
1

Detecting Approximate Reflection Symmetry in a

Point Set using Optimization on Manifold
Rajendra Nagar∗ and Shanmuganathan Raman†

Electrical Engineering, Indian Institute of Technology Gandhinagar, India, 382355

Email: ∗rajendra.nagar@iitgn.ac.in, †shanmuga@iitgn.ac.in

Abstract—We propose an algorithm to detect approximate
reflection symmetry present in a set of volumetrically distributed
points belonging to R

d containing a distorted reflection symmetry
pattern. We pose the problem of detecting approximate reflec-
tion symmetry as the problem of establishing correspondences
between the points which are reflections of each other and we
determine the reflection symmetry transformation. We formulate
an optimization framework in which the problem of establishing
the correspondences amounts to solving a linear assignment
problem and the problem of determining the reflection symmetry
transformation amounts to solving an optimization problem on a
smooth Riemannian product manifold. The proposed approach
estimates the symmetry from the geometry of the points and
is descriptor independent. We evaluate the performance of the
proposed approach on the standard benchmark dataset and
achieve the state-of-the-art performance. We further show the
robustness of our approach by varying the amount of distortion
in a perfect reflection symmetry pattern where we perturb each
point by a different amount of perturbation. We demonstrate the
effectiveness of the method by applying it to the problem of 2-D
and 3-D reflection symmetry detection along with comparisons.

Index Terms—Symmetry, Optimization, Manifolds.

I. INTRODUCTION

S
YMMETRY present in natural and man-made objects

enriches the objects to be physically balanced, beautiful,

easy to recognize, and easy to understand. Characterizing and

finding the symmetry has been an active topic of research in

computer vision and computer graphics as physical objects

form the basis for these research areas. The digitized objects

are mainly represented in the form of meshes, volumes, sets of

points, and images. The primary objective has been to detect

symmetry in objects depicted through these different repre-

sentations. We particularly aim to detect reflection symmetry

present in objects represented by a set of finite number of

points belonging to R
d. In Fig. 1, we present an example result

of the proposed approach for illustration.

The motivation behind detecting symmetry in higher dimen-

sional spaces (d > 3) is inspired by the fact that many physical

data points reside in the space of dimensions greater than three.

For example, an RGB-D image captured using a Kinect sensor,

which has become a major tool for interaction of human

with machine, has four dimensions at each pixel location.

Another example is the embedding of feature points or shapes

into a higher-dimensional space. In the scale invariant feature

transform (SIFT) algorithm, each keypoint is represented in a

128-dimensional space [1]. We not only target data residing in

2-D (image) and 3-D (point cloud), but also develop a generic

framework to detect symmetry in higher dimensional data.

(a)

1

0.8

0.6

0.4

0.2

00

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1

0

0.5

0.45

(b)

Fig. 1. Established correspondences (shown in (b)) between the reflection
symmetry points sampled from the input model (shown in (a)) using the
proposed approach.

The problem of establishing correspondences between re-

flection symmetry points and determining the hyperplane of

reflection symmetry has been extensively studied due to its

astounding applications such as compression of objects, sym-

metrization, shape matching, and symmetry aware segmenta-

tion of shapes [2]. Most of the existing algorithms attempt

this problem by using surface signatures such as Gaussian

curvature, eigenbases of the Laplace-Beltrami operator, and

heat kernels for the points sampled on a given surface ([3],

[4], [2]). The challenge we face is that, we only have a set

of discrete points in R
d. We can not take benefits from local

surface signatures by fitting a surface over these points. For the

case d = 2, an explanation could be that the prominent surface

signatures, such as Gaussian curvatures, are meaningful only

if the surface is non-linear. For the case d ≥ 3, an explanation

could be that if the point set represents a volumetric shape,

fitting a surface could be hard and eigenbases of Laplace-

Beltrami operator are not defined for a set of finite points

since it is not a compact manifold without the boundary

[5]. Prominent methods such as [6] and [7] are independent

of surface features and employ randomized algorithms to

establish correspondences between the reflection symmetry

points. However, they require fine tuning of a hyper-parameter

to handle the reflection symmetry patterns perturbed by an

unknown source of noise and an improper choice of this

parameter could lead to higher time complexity.

