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Single-qubit channels are studied under two broad classes: amplitude damping channels and
generalized depolarizing channels. A canonical derivation of the Kraus representation of the former,
via the Choi isomorphism is presented for the general case of a system’s interaction with a squeezed
thermal bath. This isomorphism is also used to characterize the difference in the geometry and rank
of these channel classes. Under the isomorphism, the degree of decoherence is quantified according
to the mixedness or separability of the Choi matrix. Whereas the latter channels form a 3-simplex,
the former channels do not form a convex set as seen from an ab initio perspective. Further, where
the rank of generalized depolarizing channels can be any positive integer upto 4, that of amplitude
damping ones is either 2 or 4. Various channel performance parameters are used to bring out the
different influences of temperature and squeezing in dissipative channels. In particular, a noise range
is identified where the distinguishability of states improves inspite of increasing decoherence due to
environmental squeezing.

I. INTRODUCTION

Open quantum systems are ubiquitous in the sense that any system can be thought of as being surrounded by its
environment (reservoir or bath) which influences its dynamics. They provide a natural route for discussing damping
and dephasing. One of the first testing grounds for open system ideas was in quantum optics [1]. Its application to
other areas gained momentum from the works of Caldeira and Leggett [2], and Zurek [3], among others.

If the system and environment start out in product state, then the evolution of the state ρ can be described by the
quantum process ρ′ = E(ρ). It can be given an operator sum representation or Kraus representation [4–6]:

E(ρ) =
∑

j

EjρE
†
j , (1)

where
∑

j E
†
jEj = I. The operators Ej are called Kraus operators or the operator elements of operation E . It may

be noted that the converse problem, that of deducing the underlying Lindbladian process that generates a given
completely positive (CP) map on the density operator, is computationally hard. Complexity theoretically, it is known
to be NP-hard [7].
A result now familiar in quantum information theory is the isomorphism between the trace-preserving, CP maps

on a d-dimensional system (qudit) and the d4 − d2 dimensional space of two-qudit density operators ρ which are
maximally mixed on one of the particles [8, 9]. One way to obtain the state from the channel is to apply the latter
on one half of a maximal two-qudit entangled state. The resulting state is called the Choi matrix. In the converse
direction, a unique qudit channel can be associated with each such Choi matrix via the notion of gate teleportation
[10]. It can be shown that the Kraus operators for the qudit channel can be derived by diagonalizing the Choi matrix
[11, 12], obtained also by constructing the dynamical map for the transformation [13, 14].

In this work, we derive the Kraus operators for the squeezed generalized amplitude damping (SGAD) channel in its
canonical form via the Choi matrix method, and establish its unitary equivalence to a previous derivation [15], where
the connection to the amplitude damping (AD) and generalized amplitude damping (GAD) channels was manifest.
The channel-state isomorphism is used to study and contrast amplitude damping channels and generalised depolarising
channels geometrically. Understanding the geometry of 1-qubit channels is important as it can simplify the study of
other problems, such as channel capacity [16]. Finally the contrastive roles of temperature and squeezing in the case
of the SGAD channel are noted.
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II. SOME PHYSICALLY MOTIVATED SINGLE-QUBIT CHANNELS

Depending upon the system-reservoir (S−R) interaction, open systems can be broadly classified into two categories,
viz., quantum non-demolition (QND) or dissipative. A particular type of (QND) S −R interaction may be achieved
when the Hamiltonian HS of the system commutes with the Hamiltonian HSR describing the system-reservoir in-
teraction, i.e., HSR is a constant of the motion generated by HS [17–21]. This results in pure dephasing without
dissipation. Investigation into pure dephasing scenarios was originally motivated by the problem of the detection of
gravitational waves [22, 23]. A dissipative open system would be when HS and HSR do not commute resulting in
dephasing along with damping [24]. Impressive progress has been made on the experimental front in the manipulation
of quantum states of matter towards quantum information processing and quantum communication. Myatt et al. [25]
and Turchette et al. [26] performed a series of experiments in which they engineered both the pure dephasing as well
as dissipative type of evolutions. In another experiment [27], a QND scheme of measurement was characterized using
only linear optics devices. An experimental investigation of the dynamics of different kinds of bipartite correlations,
in an all-optical setup was made in [28]. In [29], an interesting experiment was presented, in which dissipation induces
entanglement between two atomic objects. Here we briefly discuss the two processes, QND as well as dissipative as
applicable to single qubit channels. In this work we model the reservoir by a squeezed thermal bath. An advantage is
that the decay rate of quantum coherence can be suppressed leading to preservation of nonclassical effects [17, 30, 31].
A squeezed reservoir may be constructed on the basis of establishment of squeezed light field [32]. Experiments prob-
ing the squeezed-light-atom system have been carried out in Refs. [33, 34]. All the results pertaining to the usual
thermal bath can be obtained by setting the bath squeezing parameters to zero.

