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Quantum non-Markovianity modifies the environmental decoherence of a system. This situation is
enriched in complex systems owing to interactions among subsystems. We consider the problem of
distinguishing the multiple sources of non-Markovianity using a simple power spectrum technique,
applied to a qubit interacting with another qubit via a Jaynes-Cummings type Hamiltonian and
simultaneously subjected to some well known noise channels, such as, the random telegraph noise
and non-Markovian amplitude damping, which exhibit both Markovian as well as non-Markovian
dynamics under different parameter ranges.

I. INTRODUCTION

Any practical implementation of quantum information processing demands taking into account the effects of the
ambient environment, resulting in the phenomena of decoherence and dissipation [1–6]. Until recently, noise was
predominantly studied in the Markovian (memoryless) regime, where the environmental time scale is much smaller
than the system time scale [7, 8], entailing the two weak conditions: (a) the monotonic fall of the distinguishability
D(E [ρ1], E [ρ2]) of two states ρj , where E is the noise superoperator; (b) the CP-divisibility of the noise dynamics,
meaning that the intermediate map remains completely positive, essentially because the system and bath remain in
an approximately product state during the evolution. It is known that (a) implies (b). Recently, [9] have argued that
these two conditions are equivalent for bijective maps.
With a breakdown of condition (a), there is an increase in the distinguishability D, causing a recurrence or “back-

flow” of information back from the environment into the system. With a breakdown of condition (b), the intermediate
map is non-CP (NCP), essentially because the system-bath interaction generates system-bath entanglement. With
the advancement of technology, one is now able to experimentally go beyond Markovian phenomena and enter into
the non-Markovian regime [7, 10–16].
A complex dynamics, in general, will have a number of evolution patterns, in the form of different frequency

components from different sources, superimposed to produce the resulting dynamics. This was seen in earlier works
[17, 18] in the context of discrete time quantum walk (DTQW). There, the patterns superimposed on the position
dynamics of the walker were the evolution due to its interaction degree of freedom traced out and noise due to an
external source. Here, we elucidate the idea of disambiguating different sources of noise using a different model, viz.,
a qubit system evolved by a Jaynes Cummings type of evolution [19, 20] and a noise channel, such as the random
telegraph noise (RTN) channel [21, 22], non-Markovian amplitude damping (NMAD) channel, and a concatenation of
these channels. This could be very pertinent in complex as well as engineered systems where this scenario could be
envisaged due to interaction among subsystems. Keeping this in mind, we consider a composite dynamics different
from that studied in [17], in order to better illustrate the frequency-based noise disambiguation technique. The idea
here is to associate the spectral power associated with different frequency components as a measure of their relative
strengths of non-Markovianity (CP-indivisibility).

II. NON-MARKOVIAN NOISE

Random Telegraph Noise (RTN): We briefly describe the features of RTN noise, needed for our purpose. The
random variable describing the noise fluctuation will be denoted by Ω(t) and by M the mean. The autocorrelation
functions and the corresponding Kraus operators Ki are as follows:

M [Ω(t),Ω(s)] = a2e−|t−s|/τ , K1 =

√

1 + Λ(t)

2
I, K2 =

√

1− Λ(t)

2
σ3, (1)
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where

Λ(t) = e
−γt



cos

([
√

(
2a

γ
)2 − 1

]

γt

)

+
sin

([√

( 2a
γ
)2 − 1

]

γt
)

√

( 2a
γ
)2 − 1



 , (2)

represents the damped harmonic function, which encodes both the Markovian and non-Markovian behaviour of the
noise. The reduced dynamics of a qubit subjected to RTN can be described by map R : ρ(t) = R(t)[ρ(0)] =
∑

iKi(t)ρ(0)K
†
i (t), with the Kraus operators as given in Eq. (1).

In RTN, the function Λ(t) has two regimes; the purely damping regime, where a/γ < 0.5, and damped oscillations for
a/γ > 0.5. Corresponding to these regimes of Λ(t), one observes Markovian and non-Markovian behavior, respectively.