Both these categories of algorithms are sequential in the

sense that they first establish the correspondences between the

reflection symmetry points and then determine the reflection

symmetry hyperplane. Therefore, many outlier correspon-

dences could be detected along with the correct correspon-

dences. In summary, detecting symmetry in a set containing

a finite number of points is a non-trivial problem. In this

ar
X

iv
:1

70
6.

08
80

1v
6

 [
cs

.C
V

]
 1

5
Ja

n
20

19

2

work, we propose an optimization framework where we jointly

establish correspondences between reflection symmetry points

and determine the reflection symmetry hyperplane in a set

of points containing a distorted reflection symmetry pattern.

In order to design the cost function, we introduce an affine

transformation to obtain the reflection point of a point in R
d.

The main intuition behind forming this cost function is that

the reflection point of a point obtained through the optimal

reflection hyperplane should be present closest to its ground-

truth reflection point.

The primary contributions of this work are listed below.

1) We propose an optimization based algorithm to establish

correspondences between the reflection symmetry points

and determine the reflection symmetry transformation

in a set of discrete points residing in R
d containing a

distorted reflection symmetry pattern.

2) We show that the proposed optimization framework is

convex in translation and correspondences matrix, and

locally convex in each of the rotation matrices.

3) The proposed approach is shown to not use any shape

descriptors and can be applied to point sets obtained by

sampling any shape residing in R
d.

4) We demonstrate the effectiveness of the proposed ap-

proach by detecting symmetry in 2-D images and 3-D

point clouds.

We organize the remainder of the paper as follows. In §II,
we present the related works to our approach. In §III-A,

we formulate the energy minimization problem. In §III-B,

we find the optimal rotations and translation. In §III-C, we

find the optimal mirror symmetric correspondences. In §III-D,

we prove the convergence properties. In §IV, we report the

computational complexity of our algorithm. In §V, we report

the results and the evaluation of the proposed approach. In

§VI, we conclude the work with future directions.

II. RELATED WORKS

The problem of characterizing and detecting the reflection

symmetry in digitized objects has been extensively studied.

The works [8] and [2] provide a survey of the symmetry

detection algorithms. The symmetry detection algorithms can

be categorized based on either the form of the input data

or whether the algorithm is dependent or independent of the

surface features. General forms of the input data are: set of

points, mesh, volume, and image. Most of the methods for

symmetry detection in meshes first extract salient keypoints

on the surface and then describe each point using local

surface features. The prominent surface features are: Gaussian

curvatures, slippage features, moments, geodesic distances,

and extended Gaussian images ([8], [2]).

Symmetry detection in a set of points without features.

These algorithms detect reflection symmetry in a set of points

without using surface features. Our work also falls in this

category. In the work by Zabrodsky et al., the authors find the

closest shape to a given shape represented by a set of points

in R
2 and it requires point correspondences [9]. However,

our goal is different in the sense that we find reflection

correspondences within the given set of points in R
d. In the

work by Lipman et al., the authors propose the concept of

symmetry factored embedding where they represent pairs of

points which are in the same orbit in a new space and propose

the concept of symmetry factored distance to find the distance

between such pairs [6]. In the work by Xu et al., the authors

detect multi-scale symmetry [7]. The authors use a randomized

algorithm to detect the correspondences efficiently. However,

performance degrades as the perfect pattern gets perturbed

due to noisy measurements. We compare the correspondences

established by our method to that of this method and show that

our method performs better than this method when the patterns

are perturbed. It is fair to compare with this method on the

perturbed patterns because most of the real world patterns are

not perfectly symmetric, e.g., human face and butterfly wings.

In the works by Combès et al. [10], Speciale et al. [11], Ecins

et al. [12], Cicconet et al. [13], Li et al. [14], and Sipiran et al.