A. QND Channel

Following [17], the evolution equation for a system, e.g. a qubit, interacting with its environment by a coupling
of the energy-preserving QND type where the environment is a bosonic bath of harmonic oscillators initially in a
squeezed thermal state, initially decoupled from the system, in the system eigenbasis denoted by the subscripts n, m,
is:

d

dt
ρsnm(t) =

[

− i

~
(ǫn − ǫm) + iη̇(t)(ǫ2n − ǫ2m)− (ǫn − ǫm)2γ̇(t)

]

ρsnm(t), (2)

where

η(t) = −
∑

k

g2k
~2ω2

k

sin(ωkt), (3)

and

γ(t) =
1

2

∑

k

g2k
~2ω2

k

coth

(

β~ωk

2

)

∣

∣(eiωkt − 1) cosh(rk) + (e−iωkt − 1) sinh(rk)e
2iΦk

∣

∣

2
. (4)

Here ωk is the reservoir oscillator frequency, indexed by subscript k, β = 1/kBT and gk is the system-reservoir
coupling term. For the case of zero squeezing, r = Φ = 0, and γ(t) given by Eq. (4) reduces to the expression obtained
earlier [18–20] for the case of a thermal bath. It can be seen that η(t) (3) is independent of the bath initial conditions
and hence remains the same as for the thermal bath. Note that in Eq. (2), the term responsible for the decay of
coherences, i.e., the coefficient of γ̇(t) is dependent on the eigenvalues ǫn of the ‘conserved pointer observable’ operator
which in this case is the system Hamiltonian itself. This reiterates the observation that the decay of coherence in a
system interacting with its bath via a QND interaction depends on the conserved pointer observable and the bath
coupling parameters [19]. The channel corresponding to the evolution generated by Eq. (2) is called the phase flip
channel [17, 35]. More generally, phase flip channels are a subset of Pauli or generalized depolarising channels, which
are unital, i.e, they map the identity matrix to itself.

B. Dissipative Channel

Consider a two-level system (qubit) interacting with a squeezed thermal bath in the weak Born-Markov, rotating
wave approximation. The system Hamiltonian is given by HS = (~ω/2)σz. The system interacts with the reservoir

via the atomic dipole operator which in the interaction picture is given as ~D(t) = ~dσ−e−iωt + ~d∗σ+eiωt where ~d is the
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transition matrix elements of the dipole operator. The master equation depicting the evolution of the reduced density
matrix operator of the system S in the interaction picture has the following form [15, 24]

d

dt
ρs(t) = γ0(N + 1)

(

σ−ρ
s(t)σ+ − 1

2
σ+σ−ρ

s(t)− 1

2
ρs(t)σ+σ−

)

+ γ0N

(

σ+ρ
s(t)σ− − 1

2
σ−σ+ρ

s(t)− 1

2
ρs(t)σ−σ+

)

− γ0Mσ+ρ
s(t)σ+ − γ0M

∗σ−ρ
s(t)σ−. (5)

Here γ0 is the spontaneous emission rate given by γ0 = (4ω3|~d|2)/(3~c3), and σ+, σ− are the standard raising and
lowering operators, respectively given by σ+ = |1〉〈0| = 1

2 (σx + iσy) and σ− = |0〉〈1| = 1
2 (σx − iσy). Eq. (5) may be

expressed in a manifestly Lindblad form as [35]

d

dt
ρs(t) =

2
∑

j=1

(

2Rjρ
sR†

j −R†
jRjρ

s − ρsR†
jRj

)

, (6)

where R1 = (γ0(Nth + 1)/2)1/2R, R2 = (γ0Nth/2)
1/2R† and R = σ− cosh(r) + eiΦσ+ sinh(r). This guarantees that

the evolution of the density operator is CP. If T = 0, then R2 vanishes, and a single Lindblad operator suffices to
describe Eq. (5). Also

N = Nth(cosh
2(r) + sinh2(r)) + sinh2(r), (7)

and M = − 1
2 sinh(2r)e

iΦ(2Nth + 1). Here Nth = 1/(e~ω/kBT − 1) is the Planck distribution giving the number of
thermal photons at the frequency ω; r and Φ are bath squeezing parameters. The general map generated by the
Eq. (5) is the SGAD channel [15], which generalizes the notion of the AD and GAD channels [5]. These amplitude
damping channels are non-unital and contractive, mapping any initial state to a unique asymptotic state.