Non-Markovian Amplitude Damping (NMAD): This model describes the dissipative interaction between a qubit
and zero temperature Bosonic reservoir, which could be envisaged to be composed of a large number of harmonic
oscillators. The channel At acts on a general input state ρ = (ρ11, ρ12; ρ21, ρ22) as:

At(ρ) =

(

1− |G(t)|2)ρ22 G(t)ρ12
G∗(t)ρ12 |G(t)|2)ρ22

)

. (3)

The dynamics can be described by the following Kraus operators:

A1 =

(

1 0
0 G(t)

)

, A2 =

(

0
√

1− |G(t)|2
0 0

)

. (4)

The reservoir spectral density can be assumed to be a Lorentzian J(ω) = γMλ2

2π(ω−ωc)2+λ2 , with width λ, peak frequency

ωc and γM an effective coupling constant. The function G(t) becomes

G(t) = e−(λ−iδ)t/2
[

cosh(Ωt/2) +
λ− iδ

Ω
sinh(Ωt/2)

]

. (5)

Here, Ω =
√
λ2 − 2iδλ− 4w2, w = γMλ/2, δ = ω0 − ωc, and ω0 is the natural frequency corresponding to the input

qubit state. The condition λ/γM ≫ 1 corresponds to the flat and weakly coupled spectrum and hence pertains to the
Markovian dynamics. In other words, the dynamics is non-Markovian for λ/γM ≪ 1.

Under a Markovian evolution E , given two distinct states ρ1 and ρ2, distance measures D (such as relative entropy
or trace distance) satisfy D[E(ρ), E(σ)] ≤ D[ρ, σ], while correlation measures C (such as fidelity or mutual information
with a third system) satisfy C[E(ρ), E(σ)] ≥ C[ρ, σ]. By contrast, non-Markovian dynamics can violate the above
monotonicity property, resulting in information backflow from the environment into the system, manifesting as recur-
rence. In this work, we will use trace-distance (TD) applied to a simple model as the indicator of distinguishability of
two states. Non-Markovian backflow has been also been studied using fidelity [23], relative entropy [24] and mutual
information.

III. NON-MARKOVIAN WITNESSES: CP DIVISIBILITY VS. DISTINGUISHABLITY

As noted, non-Markovianity may be indicated by observing the backflow in the evolution [25, 26] or departure from
CP-divisibility of the intermediate map connecting the density operators ρ(t2) and ρ(t1) at times t2 and t1, with
t2 > t1 [7, 10]. Both methods are discussed here and found to be equivalent for the noise models considered.

A. CP-divisibility criterion

Given a dynamical map E(t2, t0) linking a system’s density operator at times t0 and t2 > t0, the intermediate map
E IM(t2, t1) for some intermediate time t1 such that t2 > t1 > t0, is given by:

E IM(t2, t1) = E(t2, t0)E−1(t1, t0). (6)

provided that the inverse map E−1(t1, t0) exists. The Choi matrix for the intermediate map can be obtained as:

MChoi = (E IM(t2, t1)⊗ I) |Φ+〉 〈Φ+| , (7)
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Figure 1: Plot of decoherence rate η for RTN with γ = 0.05 and a = 0.6 (non-Markovian regime). The decoherence rate takes
both positive and negative values.

where |Φ+〉 ≡ |00〉+ |11〉. Following the method presented in [7], we briefly derive the intermediate dynamical maps
of the RTN noisy channel, given in Eq. 1. Now, the dephasing master equation in its canonical form [12, 27] is

ρ̇ = η(−ρ+ σ3ρσ3), (8)

where η is the decoherence rate. It is known that a map is CP-divisible if and only if the map has only positive
decoherence rate [28]. From the Kraus operator expressions in Eq. 1, we obtain ρ→ E(ρ). In particular, as the RTN
noise is dephasing, we find:

ρ0 ≡
(

ρ00 ρ01
ρ10 ρ11

)

→ ρ(t) =

(

ρ00 λρ01
λρ10 ρ11

)

. (9)

For this dephasing map, the decoherence rate is found by direct substitution in Eq. (8) to be:

η = − λ̇

2λ
. (10)

For the channel under consideration λ = Λ(t), which, in view of Eq. (2), yield the decoherence rate for this channel,
which is plotted in Fig. (1). We note that RTN shows negative decoherence rates for certain intervals.

