,

(Pλ,δ) has two weak solutions whereas in the other case for µ > 4s we get another threshold

Θ0 which may be ’less than or equal to’ Θ such that whenever 0 < λ
2

2−q + δ
2

2−q < Θ0, (Pλ,δ)

possesses two weak solutions.

Lemma 4.9 If µ ≤ 4s and 0 < λ
2

2−q + δ
2

2−q < Θ, then there exists (w0, z0) ∈ Y \ {(0, 0)}

such that w0, z0 ≥ 0 and

sup
t≥0

Iλ,δ((u1, v1) + t(w0, z0)) < c1 := Iλ,δ(u1, v1) +
n− µ+ 2s

2n− µ

(

Cn
s S̃

H
s

2

)
2n−µ

n−µ+2s

.

Proof. Using (2.10), we can find r1 > 0 such that

∫

R2n

|uǫ(x)− uǫ(y)|
2

|x− y|n+2s
dxdy≤

(

(C(n, µ))
n−2s
2n−µSH

s

)
n
2s

+ r1ǫ
n−2s. (4.28)

Also using Proposition 2.8, we can find r2 > 0 such that
∫

Ω
(|x|−µ ∗ |uǫ|

2∗µ)|uǫ|
2∗µ dx ≥ C(n, µ)

n
2s (SH

s )
2n−µ
2s − r2ǫ

2n−µ. (4.29)

From proof of Lemma 5.1 of [23], we know that for fixed ρ such that 1 < ρ <
n

n− 2s
we have

∫

Ω
|uǫ|

ρ ≤ r3ǫ
(n−2s)ρ

2 , (4.30)
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where r3 > 0 is an appropriate constant. Now let 0 < ǫ < δ then uǫ = Uǫ in Bǫ(0).

Claim: There exists a constant r4 > 0 such that

∫

|x|≤ǫ

∫

Ω

|uǫ(x)|
2∗µ−1|uǫ(y)|

2∗µ

|x− y|µ
dxdy ≥ r4ǫ

n−2s
2 . (4.31)

To show this, we split the left hand side of (4.31) into two integrals and estimate them

separately. We recall the definition of uǫ and firstly consider

∫

|x|≤ǫ

∫

|y|≤ǫ

|uǫ(x)|
2∗µ−1|uǫ(y)|

2∗µ

|x− y|µ
dydx

=
α22∗µ−1

‖ũ‖
22∗µ−1

L2∗s (Rn)

∫

|x|≤ǫ

∫

|y|≤ǫ

ǫ
(2s−n)(22∗µ−1)

2

|x− y|µ

(

β2 +

∣

∣

∣

∣

x

ǫS
1
2s
s

∣

∣

∣

∣

2
)

(n−2s)(2∗µ−1)

2
(

β2 +

∣

∣

∣

∣

y

ǫS
1
2s
s

∣

∣

∣

∣

2
)

(n−2s)2∗µ
2

dydx

≥ E1

∫

|x|≤ǫ

∫

|y|≤ǫ

ǫ
(2s−n)(22∗µ−1)

2
−µ

(

1 + |xǫ |
2
)

(n−2s)(2∗µ−1)

2
(

1 + |yǫ |
2
)

(n−2s)2∗µ
2

dydx

= E1

∫

|x|≤1

∫

|y|≤1

ǫ
n−2s

2

(1 + |x|2)
(n−2s)(2∗µ−1)

2 (1 + |y|2)
(n−2s)2∗µ

2

dydx = O
(

ǫ
n−2s

2

)

where E1 > 0 is appropriate constant that changes value at each step. Secondly, in a similar

manner we get

∫

|x|≤ǫ

∫

|y|>ǫ

|uǫ(y)|
2∗µ |uǫ(x)|

2∗µ−1

|x− y|µ
dydx

=
α22∗µ−1

‖ũ‖
22∗µ−1

L2∗s (Rn)

∫

|x|≤ǫ

∫

|y|>ǫ

ǫ
(2s−n)(22∗µ−1)