III. SOME PROPERTIES OF THE KRAUS REPRESENTATION OF DISSIPATIVE AND

NON-DISSIPATIVE CHANNELS

A superoperator E due to interaction with the environment, acting on the state of the system is given by

ρ −→ E(ρ) =
∑

k

〈ek|U(ρ⊗ |0〉〈0|)U †|ek〉 =
∑

j

EjρE
†
j , (8)

where U is the unitary operator representing the free evolution of the system, reservoir, as well as the interaction
between the two, |0〉 is the environment’s initial state, and {|ek〉} is a basis for the environment. The environment
and the system are assumed to start in a product state. The Ej ≡ 〈ek|U |0〉 are the Kraus operators, which satisfy

the completeness condition
∑

j E
†
jEj = I. It can be shown that any transformation that can be cast in the form (8)

is a CP map [5].
There are infinitely many Kraus operator representations even within the same representation basis of the system,

depending on the choice of tracing basis {|ek〉} of the environment. Each of these sets of Kraus operators is unitarily
related to the other: let Ek = 〈ek|U |0〉 and E′

k = 〈e′k|U |0〉. Define unitary operation V such that 〈e′k| = 〈ek|V †, and
hence E′

k = 〈ek|V †U |0〉. Now V |ek〉 =
∑

j αj,k|ej〉 and thus

E′
k = 〈ek|V †U |0〉 =

∑

j

α∗
j 〈ej |U |0〉 =

∑

j

α∗
j,kEj . (9)

The above can be represented as a matrix-valued vector equation

~E′
k = V † ~Ek. (10)

Let ~A = (Âi) and ~B = (B̂i) where Âi and B̂i are d × d matrices (here Kraus operators) and i = 1, 2, . . . , d2.
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Consider the transformation of the matrix-valued inner product between ~A and ~B.

~A′. ~B′ =
∑

i

(Â′
i)

†B̂′
i

=
∑

ijk

(UijÂj)
†UikB̂k

=
∑

ijk

Â†
jU

∗
jiUikB̂k

=
∑

jk

Â†
jδjkB̂k

=
∑

j

Â†
jB̂j .

(11)

As a corollary, the Hilbert-Schmidt product of any two Kraus ‘vectors’,
∑

j Tr(A
†
jBj) is preserved.

Consider the vector obtained by reading off a fixed element, say element of index lm, namely, (Ej)lm, for each
Kraus operator. Eq. (10) can be thought of as applying a unitary transformation to d2 (not necessarily independent)
such vectors. Thus one can define a host of other norms that are preserved under this transformation. Any channel
parameter (such as gate fidelity, etc.) must be a function of such a generalized norm in order to be unitarily invariant
under the transformation Eq. (10) and thus be a valid measure to characterize channel performance. For example,
the quantity

∑

j |Tr(Ej)|2 is another acceptable norm.

The Kraus operators Kj obtained by the Choi method satisfy the orthogonality condition Tr(E†
jEk) = 0 for j 6= k,

which is not a unitarily invariant condition. In particular, the Kraus operators for the SGAD channel obtained in
Ref. [15] lack this form.
The SGAD channel derived here is typical of dissipative channels [17], which are characterized by the non-

commutativity of the interaction Hamiltonian HSR and the system Hamiltonian HS . By contrast, the QND case,
where these two do commute, is marked by pure phase damping and no dissipation, i.e., populations remain un-
changed. Here we show that the condition [HS , HSR] = 0 implies the commutativity of the Kraus operators and
quantum states used for communication (the signal states), assumed to be eigenstates of HS . Let |e〉 be the initial
state of the environment (which may be generalized to a separable mixed state) and {|ej〉} an environmental basis.

For arbitrary non-dissipative interaction, we take: HSR =
∑

k αk|k〉〈k| ⊗ P̂ , where {|k〉} is a basis for the first

particle and P̂ an environmental observable. Given H = HS +HR +HSR, with HS =
∑

k λk|k〉〈k| and HR = f(P̂ ),
we have:

Ej = 〈ej |eiHt|e〉
= 〈ej |ei

∑
k(λk|k〉〈k|+αk|k〉〈k|⊗P̂ t)|e′〉

= 〈ej |
∑

k

|k〉〈k| ⊗ ei(λk+αkP̂ t)|e′〉

=
∑

k

|k〉〈k|β(j)
k , (12)

where β
(j)
k ≡ 〈ej |ei(λk+αkP̂ t)|e′〉 and |e′〉 = eif(P̂ )|e〉. If the eigenstates of the system Hamiltonian, denoted {|k〉}, are

taken to be the signal states, then the statement that [|k〉〈k|, Ej ] = 0 is equivalent to [HS , HSR] = 0. If the signal
states do not commute with Kraus operators, then [HS , HSR] 6= 0, and the system-environmental interaction must be
dissipative. This is a unitarily invariant feature since the condition [HS , HSR] = 0 is independent of the tracing basis
used to determine the Kraus operators.
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IV. CANONICAL KRAUS REPRESENTATION OF THE SGAD CHANNEL