B. Distinguishability criterion

We will consider the composite dynamics comrising of the effect of RTN or NMAD on an otherwise unitary two-qubit
dynamics governed by Jayne-Cummings (JC)-like Hamiltonian.
Trace Distance (TD) [29] is a measure of distinguishability between two states, defined asD(ρ1, ρ2) =

1
2Tr ‖ρ1 − ρ2‖,

where ‖A‖ is the operator norm given by
√
A†A. It has been used as a measure of non-Markovianity to quantify the

amount of backflow from the environment to the system. For the noise channel given in Eq. 1, and initial states
|±〉, it is straightforward to compute the evolution of TD, which is D(|+〉 , |−〉) = Λ(t) for RTN. Thus, we find that
the distinguishability criterion, like the divisibility criterion, is able to witness the non-Markovianity of RTN, because
the process is P-indivisible. A similar conclusion can be made for the NMAD channel, discussed above. We now
consider the case where RTN or NMAD is applied to a qubit subject to another non-Markovian noise. Our study will
then focus on how to distinguish the non-Markovian signatures of these two composite processes through a simple
frequency analysis.

IV. A SIMPLE MODEL

Consider a system of two qubits labeled as A and B, where A is the system and B serves as environment. At time
t = 0, qubit B is prepared in the state |ψB〉 = 1√

2
(|0〉+ |1〉), whilst qubit A starts in state |0〉 or |1〉. The two qubits

interact via the Jaynes-Cummings (JC) -like Hamiltonian [19]

H = ω
(

|01〉〈10|+ |10〉〈01|
)

. (11)
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The reduced dynamics of qubit A can be described by map J (t) : ρA(t) = J [ρA(0)] =
∑

i Ji(t)ρA(0)J
†
i (t), with the

following Kraus operators

J1 =

(

1√
2

0

− i sin(tω)√
2

cos(tω)√
2

)

, J2 =

(

cos(tω)√
2

− i sin(tω)√
2

0 1√
2

)

. (12)

The time evolved reduced state of A at time t, depending on whether it started in |0〉 or |1〉 at time t = 0, is respectively
given by:

ρIA(t) =

(

1
2 cos

2(tω) + 1
2

1
2 i sin(tω)

− 1
2 i sin(tω)

1
2 sin

2(tω)

)

, (13)

ρIIA (t) =

(

1
2 sin

2(tω) − 1
2 i sin(tω)

1
2 i sin(tω)

1
2 cos

2(tω) + 1
2

)

. (14)

We find the trace distance D(ρIA(t), ρ
II
A (t) = 1

2

∑

i |λi|. Here λi are the eigenvalues of the matrix ρIA(t)− ρIIA (t). We
obtain

D =

√

7 + cos(4ωt)

2
√
2

(15)

The time evolution of qubit A during the interval (0, t) is described by a composite map R(t) ◦ J (t), where R(t)
denotes the RTN or NMAD channel, while J (t) indicates the dynamics generated by Eq. (12). We have

σα
A(t) = (R(t) ◦ J (t))ρA(0), (16)

with α ∈ {I, II}.
The trace distance between these (Eq. (16)) states, for RTN, turns out to be

D =

∣

∣

∣

∣

√

4Λ2 − 4 (Λ2 − 1) cos(2tω) + cos(4tω) + 3

2
√
2

∣

∣

∣

∣

. (17)

Note that the noiseless case pertains to Λ = 1, and the above expression reduces to Eq. (15).
The form of the channel parameter Λ is given by Eq. (2) such that 2a

γ > 1 and 2a
γ < 1 pertain to the non-Markovian

and Markovian cases, respectively. Figure (2) depicts the variation of the trace distance in different scenarios.