2

|x− y|µ

(

β2 +

∣

∣

∣

∣

x

ǫS
1
2s
s

∣

∣

∣

∣

2
)

(n−2s)(2∗µ−1)

2
(

β2 +

∣

∣

∣

∣

y

ǫS
1
2s
s

∣

∣

∣

∣

2
)

(n−2s)2∗µ
2

dydx

≥ E′
1

∫

|x|≤ǫ

∫

|y|>ǫ

ǫ
(2s−n)(22∗µ−1)

2
−µ

(|y|+ ǫ)µ
(

1 + |xǫ |
2
)

(n−2s)(2∗µ−1)

2
(

1 + |yǫ |
2
)

(n−2s)2∗µ
2

dydx

= E′
1

∫

|x|≤1

∫

|y|>1

ǫ
n−2s

2

(1 + |x|2)
(n−2s)(2∗µ−1)

2 (1 + |y|2)
(n−2s)2∗µ

2 (1 + |y|)µ
dydx = O

(

ǫ
n−2s

2

)

.

where E′
1 > 0 is appropriate constant that changes value at each step. This establishes our

claim. We can find appropriate constants ρ1,λ, ρ1,δ , ρ2 > 0 such that the following inequalities

holds :

(1) λ

(

(c+ d)q

q
−
cq

q
− dc1−q

)

≥ −
ρ1,λd

ρ

r3
and δ

(

(c+ d)q

q
−
cq

q
− dc1−q

)

≥ −
ρ1,δd

ρ

r3
, for all

c > 0, d ≥ 0.
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(2) For each ǫ > 0, m ≤ u1, v1 on compact subsets of Ω where m > 0 is a constant, we get

1

2∗µ
B(u1 + tuǫ, v1 + tuǫ)−

1

2∗µ
B(u1, v1)−

∫

Ω

∫

Ω

|u1(y)|
2∗µ |v1(x)|

2∗µ−2v1(x)tuǫ(x)

|x− y|µ
dydx

−

∫

Ω

∫

Ω

|v1(y)|
2∗µ |u1(x)|

2∗µ−2u1(x)tuǫ(x)

|x− y|µ
dydx

≥
t22

∗
µ

2∗µ
B(uǫ, uǫ) +

ρ2t
22∗µ−1

(22∗µ − 1)

∫

|x|≤ǫ

∫

Ω

|uǫ(y)|
2∗µ |uǫ(x)|

2∗µ−1

|x− y|µ
dydx.

We remark that such an m exists because of Proposition 4.8. From Theorem 4.6 we know

that (u1, v1) is a weak solution of (Pλ,δ). Therefore, we have

Iλ,δ((u1, v1) + t(uǫ, uǫ))− Iλ,δ(u1, v1)

= Iλ,δ((u1, v1) + t(uǫ, uǫ))− Iλ,δ(u1, v1)− t

(

〈u1, uǫ〉+ 〈v1, uǫ〉

−

∫

Ω
(λ|u1|

q−2u1uǫ + δ|v1|
q−2v1uǫ) dx−

∫

Ω
(|x|−µ ∗ |u1|

2∗µ)|v1|
2∗µ−2v1uǫ dx

−

∫

Ω
(|x|−µ ∗ |v1|

2∗µ)|u1|
2∗µ−2u1uǫ dx

)

=
t2

2
Cn
s ‖(uǫ, uǫ)‖

2 − λ

∫

Ω

(

|u1 + tuǫ|
q − |u1|

q

q
− t|u1|

q−2u1uǫ

)

dx

− δ

∫

Ω

(

|v1 + tuǫ|
q − |v1|

q

q
− t|v1|

q−2v1uǫ

)

dx−

(

B(u1 + tuǫ, v1 + tuǫ)−B(u1, v1)

2∗µ

−

∫

Ω
(|x|−µ ∗ |u1|

2∗µ)|v1|
2∗µ−2v1tuǫ dx−

∫

Ω
(|x|−µ ∗ |v1|

2∗µ)|u1|
2∗µ−2u1tuǫ dx

)

which on using inequality (2) with (4.28)-(4.31) gives

Iλ,δ((u1, v1) + t(uǫ, uǫ))− Iλ,δ(u1, v1)

≤ t2Cn
s

(

C(n, µ)
n(n−2s)
2s(2n−µ) (SH

s )
n
2s + r1ǫ

n−2s

)

+ (ρ1,λ + ρ1,δ)t
ρǫ

(n−2s)ρ
2

−
t22

∗
µ

2∗µ

(

C(n, µ)
n
2s (SH

s )
2n−µ
2s − r2ǫ

2n−µ
)

−
t22

∗
µ−1ρ2

(22∗µ − 1)
r4ǫ

n−2s
2 .