The action of the SGAD channel on the single qubit state ρ, denoted E , is given by[15]:

〈σx(t)〉 = [1 +
1

2
(eγ0at − 1)(1 + cos(Φ))]e

−γ0(2N+1+a)t
2 〈σx(0)〉 − sin(Φ) sinh(

γ0at

2
)e

−γ0(2N+1)t
2 〈σy(0)〉

≡ A〈σx(0)〉 −B〈σy(0)〉,

〈σy(t)〉 = [1 +
1

2
(eγ0at − 1)(1− cos(Φ))]e

−γ0(2N+1+a)t
2 〈σy(0)〉 − sin(Φ) sinh(

γ0at

2
)e

−γ0(2N+1)t
2 〈σx(0)〉

≡ G〈σy(0)〉 −B〈σx(0)〉,

〈σz(t)〉 = e−
−γ0(2N+1)t

2 〈σz(0)〉 −
(1− e−

−γ0(2N+1)t
2 )

2N + 1
≡ H〈σz(0)〉 − Y. (13)

Here N , γ0, r, Φ are as defined in Eq. (7) and a = sinh(2r)(2Nth + 1).

Consider the maximally entangled (unnormalized) state |ψ̃〉 = (|00〉 + |11〉). We find, using Eq. (13), the Choi
matrix

CE ≡ (I ⊗ E)|ψ̃〉〈ψ̃| =









(

(1 +H − Y )/2 0
0 (1−H + Y )/2

) (

0 A+G
2

(A−G
2 − iB) 0

)

(

0 (A−G
2 + iB)

A+G
2 0

) (

(1−H − Y )/2 0
0 (1 +H + Y )/2

)









. (14)

According to Choi’s theorem, the d2 Kraus operators can be constructed by ‘squaring’ (juxtaposing d-element long
column segments of) the eigenvectors of CE , which have been normalized to their eigenvalues [12]. They can be shown
to be:

J± =
1

M±

(

0
√
1−H ∓Ψ

i (
√
1−H∓Ψ)(Ψ±Y )
2B+i(G−Aa) 0

)

,

K± =
1

N±

(

−
√
1+H∓η(Y±η)

A+G 0

0
√
1 +H ∓ η

)

,

(15)

where Ψ =
√

(A−G)2 + 4B2 + Y 2, η =
√

(A+G)2 + Y 2, and M± =
√
2

√

1 +
∣

∣

∣

∓Y+Ψ
2B+i(G−A)

∣

∣

∣

2

,

N± =
√
2

√

1 +
∣

∣

∣

Y±η
A+G

∣

∣

∣

2

.

The Kraus operators for the noise process, generated by the SGAD channel, were derived in Ref. [15], using an
ansatz based on a standard operator-sum representation [5]. As illustrated by the Eq. (10), a necessary and sufficient
condition for the equivalence of two different Kraus operator representations is that they are related by a unitary
transformation. We demonstrate this for the SGAD channel by finding the unitary transformation connecting the
Kraus operators derived via Choi formalism, Eqs. (15), and those derived in Ref. [15], which we denote J ′

± and K ′
±.

Writing







J ′
+

J ′
−

K ′
+

K ′
−






= U







J+
J−
K+

K−






, (16)

we find that

U =









0 Υ+ 0 Υ′′
+

0 Υ− 0 Υ′′
−

Υ′
+ 0 Υ̃+ 0

Υ′
− 0 Υ̃− 0









, (17)
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where

Υ± =

√
1−H ∓Ψ

M±
√
p1α

( ±i(Ψ∓ Y )

2B + i(G−A)
−
√

µ

ν
e−iθ

)

,

Υ′
± =

√
1 +H ∓ η

N±
√
p1(

√
1− µ−

√
1− α

√
1− ν)

(

√

1− µ−
√
1− ν(Y ± η)

A+G

)

,

Υ′′
± =

√
1−H ∓Ψ

M±
√
p2ν

,

Υ̃± = −
√
1 +H ∓ η

N±
√
p2
(√

1− µ−
√
1− α

√
1− ν

)

(√
1− α− (Y ± η)

A+G

)

. (18)

Also, the terms µ, ν, θ, α, p1 and p2 are as defined in Eqs. (28) to (32) of [15]. It may be checked that UU† =
U†U = I.

