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Nuclear pore complexes (NPCs) are very selective filters that monitor the transport be-

tween the cytoplasm and the nucleoplasm. Two models have been suggested for the plug of

the NPC. They are (i) it is a reversible hydrogel or (ii) it is a polymer brush. We propose

a mesoscopic model for the transport of a protein through the plug, that is general enough

to cover both. The protein stretches the plug and creates a local deformation. The bubble

so created (prtoein+deformation) executes random walk in the plug. We find that for faster

relaxation of the gel, the diffusion of the bubble is greater. Further, on using parameters

appropriate for the brush, we find that the diffusion coefficient is much lower. Hence the gel

model seems to be more likely explanation for the workings of the plug.

The nuclear envelope in all eucaryotes is perforated with nuclear pores [1, 2, 3, 4, 5, 6]. Each pore

has a selective filter, referred to as the nuclear pore complex (NPC). The NPC is a self-assembled,

eightfold symmetric ringlike structure consisting of eight copies each of 30-50 different proteins,

connecting the inner and outer nuclear membranes. It regulates the import and export traffic of

proteins and has two distinct modes of transport: passive and facilitated. Passive transport is non-

specific and takes place by ordinary diffusion. Colloidal gold particles with radii up to 4 nm, and

generic proteins up to 50 kDa in mass, pass efficiently through the NPC in this way [7]. In contrast,

facilitated translocation allows the passage of objects as large as several megadaltons. Proteins

having a short amino acid sequence known as nuclear localization signal (NLS) form a complex with

transportin [5] (a transporter protein rich in hydrophobic units) and are transported in this mode.

The transport requires specific interactions between the translocating species and constituents of

the NPC and consequently is highly selective. Gold particles of up to 32-36 nm in diameter are

able to pass through some NPC if they are coated with nucleoplasmin-importin complexes [3].

This suggests that the interaction of the protein-transportin complex with NPC is essential for

transport. Passage of proteins through the NPC has attracted considerable experimental and

theoretical attention [8, 9, 10, 11]. According to Ribbeck and Görlich (RG) [8] the central plug

of the nuclear pore is made of long diblock copolymers rich in hydrophobic phenylalanine-glycine

(FG) units forming a meshwork. Only the macromolecules which can form hydrophobic contacts

with the FG units are incorporated into this network and get transported. In an interesting paper,
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Bickel and Bruinsma (BB) [10] point out that such a model would lead to a lower rate of diffusion.

BB suggest that the central plug is a reversible polymer gel in a poor solvent and a protein in

it experiences an extra noise (they call it “chemical noise”) arising from the fluctuations of the

FG contacts and this extra noise enhances the diffusion of the protein within the NPC. Single

molecule fluorescence microscopy by Yang, Gelles and Musser [9] shows that the protein executes

random walk inside the central core of the NPC. An alternate model for the plug suggests that it

is not a gel but a polymer brush [12]. Surprisingly, there have been experimental support for both

gel and brush models. In interesting experiments, Frey et al. [13, 14, 15] have shown that the

nucleoporins form a hydrogel in vitro, offering support to the model of RG and BB. On the other

hand a beautiful study by Lim et al. [16] has found that the proetins, when grafted to a surface

behave like an un-cross-linked brush. Also, it is known that the interaction between the transportin

and the FG residues is not just hydrophobic, but involves hydrogen bonding, electrostatic and van

der Waals interactions [17, 18] and that there are extremely hydrophilic portions in between the

FG units.

In the following we study a minimalistic model for the transport in the NPC. Our model is

quite general, and would be applicable whether the plug is a gel or a brush. The actual values of

the parameters in the model would depend on whether it is a gel or a brush. We find that the it

is possible for the protein to diffuse rapidly within a reversible gel, while the diffusion would be

much slower within the brush.

We take the pore complex to be infinitely long (end-effects neglected) and shall adopt a con-

tinuum description for the plug. We use x to denote position along the direction of the axis of

the NPC. To make the problem one dimensional, we imagine the cross section of the pore to be

a square, with width LY in the Y and height LZ(= LY ) in the Z directions. We shall assume

that the particle has a length 2R0 in the X direction, causes a distortion of height ∼ α and fills

the pore fully in the Y direction. Further, to simplify the analysis, we assume that periodic

boundary conditions are imposed in this direction, with a period LY . With these, the problem is

reduced to two dimensions (X and Z). The size of the distortion needed to create a cavity to

accommodate the particle will be our important variable. Let φ(x) denote the height of the cavity

in the Z-direction at the position x. The simplest possible expression for the energy of distortion

Edis would have terms quadratic in φ(x). Thus Edis = (1/2)
∫∞

−∞
dx

{
σ (∂φ(x)/∂x)2 + kφ(x)2

}
.