Now we define the function hǫ : [0,∞) → R as

hǫ(t) = t2Cn
s

(

C(n, µ)
n(n−2s)
2s(2n−µ) (SH

s )
n
2s + r1ǫ

n−2s

)

+ (ρ1,λ + ρ1,δ)t
ρǫ

(n−2s)ρ
2

−
t22

∗
µ

2∗µ

(

C(n, µ)
n
2s (SH

s )
2n−µ
2s − r2ǫ

2n−µ
)

−
t22

∗
µ−1ρ2

(22∗µ − 1)
r4ǫ

n−2s
2 .

Then hǫ attains its maximum at

tǫ =(Cn
s )

n−2s
2(n−µ+2s)C(n, µ)

− n(n−2s)
4s(2n−µ) (SH

s )
− (n−2s)(n−µ)

4s(n−µ+2s)

−
ρ2r4(n− 2s)

4(n − µ+ 2s)
C(n, µ)−

n
2s (SH

s )
µ−2n
2s ǫ

n−2s
2 + o(ǫ

n−2s
2 ).
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Therefore we get

sup
t≥0

(Iλ,δ((u1, v1) + t(uǫ, uǫ))− Iλ,δ(u1, v1))

≤
n− µ+ 2s

2n− µ
(Cn

s S
H
s )

2n−µ
n−µ+2s −

ρ2r4ǫ
n−2s

2

22∗µ − 1
C(n, µ)

−n(3n−2µ+2s)
4s(2n−µ) (SH

s )
(µ−n)(3n−2µ+2s)

4s(n−µ+2s) + o(ǫ
n−2s

2 )

<
n− µ+ 2s

(2n− µ)
(Cn

s S
H
s )

2n−µ
n−µ+2s =

n− µ+ 2s

(2n− µ)

(

Cn
s S̃

H
s

2

)
2n−µ

n−µ+2s

.

Choosing (w0, z0) = (uǫ, uǫ), for appropriate choice of ǫ as shown above, we obtain the result.

Corollary 4.10 It holds that l−λ,δ < c1.

Proof. For each (u, v) ∈ Y , by Lemma 3.3 we know that there exists a t2(u, v) > 0 (notation

changed to show that t2 depends on (u, v)) such that t2(u, v)(u, v) ∈ N−
λ,δ. We consider two

sets

U1 :=

{

(u, v) ∈ Y : ‖(u, v)‖ < t2

(

(u, v)

‖(u, v)‖

)}

and

U2 :=

{

(u, v) ∈ Y : ‖(u, v)‖ > t2

(

(u, v)

‖(u, v)‖

)}

.

Claim: Y \ N−
λ,δ = U1 ∪ U2.

For any (u, v) ∈ Y we define (û, v̂) := (u,v)
‖(u,v)‖ . Now let (u, v) ∈ N−

λ,δ. Then we know that there

exists a t2(û, v̂) > 0 such that t2(û, v̂)(û, v̂) ∈ N−
λ,δ. But (u, v) ∈ N−

λ,δ implies that it must be

that t2(û,v̂)
‖(u,v)‖ = 1 which means t2(û, v̂) = ‖(u, v)‖. On the other hand, let (u, v) ∈ Y be such

that t2(û, v̂) = ‖(u, v)‖. By definition t2(û, v̂)(û, v̂) ∈ N−
λ,δ which implies that (u, v) ∈ N−

λ,δ.

This proves the claim.