V. GEOMETRIC STRUCTURE OF CHANNELS

Given any set of points xi ∈ S, if the convex combination x =
∑

i µixi ∈ S, where µi ≥ 0 and
∑

i µi = 1, then the
set S is convex. A point x is said to be pure or extreme if it cannot be expressed as a (non-trivial) convex combination
two or more points. The smallest convex set H that contains a given set S is the convex hull of S. The convex hull
of a given finite number of pure points is a convex polytope. Geometrically, a polytope can be visualized as an object
or tile with flat sides. In the space of dimension n, the convex hull of n + 1 points that are not confined to a n − 1
dimensional subspace is an n-simplex, Ξn. The dimension of a given convex set S is the largest integer n, such that
Ξn ∈ S.

A. Channel rank

Given a map Φ that maps the algebra of m ×m complex matrices to another matrix algebra, we may define the
rank of the channel as that of the matrix associated with Φ [36]. Here, by virtue of the Choi isomorphism, one may
associate a rank with the channel, identified with that of the corresponding Choi matrix. For the SGAD channel, the
eigenvalues of the Choi matrix are given by

e± =
1

2

(

1−H ±
√

(A−G)2 + 4B2 + Y 2
)

,

f± =
1

2

(

1 +H ±
√

(A+G)2 + Y 2
)

. (19)

Clearly, e+ ≥ e− and f+ ≥ f−. The trivial case corresponds to the unitary channel, wherein channel parameters
T = r = 0, and f+ = 1 with all other eigenvalues equal to zero. Let us consider a nontrivial noise where e− = 0 for a

given channel. From Eq. (19), it follows that 1−H =
√

(A−G)2 + 4B2 + Y 2. This, as can be seen from Eq. (13), is

equivalent to r = T = 0, which in turn implies that 1+H =
√

(A+G)2 + Y 2 and therefore that f− = 0. Conversely,
it can be shown that f− = 0 =⇒ e− = 0. One way to understand this is to note that Eq. (6) that generates the
SGAD channel E has only one Lindblad operator when T = 0, and two when T > 0.

We thus find that e− and f− simultaneously vanish (in the case of unitary and amplitude damping channels with
vanishing T and r) or both are non-vanishing (for more general channels). For the SGAD channel for a qubit, we thus
find that the rank is either 2 or 4. This of course is not a general quantum feature, and noise channels for qubits exist
with odd rank greater than 1. An example of a rank 3 channel is the Pauli channel with Kraus operator elements
I, σx and σy with weights p, q and r, where p+ q + r = 1. For this the Choi matrix is given by:

1

2







p 0 0 p
0 q + r q − r 0
0 q − r q + r 0
p 0 0 p






, (20)

which is manifestly of rank 3 (in that precisely 3 rows are linearly independent).
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B. Pauli and depolarizing channels

Under the above isomorphism, the set of unitaries on a qudit maps to pure states in V , the set of two-qudit states
isomorphic to CP maps on a single qudit. The general state of a two-qubit density operator is given by:

ρ =
1

4



I ⊗ I +
∑

j

rjσj ⊗ I2 + sjI2 ⊗ σj +
∑

j,k

tj,kσj ⊗ σk



 , (21)

where rj , sj and the tensor tj,k are generally complex numbers subject to requirement ρ = ρ† and Tr(ρ) = 1. Letting
|ψ〉 = 1√

2
(|00〉+ |11〉, we have

|ψ〉〈ψ| = 1

4
(I ⊗ I + σx ⊗ σx − σy ⊗ σy + σz ⊗ σz) = (EI ⊗ I)|ψ〉ψ| ≡ I, (22)

where EI is the trivial noise, corresponding to the identity operator. Under the Choi isomorphism the corresponding
state is therefore I.
In this Section, for two-qubit states which have only the I ⊗ I and the tj,j components non-vanishing, we will

represent ρ by its signature, the list of these components multiplied by 4. Thus, I ≡ (1, 1,−1, 1). More generally, the

class of states we consider in this subsection have the signature (1, a, b, c), and are characterized by the (quadratic)

mixedness d
d−1 (1− Trρ2) = 1− |a|2+|b|2+|c|2

3 .