The energy of interaction Eint = −Eb +
∫∞

−∞
dxQ(x−R)

{
(k +∆k)/2 {φ(x)− α}2 − (k/2)φ(x)2

}

of the particle at R with the plug can compensate for the distortion energy. Q(y) with y = x−R

is a function that determines the interaction between the particle and the plug. We assume
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Q(y) to be a symmetric function of y, having maximum value Q(0) = 1. Further, we assume

Q(±∞) = 0. When the particle enters the plug it would have to break hydrophobic contacts that

may be there, and the energy expenditure for that may be met by formation of new contacts of the

nucleoporins with the particle. All these together is represented by a single constant Eb. Thus the

energy of the system is, to within an additive constant, E[φ,R] = Edis + Eint. We refer to this as

the particle on a string model for the transport, as the above expression is identical to the energy

of a stretched string, which is displaced from its equilibrium position by the particle, to form a

bubble. We assume overdamped, Langevin dynamics for the string and the particle, given by
 ζ 0

0 ζp


 ∂

∂t
Ψ(x,R, t) = −




δE[φ,R]
δφ(x)

∂E[φ,R]
∂R


+ F (x, t)

Ψ(x,R, t) is 2×1 column vector with elements φ(x, t) and R. ζ is the friction coefficient for the

string and ζp for the particle. We shall use † to denote the transpose. F (x, t) = (f(x, t), g(t))† where

f(x, t) and g(t) are Gaussian random forces with mean zero and 〈f(x1, t1)f(x2, t2)〉 = 2ζkBTδ(x1−
x2)δ(t1 − t2) and 〈g(t1)g(t2)〉 = 2ζpkBTδ(t1 − t2). We define β = 1/kBT and denote the time of

relaxation of the long wave length oscillations of the string by τ = ζ/k. A model with similar

structure has been studied in the context of DNA replication by Bhattacharjee [19].

It is convenient to work with dimensionless quantities, and use the original symbols them-

selves to denote them. Thus we change to βE → E, βEb → Eb, x/R0 → x, φ(x)/R0 → φ(x),

α/R0 → α, R/R0 → R, βkR3
0 → k, β∆kR3

0 → ∆k, σ → σβR0, t/βζR
3
0 → t and ζp/ζR0 → ζp.

The minimum energy configuration for the system obeys the two equations δE[φ,R]
δφ(x) = 0 and

∂E[φ,R]
∂R

= 0. These lead to σ ∂2φ(x)
∂x2 − kφ(x) − (∆k(φ(y)− a) − kα)Q(x − R) = 0 and

∫∞

−∞
dxQ′(x − R)((k +∆k) {φ(x)− α}2 − kφ

2
(x)) = 0. The prime, ′ is used to denote differ-

entiation with respect to x. As the shape of the distortion would obviously depend on where the

particle is located, it is clear that the distortion would have the form φc(y) where y = x− R. In

terms of y, the first of the two equations become σ ∂2φc(y)
∂y2

−kφc(y)− (∆k(φ(y)− α)−kα)Q(y) = 0.

The second equation is easily satisfied by having φc(−y) = φc(y). Once φc satisfying these

conditions is found, it may be used to get the minimum energy, Ec = E[φc(x − R), R]. The

minimum energy configuration with the particle stationary at Rb, and with the center of the

distortion coinciding with Rb shall be referred to as having the bubble at Rb and this may be

specified by the function Ψc(x − Rb, Rb) = (φc(x−Rb), Rb)
†. Movement of the bubble as a

whole is described as change of Ψc(x − Rb, Rb) by change of Rb. It is clear that this motion

is translational as the energy of the system is unchanged by this movement. This causes the

existence of a “zero mode” [20]. At a finite temperature, there would be fluctuations which will



4

cause the bubble to execute random motion. It is to be noted that the distortion and the particle

can fluctuate in opposite directions and therefore Rb and R follow different dynamics. Follow-

ing the methods of instanton theory [20], that has been used in a similar context [21, 22], we

write the state of the system at any time as the configuration with the bubble located at Rb

plus fluctuations about this configuration, which we expand in terms of the normal modes about

the bubble at Rb. Thus, we write Ψ(x,R, t) = Ψc(x − Rb(t), Rb(t)) +
∞∑
l=1

Cl(t)Ψl(x − Rb(t)),

where Ψl(x − Rb) = (φl(x − Rb), Jl)
† are normal modes, the equation for which will be defined

later. We now substitute the above expansion into the Langevin equation and expand the RHS

up to first order in Cl(t). The result is ς
.