Next let (u, v) ∈ N+
λ,δ then by Lemma 3.3 we know that there exists a t1(û, v̂) > 0 such

that t1(û, v̂)(û, v̂) ∈ N+
λ,δ. But (u, v) ∈ N+

λ,δ implies that t1(û,v̂)
‖(u,v)‖ = 1. This gives t2(û, v̂) >

t1(û, v̂) = ‖(u, v)‖ that is (u, v) ∈ U1. Therefore N+
λ,δ ⊂ U1 and thus (u1, v1) ∈ U1.

We consider the map γM ∈ C([0, 1], Y ) defined by γM (t) := (u1, v1) + tM(w0, z0) for M > 0,

where (w0, z0) is defined Lemma 4.9. Clearly γ(0) = (u1, v1) and γ(1) = (u1, v1)+M(w0, z0).

There exists a R > 0 such that 0 < t2(u, v) < R on the set {(u, v) ∈ Y : ‖(u, v)‖ = 1}. Let

us choose M0 > 0 such that

M0 ≥
|R2 − ‖(u0, v0)‖

2|

‖(w0, z0)‖2
.

Then

‖(u1, v1) +M0(w0, z0)‖
2 ≥ ‖(u1, v1)‖

2 +M2
0 ‖(w0, z0)‖

2 +O(M0)

≥ R2 >

(

t2

(

(u1, v1) +M0(w0, z0)

‖(u1, v1) +M0(w0, z0)‖

))2
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which implies (u1, v1) + M0(w0, z0) ∈ U2. Now since γM0 is a continuous path starting

from (u1, v1) to (u1, v1) + M0(w0, z0) and Y \ N−
λ,δ = U1 ∪ U2, there must exists a t̂ > 0

such that ‖(u1, v1) +M0(w0, z0)‖ = t2

(

(u1,v1)+M0(w0,z0)
‖(u1,v1)+M0(w0,z0)‖

)

that is γM0(t̂) ∈ N−
λ,δ. Therefore

(u1, v1) + t̂M0(w0, z0) ∈ N−
λ,δ. Finally using Lemma 4.9 we obtain

l−λ,δ ≤ Iλ,δ((u1, v1) + t̂M0(w0, z0)) ≤ sup
t≥0

Iλ,δ((u1, v1) + t(w0, z0)) < c1.

This completes the proof.

Lemma 4.11 If µ > 4s then there exists a Υ > 0 such that whenever 0 < λ
2

2−q + δ
2

2−q < Υ,

we have

l−λ,δ < c0 :=
n− µ+ 2s

(2n − µ)

(

Cn
s S̃

H
s

2

)
2n−µ

n−µ+2s

−D0

(

λ
2

2−q + δ
2

2−q

)

where D0 has been defined in Lemma 4.2.

Proof. Let w0 = z0 = uǫ and define

Jλ,δ(u, v) =
Cn
s

2
‖(u, v)‖2 −

1

2∗µ
B(u, v) and f(t) = Jλ,δ(tw0, tz0).

Then f(0) = 0 and f(t) < 0 if t ∈ (0, T ), f(t) > 0 if t > T where T =
(

2∗µC
n
s ‖(w0,z0)‖2

2B(w0,z0)

)
1

2(2∗µ−1)
.

It is next easy thing to verify that f attains its maximum at t∗ =
(

Cn
s ‖w0,z0‖2

2B(w0,z0)

)
1

2(2∗µ−1)
.

Therefore using (2.10) and Proposition 2.8 we have

sup
t≥0

Jλ,δ(tw0, tz0)

= f(t∗) =
Cn
s t

2
∗

2
‖(w0, z0)‖

2 −
t
22∗µ
∗

2∗µ
B(w0, z0) =

(

n− µ+ 2s

2n− µ

)





Cn
s ‖uǫ‖

2

B(uǫ, uǫ)
1
2∗µ





2∗µ
2∗µ−1

≤

(

n− µ+ 2s

2n− µ

)







Cn
s (C(n, µ)

n−2s
2n−µ

· n
2s (SH

s )
n
2s +O(ǫn−2s))