Similar analysis performed with the NMAD channel, Eqs. (3), (4), leads to following expression for trace distance

D =
1

2

∣

∣

∣

∣

∣

1

4

(

1−G2 − 2 cos(2ωt)[−1 +G2]
)

− 1

2

√

cos4(ωt)[−1 +G2]2 +
G

2

[

(7 + cos(4ωt))G+ 8[−1 +G2] sin2(ωt)
]

∣

∣

∣

∣

∣

+
1

2

∣

∣

∣

∣

∣

1

4

(

1−G2 − 2 cos(2ωt)[−1 +G2]
)

+
1

2

√

cos4(ωt)[−1 +G2]2 +
G

2

[

(7 + cos(4ωt))G+ 8[−1 +G2] sin2(ωt)
]

∣

∣

∣

∣

∣

. (18)

For G = 1, the Kraus operators, given in Eq. (4), become A1 = I, A2 = 0, and we recover the noiseless Eq. (15).

V. DISAMBIGUATION OF MULTIPLE NON-MARKOVIAN EFFECTS

Here, we concern ourselves with the situation when non-Markovianity can have multiple sources of noise. In [17],
one is an internal source (the coin degree of freedom) and the other an external source (external environment). For
the system of two qubits driven by a JC-type of Hamiltonian, considered above, the oscillatory behavior of the trace
distance with respect to time, as given in Eq. (15), reflects the non-Markovian character of the the dynamics. On
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Figure 2: (a) Trace distance D as defined in Eq. (17) for noiseless case Λ = 1 (blue curve), for non-Markovian RTN case with
a = 5, γ = 0.009, and for Markovian case a = 0.2, γ = 5. In all the cases, the frequency ω which comes from the unitary
evolution is set to one. (b) The Fourier transform D̃ of trace distance function D, defined by Eq. (19), in non-Markovian
regime. The dominating contribution to the frequency comes from f = 1 from the noiseless dynamics and f = 0.09 and 10 from
RTN.

top of this, we subject the system to the RTN or NMAD noise. Consequently, the trace distance, given by Eq. (17),
now acquires a dependence on two frequency components, one from the subsystem dynamics and the other from the
environmental noise, as depicted in Figs. 2 (a) and 3 (a), for the RTN and NMAD cases, respectively.
The different source contributions to non-Markovian dynamics can be demarcated by using simple Discrete Fourier

Transform (DFT). The trace distance, Eq. (17) and (18), apart from the frequency ω, which comes from dynamics
governed by JC-like two qubit Hamiltonian, also depends on the memory kernels Λ of RTN and G of the NMAD noise,
respectively. The form of Λ, as given in Eq. (2), reveals the dependence on two frequencies γ and γ

√

(2a/γ)2 − 1.
Figures 2 (b), 3 (b), depict the DFT of the trace distance defined in Eq. (17) and (18), respectively, which brings
out a reasonably clear separation of the different contributing factors. The corresponding power spectrum is given by
|D̃(f)|2, where D̃ is the Fourier transform of the D(t), given by

D̃(f) =

∫

D(t)e−2πiftdt, (19)

implemented numerically. As the two noise contributions ( JC-like dynamics and RTN or NMAD) occur at different
frequencies, the TD spectral power at those frequencies can be directly read off as representing the relative strength
of their contribution to the non-Markovianity. The power spectral plot in Figure 2 (b) shows that the dominant

contribution is seen to to be at the frequency of the RTN with γ = 0.009, γ
√

(2a/γ)2 − 1 = 10, with a lower
contribution due to JC-like dynamics with ω = 1 (again, identified by the associated frequency). Similarly, when
the system is subjected to NMAD channel, one finds two dominating contributions to the frequency spectrum, at
(λ − iδ)/2 = 0.3 and Ω/2 = 1

2

√
λ2 − 2iδλ− 4w2 = 30 coming from NMAD dynamics, and around ω = 1 due to

noiseless dynamics. Further, the frequency f = 15 is also seen to contribute actively, which may be a consequence of
the complicated structure of the memory kernel G(t), Eq. (5).