Consider the phase flip quantum channel represented by the set of Kraus operators [
√
αI,

√

(1 − α)Z], where Z
stands for the Pauli operator σz and α is a real positive number such that 0 ≤ α ≤ 1. The state isomorphic to the
channel corresponding to application of Z is Z ≡ (EZ ⊗ I)|ψ̃〉〈ψ̃| = (1,−1, 1, 1). Thus the phase flip channel is given

by the 1-simplex, F̂ :

αI + (1− α)Z = (1, 0, 0, 1) + (2α− 1)(0, 1,−1, 0). (23)

It is closely related to the phase damping channel, given by the set of Kraus-operators:
[√

βI,
√

(1− β)P0,
√

(1− β)P1

]

, where P0 = |0〉〈0| and P1 = |1〉〈1| are projectors and β is a real positive number

such that 0 ≤ β ≤ 1 . By the Choi isomorphism, they correspond to states: I and ZP ≡ (EP ⊗ I)|ψ̃〉〈ψ̃| = (1, 0, 0, 1).
The phase damping channel is given by the 1-simplex

βI + (1− β)ZP = (1, 0, 0, 1) + β(0, 1,−1, 0). (24)

Comparing this with Eq. (23), it is seen that the phase damping channel is strictly a subset of the phase flip channel.
In particular, the phase damping channel extreme point obtained with β = 0 corresponds to the mixed point of the
phase flip channel given by α = 1

2 . The former corresponds to the latter in the range α ∈ [ 12 , 0], where they are related
according to β = 2α− 1.
The generalised depolarising or Pauli channels have Pauli operators (apart from a factor) as their Kraus operators,

i.e.,
[√

αI,
√
βσx,

√
γσy,

√
δσz

]

, where α, β, γ, δ ≥ 0 are real numbers satisfying α + β + γ + δ = 1. We define

X ≡ (EX ⊗ I)|ψ̃〉〈ψ̃| = (1, 1, 1,−1) and Y ≡ (EY ⊗ I)|ψ̃〉〈ψ̃| = (1,−1,−1,−1). Thus every Pauli channel is a member
of the polytope given by four pure points I,X ,Y,Z, as

v = αI + βX + γY + δZ = (1, α+ β − γ − δ,−α+ β − γ + δ, α− β − γ + δ). (25)

It follows from the properties of vector spaces that if I,X ,Y and Z are mutually orthogonal, then the decomposition
(25) is indeed unique.
It is readily seen that six inner products between these elements, given by the Hilbert-Schmidt product Tr(IX ),

Tr(YX ), etc., indeed vanish. Thus the set of all Pauli channels, the polytope P̂, is a 3-simplex (a tetrahedron)

embedded within V . The phase flip channel F̂ corresponds to a proper subset of P̂, in particular, the edge (I,Z) of
the latter, and the volume of phase damping channels in this set is 1

2 . This structure has been studied using affine
maps on Bloch sphere in Ref. [37], where it was shown that the fraction of the channels that can be simulated with
a one-qubit environment is 3

8 .
The elements of the important, depolarizing channel are characterized by the action:

ρ 7→ pρ+ (1− p)
I

2
. (26)
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Noting that since for any ρ, I
2 = 1

4 (ρ + σxρσx + σyρσy + σzρσz), Eq. (26) is seen to have a Kraus representation
[

√

1+3p
4 I,

√

3(1−p)
4 σx,

√

3(1−p)
4 σy,

√

3(1−p)
4 σz

]

. The Choi matrix for this process has the convex structure:

V = pI +
(1− p)

4
(I + X + Y + Z) (0 ≤ p ≤ 1)

= (1, p,−p, p), (27)

which is just the two-qubit Werner state pI ⊗ I + (1− p)|ψ̃〉〈ψ̃|.
The twirling operation [8] on states is defined by:

T (ρ) ≡
∫

dUU ⊗ U∗ρU † ⊗ U †∗. (28)

While it leaves a singlet state invariant, it maps an arbitrary two-qubit state to a Werner state. Interpreted as an
operation on maps, it maps any channel to the depolarizing channel. It can be shown to have the property that the
fidelity F = F (|ψ̃〉, (I ⊗E)|ψ̃〉〈|ψ̃|) is preserved. Under the Choi isomorphism, this is a contractive CP map collapsing
arbitrary points in the above Pauli 3-simplex into points in the depolarizing simplex.

For the depolarizing channels, representing Werner family of states φD(p) ≡ (1, p− p, p), one finds F = 3p+1
4 , while

for the Pauli channel, represented by the state φP (α, β, γ) ≡ (1, α+ β − γ − δ,−α+ β − γ + δ, α− β − γ + δ), one
finds F = α, independent of β, γ, δ. From the property of preservation of F under twirling, it follows φP is twirled to
φD = (1, 4α−1

3 ,− 4α−1
3 , 4α−1

3 ).

It follows from Eq. (27) that V = αI + (1−α)D with, ( 14 ≤ p ≤ 1), where D ≡ (X +Y +Z)/3 and α = (3p+1)/4.