(

C(n, µ)
n
2s (SH

s )
2n−µ
2s −O(ǫ2n−µ)

)
n−2s
2n−µ







2∗µ
2∗µ−1

≤

(

n− µ+ 2s

2n− µ

)

(Cn
s )

2∗µ
2∗µ−1

(

SH
s + o(ǫn−2s)

)

2∗µ
2∗µ−1

=

(

n− µ+ 2s

2n− µ

)







(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

+ o(ǫn−2s)







(4.32)

Recalling the definition of c0, we note that if 0 < λ
2

2−q + δ
2

2−q < Υ1 where Υ1 > 0 is chosen

such that c0 > 0 for example Υ1 =
n− µ+ 2s

2D0(2n − µ)

(

Cn
s S̃

H
s

2

)
2n−µ

n−µ+2s

. Since Iλ,δ(tw0, tz0) ≤
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t2

2 ‖(w0, z0)‖
2 for t ≥ 0, we can find t̄ > 0 such that sup

t∈[0,t̄]
Iλ,δ(tw0, tz0) < c0 whenever 0 <

λ
2

2−q +δ
2

2−q < Υ1. Let us define function Hλ,δ : Y → R as Hλ,δ(u, v) :=
1

q

∫

Ω
(λ|u|q+δ|v|q)dx.

Now using (4.32) we have

sup
t≥t̄

Iλ,δ(tw0, tz0) = sup
t≥t̄

(Jλ,δ(tw0, tz0)−Hλ,δ(tw0, tz0))

≤

(

n− µ+ 2s

2n− µ

)







(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

+O(ǫn−2s)






−
t̄q

q
(λ+ δ)

∫

Rn

|uǫ|
q dx

≤

(

n− µ+ 2s

2n− µ

)

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

+O(ǫn−2s)−
t̄q

q
(λ+ δ)

∫ δ∗

0
|uǫ|

q dx

for any δ∗ > 0. Fix δ∗ < δ and letting 0 < ǫ < δ∗ we estimate

∫

B(0,δ∗)
|uǫ|

q dx =

∫

B(0,δ∗)
|Uǫ|

q dx ≥ C1|Sn−1|ǫ
n− (n−2s)q

2

∫ δ∗
ǫ

0

rn−1

(1 + r2)
(n−2s)q

2

dr

≥ C2|Sn−1|ǫ
n− (n−2s)q

2

∫ δ∗
ǫ

0
rn−1−(n−2s)q dr

≥ C2|Sn−1|ǫ
n− (n−2s)q

2







∫

δ∗
ǫ

1 rn−1−(n−2s)q dr if n ≤ (n− 2s)q
∫

δ∗
ǫ

0 rn−1−(n−2s)q dr if n > (n− 2s)q

≃ C3















ǫn−
(n−2s)q

2 , if n < (n− 2s)q

ǫ
n
2 | log ǫ|, if n = (n− 2s)q

ǫ
(n−2s)q

2 , if n > (n− 2s)q

where C1, C2 and C3 are appropriate positive constants. Therefore using 1 < q < 2 we obtain

sup
t≥t0

Iλ,δ(tw0, tz0)

≤

(

n− µ+ 2s

2n− µ

)

(

S̃H
s

2

)

2∗µ
2∗µ−1

+















O(ǫn−2s)− (λ+ δ)O(ǫn−
(n−2s)q

2 ), if n < (n− 2s)q

−(λ+ δ)O(ǫ
n
2 | log ǫ|), if n = (n− 2s)q

−(λ+ δ)O(ǫ
(n−2s)q

2 ), if n > (n− 2s)q

This implies for ǫ = (λ
2

2−q + δ
2

2−q )
1

n−2s ≤ δ∗

sup
t≥t0

Iλ,δ(tw0, tz0) ≤

(

n− µ+ 2s

2n− µ

)