Rb(−φ′
c(x − Rb(t)), 1)

† +
∞∑
l=1

.

C l(t)Ψl(x − Rb(t)) =

∞∑
l=1

Cl(t)
{
L̂Ψl(x−Rb(t))−

.

RbΨ
′
l(x−Rb(t))

}
+ F (x, t)where ς is a 2 × 2 diagonal matrix with

diagonal elements 1 and ζp. The operator L̂ is defined by

L̂Ψl(y) =




{
−σ∂2/∂y2 + k +∆kQ(y)

}
φl(y)−Q′(y) {∆k(φc(y)− α)− αk}Jl

−
∫∞

−∞
Q′(y′)

{
∆k(φc(y

′)− α)− αk
}
φl(y

′) + Jl
∫∞

−∞
dyQ′′(y)

{
(k +∆k)/2 (φc(y)− α)2 − (k/2)φc(y)

2
}




We take Ψl to obey the eigenvalue equation L̂Ψl = λlΨl. It is convenient to introduce an inner-

product (Ψl|Ψl1) = 〈φl|φl1〉 + ζpJ
∗
l Jl1 , where 〈φl|φl1〉 =

∫∞

−∞
dxφ∗

l (x)φl1(x). With this defini-

tion of the inner product, L̂ is a hermitian operator on the space spanned by Ψl. Further,

∂/∂Rb (φc(x−Rb), Rb)
† = (−φ′

c(x − Rb), 1)
† is an eigen function of L̂ with an eigenvalue zero,

as may be easily proved by differentiating
(
δE[φ,R]
δφ(x)

)
φc(x−Rb),Rb

= 0 and
(
∂E[φ,R]

∂R

)
φc(x−Rb),Rb

= 0,

with respect to Rb and writing the results in the matrix form. This is the zero mode of the system.

After normalizing, this mode may be written as Ψ0 = (−φ′
c(x−Rb), 1)

†/
√
c, with c = ζp+ 〈φ′

c|φ′
c〉.

Note that in the spirit of instanton approach the sum over l in the expansion of Ψ(x,R, t) does

not include this mode. Further, the fact that Q(y) is a symmetric function, means that one can

classify the eigenfunctions Ψl based upon the symmetry or antisymmetry of φl(y). If φl(y) is

symmetric, then Ψl has the simple form Ψl = (χl, 0)
†, where χl is a symmetric eigenfunction of

the operator
(
−σ ∂2

∂y2
+ k +∆kQ(y)

)
. Further, for this case, λl = εl, where εl is the eigenvalue

associated with χl, a fact we will use later.

On taking inner product of the equation involving Cl(t) with Ψ0(x−Rb(t)) we get
.

Rb(t) = h(t)+

(Ṙb(t)/c)
∞∑
l=1

Cl(t)
〈
φ

′′

c |φl

〉
, where h(t) = (g(t)−

〈
φ

′

c | f(t)
〉
)/c. To get the simplest approximation

for the diffusion coefficient for the bubble, we neglect the “string-phonon-particle scattering” (SPP)

term (the last term) of the above equation involving Ṙb(t) and get Ṙb(t) = h(t). The diffusion
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coefficient is then found to be D0 = 1
2t

∫ t

0 dt1
∫ t

0 dt2 〈h(t1)|h(t2)〉 = c−1. One can write D0 as a

harmonic mean D0 = DpDs (Dp +Ds)
−1 ,with Dp = ζ−1

p , Ds =
〈
φ

′

c | φ
′

c

〉−1
. It is interesting

that within this approximation, D0 is always less than Dp implying that the diffusion coefficient

within the plug is less than outside, as expected [8]. To get a better approximation, one has to

include the last term of the equation involving Ṙb(t). For this, we have to find Cl(t). On taking

inner-product of the equation involving Cl(t) with Ψl(x − Rb(t)), and neglecting SPP scattering,

we get
.