The set D̂ of all depolarizing channels forms a 1-simplex embedded within P̂, suspended from I towards the XYZ
base of the tetrahedron, but terminating above the base at the point 1

4 (I + X + Y + Z).

C. The SGAD channel

The Choi matrix for the generalized amplitude damping channel (the SGAD channel with squeezing set to zero)
can be obtained from the Kraus operators:

E1 ≡ √
p

[ √
1− α 0

0 1

]

; E2 ≡ √
p

[

0 0√
α 0

]

;

E3 ≡ √
1− p

[ √
1− µ 0

0
√
1− ν

]

; E4 ≡ √
1− p

[

0
√
ν√

µe−iφ 0

]

,
(29)

where 0 ≤ p ≤ 1 [5, 15].
The two corresponding Choi matrices, with Kraus operators E1,2 and E3,4, respectively, are:

(E12 ⊗ I)|ψ̃〉〈ψ̃| =
1

4

(

I ⊗ I − σz ⊗ I +
√
1− ασx ⊗ σx −

√
1− ασy ⊗ σy + (1− α)σz ⊗ σz

)

, (30)

(E34 ⊗ I)|ψ̃〉〈ψ̃| =
1

4

(

I ⊗ I + (ν − µ)σz ⊗ I + (
√

(1− µ)(1− ν +
√
µν cos(φ))σx ⊗ σx −√

µν sin(φ)σy ⊗ σx

)

−1

4

(

√

1− µI ⊗ σy +
√
µν cos(φ)σy ⊗ σy +

√
µν sin(φ)σx ⊗ σy

)

.

It would seem from this that the generalized amplitude damping channel (and by extension SGAD), has the convex
structure

Λ = pÊ12 + (1− p)Ê34, (31)

where the extreme points are given by amplitude damping channels.
However, this turns out not to be the case because the p in Eq. (31) is also a function of channel parameters

that determine the extreme points. Thus, varying the ‘convex’ parameter p shifts the extreme points. The rather
complicated relationship between p and α, ν, µ is given in Ref. [15]. However, this functional dependence of the convex
parameter on channel properties implies the following result.

Theorem 1 The set of all SGAD channels is not convex.
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Proof. Assume that Eq. (31) defines a valid convex set in the model for arbitrary p in the range [0, 1]. The channel
parameters are temperature, squeezing, etc., which may be denoted xi (for 1 ≤ i ≤ N , for any finite N). Since
p = p(xi), each possible choice of p constitutes a constraint to be satisfied while keeping fixed the extreme points
which are also functions of xi. Clearly, this is impossible to satisfy for any finite N . �

It is an interesting question how the locus of the extreme points as a function of p relates to the general theory of
area preserving canonical transformations.
Since all unitary operations are mapped to pure (maximally entangled) Choi matrices, mixedness of the latter

implies decoherence in the channel. This suggests that the degree of decoherence can be quantified by the amount of
mixedness of the Choi matrix, CE , Eq. (14), Ref. [38].

S = −Tr [CE log2 CE ] . (32)

Likewise, since the noise acting on one of the states will lead to a reduction in correlation between the two states,
the degree of separableness of the Choi matrix also can be considered as a quantification of channel decoherence. An
appropriate measure of entanglement is concurrence [39]:

L = max [0, λ1 − λ2 − λ3 − λ4] (33)

where λ1, λ2, λ3, λ4 are the eigenvalues of (σy ⊗ σy)CE(σy ⊗ σy)
T arranged in decreasing order.

As a quick illustration, for a phase flip channel given by Kraus operator elements {√pI,√1− pZ} (0 ≤ p ≤ 1
2 ),

it is easily seen that the von Neumann entropy of the Choi matrix is given by H(p), the Shannon entropy, and the
concurrence by 1 − 2p. Thus we find that as the noise level is increased, so does the degree of mixedness and the
separability of the Choi matrix. In Figures (1(a)) and (1(b)), we plot the von Neumann enropy and concurrence,
respectively, of the Choi matrix subjected to a SGAD channel. As expected we find that they indicate an increase
of decoherence under increase of T . However, there are regions where squeezing appears to suppress decoherence, as
seen from the Figure 1(a), near T = 1.

0.0

0.5

1.0

T

0.0

0.5

1.0

r

0.5

1.0

1.5

2.0

S

(a) Channel entropy (Eq. (32))

0.0

0.5

1.0

T

0.0

0.5

1.0

r

0.0

0.5

1.0

1.5

L

(b) Channel concurrence (Eq. (33))

FIG. 1: Two possible quantifications of the decoherence due to the action of a SGAD channel, as function of temperature (T )
and squeezing, parametrized by r, with time t = 0.5, frequency ω = 0.01, bath parameter γ0 = 0.1 and squeezing angle Φ = 0.3
(in the units where ~ = kB = 1).