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

+



















C(λ
2

2−q + δ
2

2−q )− C(λ+ δ)(λ
2

2−q + δ
2

2−q )
1

n−2s
(n− (n−2s)q

2
), if n < (n− 2s)q

−C(λ+ δ)(λ
2

2−q + δ
2

2−q )
n

2(n−2s) | log((λ
2

2−q + δ
2

2−q )
1

n−2s )|, if n = (n− 2s)q

−C(λ+ δ)(λ
2

2−q + δ
2

2−q )
q
2 , if n > (n− 2s)q

.
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Let n < (n− 2s)q then 1 + 2
(2−q)(n−2s)

(

n− (n−2s)q
2

)

< 2
2−q which implies that we can choose

a Υ2 > 0 small enough such that if 0 < λ
2

2−q + δ
2

2−q < Υ2 then

C
(

λ
2

2−q + δ
2

2−q

)

− C(λ+ δ)(λ
2

2−q + δ
2

2−q )
1

n−2s
(n− (n−2s)q

2
) < −D0

(

λ
2

2−q + δ
2

2−q

)

.

As λ, δ → 0, | log((λ
2

2−q + δ
2

2−q )
1

n−2s )| → ∞ so in case n = (n− 2s)q we can obtain a Υ2 > 0

small enough such that

−C(λ+ δ)(λ
2

2−q + δ
2

2−q )
n

2(n−2s) | log((λ
2

2−q + δ
2

2−q )
1

n−2s )| < −D0

(

λ
2

2−q + δ
2

2−q

)

.

Else if n > (n − 2s)q then (λ + δ)(λ
2

2−q + δ
2

2−q )
q
2 ≃ (λ

2
2−q + δ

2
2−q ) and hence clearly we can

obtain a Υ2 > 0 small enough such that

−C(λ+ δ)(λ
2

2−q + δ
2

2−q )
q
2 < −D0

(

λ
2

2−q + δ
2

2−q

)

.

Setting Υ = min{Υ1,Υ2, δ
n−2s
∗ } > 0 we finally get that

sup
t≥0

Iλ,δ(tw0, tz0) < c0

whenever 0 < λ
2

2−q + δ
2

2−q < Υ. To prove the last part of the Lemma, we note that there

exists t2 > 0 such that (t2w0, t2z0) ∈ N−
λ,δ and

l−λ,δ ≤ Iλ,δ(t2w0, t2z0) ≤ sup
t≥0

Iλ,δ(tw0, tz0) < c0

when 0 < λ
2

2−q + δ
2

2−q < Υ. This concludes the proof.

Before proving the existence of second solution, we make a remark at this stage.

Remark 4.12 Using Lemma 4.2 it is easy to see that c1 > c0, where c1 is defined in Lemma

4.9 and c0 is defined in Lemma 4.11.

Theorem 4.13 There exists a (u2, v2) ∈ N−
λ,δ such that Iλ,δ(u2, v2) = l−λ,δ in each of the

following cases:

(i) 0 < λ
2

2−q + δ
2

2−q < Θ when µ ≤ 4s and

(ii) 0 < λ
2

2−q + δ
2

2−q < Θ0 := min{Θ,Υ} when µ > 4s.

Moreover, (u2, v2) is a weak solution of (Pλ,δ).

Proof. Let {(uk, vk)} ⊂ N−
λ,δ be a minimizing sequence such that lim

k→∞
Iλ,δ(uk, vk) = l−λ,δ.

By Lemma 4.3(ii), we know that {(uk, vk)} is a bounded sequence in X0. Hence there exists

a (u2, v2) ∈ Y such that, upto a subsequence, (uk, vk)⇀ (u2, v2) weakly in X0 as k → ∞.
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Claim(1): As k → ∞, uk → u2 and vk → v2 strongly in X0.

If not, we define zk = uk − u2 and wk = vk − v2 and assume that as k → ∞

‖(zk, wk)‖
2 → c2 and B(zk, wk) → d22

∗
µ .

for some c, d 6= 0. Then as k → ∞ we have

‖(uk, vk)‖
2 = ‖(zk, wk)‖

2 + ‖(u2, v2)‖
2 + ok(1).

Before proving claim (1) we state and prove the following.

Claim(2): As k → ∞, B(uk, vk)−B(zk, wk) → B(u2, v2).