[15], the authors automatically detect the symmetry plane in a

point cloud. But, the methods in [10], [11], [13], [14], and [15]

do not establish correspondences. However, correspondences

are an important aspect as shown in ([7], [6]). Ecins et al.

proposed an ICP based approach [12] where they used the

normals at each point to determine the symmetry. However,

this method is applicable only to non-volumetric point clouds,

i.e., points sampled from a surface.

Symmetry detection in meshes using surface features.

These algorithms either directly use surface patches described

using local features or first detect the salient keypoints on the

surface and describe them using the local surface features.

Here, we review only the salient works to give an idea of

these algorithms. Mitra et al. detect partial and approximate

symmetries in 3D models [4]. They start with sampling salient

keypoints on the surface and pair them up using their local

principal curvatures. Then using the Hough transformation,

they find the pairs of reflection symmetry points. Then in the

Hough transformation space, they perform the clustering of the

pairs to determine all the partial symmetries. Martinet et al.

detect symmetries by generalized moment functions where the

shape symmetry gets inherited as symmetry in these functions

[16]. Raviv et al. detect symmetry in non-rigid shapes by

observing that the intrinsic geometry of a shape is invariant

under non-rigid shape transformations [17]. Berner et al. start

with constructing a graph based on the similarity of slippage

features detected on the surface [3]. Then, they detect the

structural regularities by matching the sub-graphs. Cohen et

al. detect symmetry using geometric and image cues [18].

They use it to reconstruct accurate 3D models. We refer the

reader to some of the pioneering works for more details on this

category ([19], [20], [21], [22], [23], [24], [25], [26], [27]).

There exist algorithms which find symmetry in meshes and

volume without sampling keypoints. The works described in

([28], [29], [5], [30], [31], [32], [33], [34], [35]) belong to this

category.

Symmetry detection algorithm for real images. These

algorithms primarily rely on the local image features such as

edge orientations, curvatures, and gradients. The recent works

such as ([36], [37], [38], [39], [40], [41], [42], [43], [44],

[45], [46], [47]) present excellent algorithms for reflection

symmetry detection in images. Given the accurate detection of

3

keypoints, the algorithm developed in this work can be used

to detect reflection symmetry in images without using local

features.

Our algorithm is similar to Iterative Closest Point (ICP)

algorithm ([48], [49]) only in the sense that we also follow

the alternation between the optimization of reflection trans-

formation (rotation and translation in ICP) and the correspon-

dences between the mirror symmetric points (correspondences

between the points of two different shapes in ICP). Our

algorithm differs from the ICP algorithm since ICP has a

different error function in the transformation parameters than

the error function of our problem. Furthermore, our matching

is bijective since we impose the bijectivity constraints in our

optimization framework. These constraints ensure that each

point has exactly one mirror image point.

III. PROPOSED APPROACH

Consider a set S = {xi}
n
i=1 of points, where xi ∈ R

d,

containing a distorted reflection symmetry pattern. Our goal

is to determine the reflection symmetry transformation and

establish the correspondences between the reflection symmetry

points. In Fig. 2, we show the graphical representation of

our problem. We formulate an optimization framework in

which both the correspondences between reflection symmetry

points and the reflection symmetry transformation are variables

as described below. We use the notation [k] for the set

{1, 2, . . . , k}, where k is a natural number.

A. Problem Formulation

We introduce reflection transformation in R
d in order to

obtain the reflection of a point through a hyperplane π, not

necessarily passing through the origin. The intuition is based

on the fact that any hyperplane in R
d is a d− 1 dimensional

subspace. Therefore, it can be made parallel to the subspace

spanned by any d − 1 coordinate axes by translating the

origin of the coordinate system on the hyperplane π and then

rotating these d − 1 axes sequentially (by the angle between

the hyperplane π and the axis). In this new coordinate system,

the reflection of a point through the hyperplane π can be

obtained by multiplying the coordinate corresponding to the

remaining axis of the point by −1. Then the reflection in the

original coordinate system is obtained by applying the inverse

procedure.