Cl(t) = −λlCl(t) + (Ψl | F (t)), which can be solved with the condition Cl(−∞) = 0 to get

Cl(t) =
∫ t

−∞
dt1 (Ψl | F (t1)) exp(−λl(t − t1)). One should now solve for Ṙb(t) and then calculate

the diffusion coefficient. However, this is difficult, as the noise is multiplicative. We therefore adopt

a simple minded approach in which Ṙb(t) on rhs is replaced by h(t) to get the following equation

Ṙb(t) = h(t) (1 +B(t)/c), where B(t) =
∑∞

l=1

∫ t

−∞
dt1 (Ψl | F (t1)) exp(−λl(t − t1))

〈
φ

′′

c | φl

〉
. If

one further assumes that h(t) and B(t) are uncorrelated then the diffusion coefficient becomes

D = D0 + 1
2tc2

∫ t

0 dt1
∫ t

0 dt2 〈h(t1)h(t2)〉 〈B(t1)B(t2)〉. This is easy to calculate since the noises

are delta function correlated and it becomes, D = D0

(
1 +B/c2

)
, where B = 〈B(t)B(t)〉 =

∑
l 6=0

∣∣∣
〈
φ

′′

c | φl

〉∣∣∣
2
/λl. As φ

′′

c (x) is an even function of x, only φl that are symmetric will contribute

in this sum. But as we saw above, they are identical with χl, and for them λl = εl. We

can therefore write B =
∑

l

∣∣∣
〈
φ

′′

c | χl

〉∣∣∣
2
/εl. It is clear that one can expand the sum over l

to include all l. Thus we get D = D0

(
1 +

〈
φ

′′

c

∣∣∣Ĝ
∣∣∣φ′′

c

〉
/c2

)
. Ĝ =

(
−σ ∂2

∂y2
+ k +∆kQ(y)

)−1

is the Green’s operator. Note that in the Schrödinger operator −σ ∂2

∂y2
+ k + ∆kQ(y), the term

∆kQ(y) vanishes at infinity. It is straightforward to calculate the diffusion coefficient for simple

models of Q(y). We define an enhancement factor r = D/D0 =
(
1 +

〈
φ

′′

c

∣∣∣Ĝ
∣∣∣φ′′

c

〉
/c2

)
. We

now perform calculations for a simple model with Q(y) = θ(y − 1) − θ(y + 1). Further, we put

∆k = 0 so that the calculation becomes easy. Then one can find φc easily and obtain Ec =

−Eb+α2
√
kσ sinh(

√
k/σ) exp(−

√
k/σ), where Eb is the dimensionless value of the binding energy

(= Ebβ). If Ec ≤ 0, then the entry into the NPC has no activation energy (however, exit would be

activated). The Green’s function is G(y, y1) =
(√

k/4σ
)
exp(−

√
k
σ
|y − y1|) so that

〈
φ

′′

c

∣∣∣Ĝ
∣∣∣φ′′

c

〉
=

(√
k/σ

) (
1− exp(−2

√
k/σ)− 2

√
k/σ + 4k/σ

)
/8. With these, we get D0 = 2σ/δ with δ =

(2σζp+α2(
√
kσ− exp(−2

√
k
σ
)(2k+

√
kσ))) and r = 1+

α2

q

k
σ
exp(2

q

k
σ
)

„

−1+exp(2
q

k
σ
)−2

q

k
σ
+4 k

σ

«

2

„

(−1+exp(2
q

k
σ
))α2

q

k
σ
− 2kα2

σ
+2ζp exp(2

q

k
σ
)

«

2 .