From fractional Sobolev embedding we have that

|zk|
2∗µ − |uk|

2∗µ ⇀ |u2|
2∗µ and |wk|

2∗µ − |vk|
2∗µ ⇀ |v2|

2∗µ in L
2n

2n−µ (Rn).

By Proposition 2.1, we have

|x|−µ∗(|zk |
2∗µ−|uk|

2∗µ)⇀ |x|−µ∗|u2|
2∗µ and |x|−µ∗(|wk|

2∗µ−|vk|
2∗µ)⇀ |x|−µ∗|v2|

2∗µ in L
2n
µ (Rn).

Also from boundedness of {uk} and {vk} in L
2n

n−2s (Rn) we know that |zk|
2∗µ ⇀ 0 and |wk|

2∗µ ⇀ 0

in L
2n

2n−µ (Rn). This gives B(uk − zk, wk) → 0 and B(vk − wk, zk) → 0 as k → ∞. This

altogether proves claim(2) because we can write

B(uk, vk)−B(zk, wk) = B(uk − zk, vk − wk) +B(vk − wk, zk) +B(uk − zk, wk).

Since {(uk, vk)} ⊂ N−
λ,δ, lim

k→∞
ϕ′
uk,vk

(1) = 0. This gives

ϕ′
u2,v2(1) + Cn

s c
2 − 2d22

∗
µ = 0. (4.33)

Claim(3): (u2, v2) is non-trivial.

Suppose not and u2 ≡ 0 ≡ v2. This implies c 6= 0 because of Lemma 4.3(ii). Also using

definition of S̃H
s and Cn

s c
2 = 2d22

∗
µ (by (4.33)), we get

c2

2
≥

(

Cn
s S̃

H
s

2

)

22∗µ
2(2∗µ−1)

.

Therefore

l−λ,δ = lim
k→∞

Iλ,δ(uk, vk) = Iλ,δ(0, 0) +
Cn
s c

2

2
−

2d22
∗
µ

22∗µ

=
Cn
s c

2

2

(

1−
1

2∗µ

)

≥

(

n− µ+ 2s

2n− µ

)

(

Cn
s S̃

H
s

2

)
2n−µ

n−µ+2s

.

(4.34)

If µ ≤ 4s, then using (4.34) with Lemma 4.9, we have that Iλ,δ(u1, v1) > 0 but this is a

contradiction to Iλ,δ(u1, v1) = l+λ,δ < 0 (by Lemma 4.3(i)). Otherwise if µ > 4s, then using
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(4.34) with Lemma 4.11, we get −D0(λ
2

2−q + δ
2

2−q ) ≥ 0 which is again a contradiction. This

proves claim(3). Since (u2, v2) ∈ Y \ {(0, 0)} and 0 < λ
2

2−q + δ
2

2−q < Θ for both the cases

µ ≤ 4s as well as µ > 4s, by Lemma 3.3 we know that there exists t1, t2 such that 0 < t1 < t2,

t1(u2, v2) ∈ N+
λ,δ and t2(u2, v2) ∈ N−

λ,δ. That is ϕ′
u2,v2(t1) = 0 = ϕ′

u2,v2(t2). Let us define the

following two functions

f(t) =
Cn
s c

2t2

2
−
d22

∗
µt22

∗
µ

2∗µ
and g(t) = ϕu2,v2(t) + f(t).

Then we consider the three cases as below:

(i) t2 < 1,

(ii) t2 ≥ 1 and d > 0,

(iii) t2 ≥ 1 and d = 0.

(i) Using (4.33) we get g′(1) = ϕ′
u2,v2(1) + Cn

s c
2 − 2d22

∗
µ = 0. Since {(uk, vk)} ⊂ N−

λ,δ, for all

t > 0 we get

ϕuk ,vk(t) ≤ ϕuk,vk(1) (4.35)

Since g(t) = lim
k→∞

ϕuk,vk(t), passing on the limits as k → ∞ in (4.35) we obtain g(t) ≤ g(1),

for t > 0. Therefore

l−λ,δ = lim
k→∞

ϕuk,vk(1) = g(1) > g(t2) ≥ Iλ,δ(t2u2, t2v2)+
t22
2
(Cn

s c
2−2d22

∗
µ) > Iλ,δ(t2u2, t2v2) ≥ l−λ,δ

which is a contradiction.