VI. GATE AND CHANNEL FIDELITIES

We here characterize the performance of the SGAD channel in terms of parameters which, as noted earlier, should
be unitarily invariant. One such quantity is the gate fidelity [40]

g = max
ρ

F (ρ, E(ρ)), (34)
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(a) Average gate fidelity (Eq. (36))
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1.0
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1.0
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0.0

0.5

1.0

Κ

(b) Channel fidelity (Eq. (37))

FIG. 2: SGAD channel properties, as function of temperature (T ) and squeezing, parametrized by r, with time t = 0.5,
frequency ω = 0.01, bath parameter γ0 = 0.1 and squeezing angle Φ = 0.3 for (a) and Φ = 0.0 for (b) (in the units where
~ = kB = 1). Both quantities show a counter-intuitive rise with squeezing.

the fidelity of a state with its noisy version, maximized over all states, where fidelity F (ρ, σ) =
√√

ρσ
√
ρ. Intuitively

it represents how well a gate performs the operation it is supposed to implement. Another is the average gate fidelity
[41, 42]:

gav =

∫

ρ

F (ρ, E(ρ))ω(ρ)dρ, (35)

where ω is a suitable uniform measure over state space. A closed analytic expression exists for this, due to Ref. [8],
given by

gav =
d+

∑

i |Tr(Ei)|2
d(d+ 1)

. (36)

Another similar parameter is teleportation distance [10].
A related parameter, introduced in Ref. [15], is channel fidelity, which is a measure of how well a gate preserves

the distinguishability of states:

κ ≡ max
B

χ(B, E), (37)

where χ(B, E) is the Holevo bound for a state prepared in basis elements of basis B, subjected to noise E . Thus κ
maximizes the distinguishability (quantified by the Holevo bound) over all possible bases (sets of orthonormal states).
Clearly κ ≤ C1 ≤ C, where C1 is the product state channel capacity, and C, the channel capacity maximized over
n-fold entanglement (n→ ∞) [43].
κ manifestly possesses unitary invariance because it is computed from the density operator directly, and is thus

independent of the tracing basis used to obtain the Kraus operators. Although currently no known closed expression
exists for channel fidelity, we expect that its behavior should be similar to that of gate fidelity, at least qualitatively.
This expectation is supported in a comparison of the effect of temperate and squeezing on them, as discussed below.
A plot of gav for the SGAD channel is given in Figure (2(a)). While at low enough temperature, squeezing reduces

average gate fidelity gav, a range of temperature is seen to exist, in which squeezing causes an increase in the quantity.
A similar counter-intuitive reduction of κ with squeezing is depicted in Figure 2(b).
What is remarkable is that even in regimes where noise increases, as indicated by Figures 1(a), 1(b) and 2(a)),

obtained by increasing squeezing at fixed temperature, the distinguishability of intially orthogonal states, as given
by channel fidelity in Figure 2(b)), increases. We confirmed this behavior by employing the trace distance measure
instead of channel fidelity, obtaining the same pattern. It follows that in this signaling ensemble, inspite of the
diffusion caused by noise, the intially orthogonal states continue to enjoy a nearly orthogonal support. Invariably,
this feature happens only when the increase in decoherence is due to increase in squeezing r at a given temperature.
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VII. DISCUSSIONS AND CONCLUSIONS

Single-qubit channels have been studied under the two broad classes of AD and generalized depolarizing channels,
which are fairly exhaustive in real life situations. Two of the authors had earlier derived [15] an operator sum
representation of the SGAD channel, by generalizing the GAD channel. A different derivation, that exploits the Choi
channel-state isomorphism was presented here, along with the unitary operation relating it to the previous derivation.

There is a rich structure to be explored by the isomorphism. As a small part of larger work that may be undertaken
here, we characterize the difference in the geometry and rank of these channel classes. The degree of decoherence of
the qubit channel is quantified according to the amount of mixedness, as quantified by the von Neumann entropy, or
separability, quantified by the absence of concurrence, of the Choi matrix.
Whereas the generalized depolarizing channels possess a convex structure and form a 3-simplex, the AD class

channels lack a convex set as seen from an ab initio perspective, and are thus more complicated to study. Further,
where the rank of generalized depolarizing channels can be any positive integer upto 4, that of amplitude damping
ones is either 2 or 4. Various channel performance parameters can be used to bring out the different influences of
temperature and squeezing in dissipative channels. In particular, a noise range in terms of r and T was identified
where initially orthogonal states prepared in a suitable basis can become more distinguishable inspite of decohering.
This happens only when squeezing is increased, rather than temperature.
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