We now estimate the diffusion coefficient of the protein, assuming that the plug is a gel. As

experimental information on the properties of the gel is scarce, the numbers used are only rough

estimates. As the protein has size of a few nanometers, we take R0 = 10 nm, α = 10 nm and

LY = LZ = 30 nm. Temperature is taken to be 300 K . We take the diffusion coefficient of



6

1010.10.01

10-14

10-13

10-12

10-11

D
brush

D
0

D

Dp

 

D
iff

us
io

n 
C

oe
ffi

ci
en

t

FIG. 1: Plot of the diffusion coefficient of the macromolecule against the longest relaxation time (τ). Dp is

the diffusion coefficient outside the gel. D0 and D with σ = 2 × 10−13J/m (for the gel) and Dbrush with

σ = 2× 10−15J/m.

the protein outside the network to be Dp = kBT/ζp = 10−11m2s−1, which gives the value of

ζp = 4.14 × 10−10Js/m2. Considering a slab of dimensions LX , LY and LZ(= LY ), the energy

required to deform it by a constant amount a in the Z-direction is LXa2Y/2,where Y is the Young’s

modulus. Using our equation for Edis for the same situation gives kLXa2/2. Equating the two,

we get k = Y . Y for the hydrogel formed by nucleoporins in vitro has been measured to be 2000

Pa [13]. With this value for k, to produce a deformation with φ = 10 nm over a length of 20 nm

requires only an energy of 1.2kJ/mol, which is ∼ kBT/2. So the deformation of the gel to produce

a hole of the required size requires only thermal energy. So then, why does not the particle just

deform the gel and get inside? The answer must be that to get inside, it will have to break the
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network. It is known that a colloidal particle of size 5 nm is not able to get into the pore [7, 10].

This means that there must be at least one hydrophobic contact to be broken to create a hole of

volume (5nm)3. We will take the energy of a hydrophobic contact as 5kBT . Therefore, to create a

hole of the size of a protein, (20nm×10nm×10nm), one will have to break 16 hydrophobic contacts

which will require an energy of 80kBT . This rather large energy requirement can be compensated

by the formation of roughly the same number of hydrophobic contacts between the protein and

the network. We estimated σ by putting the condition that the deformation energy due to the

two quadratic terms of Edis have the same value for creation of a deformation of size 10 nm over

a length of 20 nm. This gave σ for the gel σgel = 2 × 10−13J/m. As no experimental data on

the relaxation time of the network is available, we took ζ = 2 Js/m3, so that the long wave length

relaxation time τ of the gel would be 1 ms. This seems reasonable as the gel is formed due to

rather weak hydrophobic interactions among FG units. These data correspond to the following

values for the dimensionless parameters: α = 1, k = 1, ζp = 0.0207,Dp = 1/ζp = 48.3092. With

these values, we find: The value of D0, diffusion coefficient of the protein inside the network to be

6.51× 10−13m2/s. This means that putting into the network has reduced the diffusion coefficient

by roughly a factor of ∼ 15, as expected[10]. The value of r = 2.4 and hence D = 1.56×10−12m2/s

- noise in the gel enhances the diffusion considerably. Putting the length of the NPC to be 50nm,

this would give a residence time of 1.6 ms for the particle. This estimates a transport rate of

∼ 600 proteins/second which is roughly in agreement with the experiments [8]. In Fig. 1 we have

made a plot of diffusion coefficient against the relaxation time (τ) of the gel, keeping all other

parameters fixed which shows that the faster is the relaxation of the gel, faster is the diffusion of

the macromolecule (protein) inside it. Further, the enhancement factor, r is ∼ 2 for τ > 1 ms.

What would happen if the plug were a brush? In a brush, there are no hydrophobic contacts

and hence there is no network. Any contact would contribute to the elasticity of the plug and

therefore, if the plug were a brush, the value of σ would be much lower. The model is easily

analyzed in the limit σ → 0, to find that D0 → 0, r → 1 so that D → 0. Thus the diffusion

coefficient of the particle within the brush would be much lower than in the gel. To demonstrate

this, we have calculated the diffusion coefficient for the case with σ = σgel/100 and the results are

given in the Fig. 1, and it is seen that the diffusion coefficient is lowered by a factor of 1/35.

It is also interesting to compare our results with those of Zilman et al [23]. In their model, the

greater binding energy of the particle to the FG units would enhance the transport, by retaining

the particles longer in the pore. The same thing would happen within our model too. The two

models are similar in that the movement of the particle is co-operative, with the contacts at the
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front being formed at the same time as the contacts at the back are being broken, leading to easy

motion of the particle within the NPC. However, over approach is more detailed, and is able to

take care of the limit where σ is small, which as we have argued, is very important.

In summary, we have proposed a model for the transport of a protein through the NPC. We

find that a reversible gel would lead to larger diffusion coefficients than the polymer brush and

hence we suggest that the plug of the NPC is a gel. However, final confirmation of this needs more

experimental work and simulations.
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