(ii) We define t∗ =
(

Cn
s c

2

2d22
∗
µ

)
1

22∗µ−2
and then it is easy to compute that f(t) attains its maximum

at t = t∗. Also we compute and find that

f(t∗) =
n− µ+ 2s

2n− µ

(

Cn
s c

2

2d2

)

2∗µ
2∗µ−1

≥
n− µ+ 2s

2n− µ

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

.

Moreover f ′(t) = t(Cn
s c

2 − 2d22
∗
µt22

∗
µ−2) > 0 if t ∈ (0, t∗) and f ′(t) ≤ 0 if t ≥ t∗. Moreover

g(1) = max
t>0

g(t) ≥ g(t∗). So if t∗ ≤ 1 then

l−λ,δ = g(1) ≥ g(t∗) = Iλ,δ(t∗u2, t∗v2) + f(t∗) ≥ Iλ,δ(t1u2, t1v2) +
n− µ+ 2s

2n− µ

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

≥ l+λ,δ +
n− µ+ 2s

2n− µ

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

≥ Iλ,δ(u1, v1) +
n− µ+ 2s

2n − µ

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

= c1

(4.36)

which is a contradiction to Lemma 4.9 in the case µ ≤ 4s. Whereas when µ > 4s, using

Remark 4.12 and (4.36) we get that l−λ,δ ≥ c1 > c0 which is a contradiction to Lemma 4.11.
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Therefore we must have t∗ > 1. Since g′(t) ≤ 0 for t ≥ 1, whenever t ∈ [1, t∗] we get

ϕ′
u2,v2(t) ≤ −f ′(t) ≤ 0. This gives either t∗ ≤ t1 or t2 = 1. If t∗ ≤ t1 then (4.36) holds

true and we arrive at a contradiction whereas if t2 = 1 then (u2, v2) ∈ N−
λ,δ which implies

Cn
s c

2 = 2d22
∗
µ (by (4.33)). This gives

l−λ,δ = g(1) = Iλ,δ(u2, v2) + d22
∗
µ

(

1−
1

2∗µ

)

≥ Iλ,δ(u2, v2) +
n− µ+ 2s

2n − µ

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

≥ Iλ,δ(t1u2, t1v2) +
n− µ+ 2s

2n− µ

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

≥ Iλ,δ(u1, v1) +
n− µ+ 2s

2n − µ

(

Cn
s S̃

H
s

2

)

2∗µ
2∗µ−1

which contradicts Lemma 4.9 in the case µ ≤ 4s. Whereas when µ > 4s, using Remark 4.12

and (4.36) we get that l−λ,δ ≥ c1 > c0 which is a contradiction to Lemma 4.11.

Hence, only possibility is that (iii) holds true that is t2 ≥ 1 and d = 0. If c 6= 0 then (4.33)

implies ϕ′
u2,v2(1) = −c2 < 0 and also ϕ′′

u2,v2(1) < 0 which is a contradiction since t2 ≥ 1. Thus

c = 0 and this proves claim(1). Therefore Iλ,δ(u2, v2) = l−λ,δ and obviously (u2, v2) ∈ N−
λ,δ.

Finally, (u2, v2) is a weak solution of (Pλ,δ) follows from Lemma 3.2.

4.3 Proof of Main Theorem

Proof of Theorem 1.1: By Theorem 4.6 and 4.13 we know that (Pλ,δ) has two solutions

(u1, v1) ∈ N+
λ,δ and (u2, v2) ∈ N−

λ,δ whenever 0 < λ
2

2−q + δ
2

2−q < Θ if µ ≤ 4s and whenever

0 < λ
2

2−q +δ
2

2−q < Θ0 if µ > 4s. Obviously they are distinct solutions because N+
λ,δ∩N

−
λ,δ = ∅.

The proof is then completed using Proposition 4.8.
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