A more complicated scenario: We now consider a more complex situation wherein the qubit state ρ is acted upon
by the composition of RTN and NMAD channels as

ρ′ =
∑

µ,ν=1,2

KµAνρA
†
νK

†
µ. (20)

Here, Kµ and Aν are defined in Eqs. (1), and (4), respectively. Trace distance is a useful witness for non-Markovian
dynamics, as seen above in case of RTN and NMAD. Here, we analyze the effect of memory due to the composite map
on the coherence of a qubit state. We use the l1 norm definition of coherence given by the sum of absolute values of
the off-diagonal elements of density matrix, i.e., C =

∑

i 6=j |ρij | [14, 30, 31]. With initial state ρ = |+〉 〈+| subjected
to the composite map, Eq. (20), the coherence of output state turns out to be

C = Λ(t)G(t), (21)

where Λ(t) and G(t) are defined in Eqs. (2), and (5), respectively. Thus, coherence is given by the product of two
memory kernels, capturing the non-Markovian features of both the channels. In Fig. (4) is depicted the coherence and
its Fourier transform. The frequencies f = 0.1, and 10 come from RTN and f = 0.3 amd 30 from NMAD dynamics. A
clear disambiguation of the effect of two channels is observed. Further, with fundamental frequency of f0 = 15, one
observes higher harmonics at nf0, (n = 2, 3, . . . ). This invites further investigation in more complicated scenarios.
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Figure 3: (a) Trace distance D as defined in Eq. (18) for noiseless case G(t) = 1 (blue curve), for Markovian AD case with
λ = 10, γM = 0.1, and for non-Markovian case λ = 0.6, γM = 100. In all the cases, the frequency ω which comes from the
unitary evolution is set to one. (b) The Fourier transform D̃ of trace distance function D defined by Eq. (18). The frequencies
f = 0.3 and 30 correspond to NMAD, and f = 1 to the noiseless dynamics.
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Figure 4: Depicting coherence C as defined in Eq. (21) (a) and its Fourier transform C̃ (b), when a qubit is subjected
to dynamics generated by composition of RTN and NMAD channels both operating in non-Markovian regime. The various
parameters used are the same as in Figs. (2) and (3). The dominating contribution to the frequency due to RTN is at f = 0.01,
and 10, and from NMAD at f = 0.3 and 30.

VI. CONCLUSION

Quantum non-Markovianity is a fundamental memory effect in open system dynamics. A simple manifestation
thereof is a departure from the monotonic fall of distinguishability between states, or of the CP-divisibility of the
system’s evolution. In complex systems, subsystem dynamics can compound this effect by having noisy contributions
due to different factors. Here, we studied the non-Markovian effects on the evolution of a qubit subjected to two types
of noise: one due to a JC-type interaction with a second qubit, and another due to RTN (NMAD) channel.
Both noisy channels are P-indivisible, and thus the distinguishability criterion is sufficient to study their effect. We

derived the trace distance dependence of the system’s evolution on characteristic frequencies for the JC-type dynamics
induced noise and RTN (NMAD) channel. Their corresponding frequencies can be demarcated using simple discrete
Fourier transform, distinguishing non-Markovian contributions to the dynamics coming from the JC-like dynamics
source and the external (environment) source. The technique is also seen to work in the more complicated case of a
qubit subjected to a concatenation of RTN and NMAD noise channels, both realistic noises arising via interactions
with proper baths. In the later case, a fundamental frequency and it harmonics are found to occur in the power
spectrum which invites for further investigation in more complicated scenarios. They may present challenges that
would make the unraveling of the time-scales harder. It would be interesting to extend the present work to incorporate
such cases.
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