Definition 1. The reflection point xi′ ∈ R
d of a point xi ∈ R

d

through the reflection symmetry hyperplane π is determined

by an affine transformation as shown in Equation 1.

xi′ =

(

d−1
∏

u=1

Ru

)

E

(

d−1
∏

u=1

Ru

)⊤

(xi − t) + t. (1)

Here, i, i′ ∈ [n], t ∈ R
d is the translation vector which

translates the origin of the coordinate system on the hyperplane

π, Ru is a rotation matrix of size d × d that rotates the uth

axis about the origin such that it becomes perpendicular to the

normal of the hyperplane π, and the matrix E is defined as

E =

[

Id−1 0d−1

0⊤
d−1 −1

]

and satisfies E⊤ = E, E⊤E = Id. The

matrix Ru is an orthogonal matrix (R⊤
uRu = RuR

⊤
u = Id)

with determinant equal to +1, ∀u ∈ {1, 2, . . . , d − 1}. Here,

0d−1 is a vector of size (d − 1) × 1 with all the coordinates

equal to zero and Id−1 is an identity matrix of size (d− 1)×
(d− 1).

Now, we introduce the essential properties of this transfor-

mation in order to formulate the problem. We show that the

rotation matrices (R1, . . . ,Rd−1) and the translation vector

t uniquely determine the reflection hyper-plane π. We let

T =
∏d−1

u=1 Ru throughout this paper and note that it is again

an orthogonal matrix with determinant equal to +1.

Theorem 1: The point xi′ is the reflection of the point xi

through the hyperplane π if and only if the point xi is the

reflection of the point xi′ through the hyperplane π.

Proof: We prove the forward direction of the Theorem 1, since

the backward direction can be proved in a similar way. Let

us assume that the point xi′ is the reflection of the point xi.

Therefore, Equation (1) holds true. Now, we multiply Equation

(1) by TET⊤ from left and use the identities E⊤ = E,EE =
Id,T

⊤T = TT⊤ = Id to achieve,

TET⊤xi′ = xi − t+TET⊤t

⇒ xi = TET⊤(xi′ − t) + t. (2)

Theorem 2: The normal vector of the reflection hyper-plane

π lies in the null space of the matrix Id +TET⊤, the hyper-

plane π passes through t, and the null space of the matrix

Id +TET⊤ is an one-dimensional subspace of Rd.

Proof: We subtract Equation (1) from Equation (2) to achieve

xi−xi′ = TET⊤(xi′ −xi)⇒ (Id+TET⊤)(xi−xi′) = 0.

Therefore, the normal to the reflection hyperplane π, which

is in the direction of the vector (xi − xi′), lies in the null

space of the matrix (Id + TET⊤). It is easy to show that

the reflection hyperplane π passes through the translation t

by noting that the reflection point of the point t is t. This is

possible only if the point t lies on the reflection hyperplane π.

We prove that the null space of the matrix Id +TET⊤ is an

one-dimensional subspace of R
d in order to show that there

exists an unique hyperplane π. The nullspace of a matrix is the

space spanned by the eigenvectors corresponding to the zero

eigenvalue. Let p =
[

p1 p2 . . . pd
]⊤
∈ R

d be any vector.

If p is an eigenvector corresponding to the zero eigenvalue of

the matrix Id +TET⊤, then we must have

p⊤(Id +TET⊤)p = 0⇒ p⊤Idp+ (T⊤p)⊤E(T⊤p) = 0

⇒ p⊤Idp+ b⊤Eb = 0⇒
d
∑

u=1

p2u +

d−1
∑

u=1

b2u − b2d = 0

⇒
d
∑

u=1

p2u +

d
∑

u=1

b2u − 2b2d = 0. (3)

Here, b = T⊤p. We note that ‖b‖22 = (T⊤p)⊤(T⊤p) =
p⊤p = ‖p‖22. Therefore, from Equation (3) we have

d
∑

u=1

p2u +

d
∑

u=1

p2u − 2b2d = 0⇒
d
∑

u=1

p2u = b2d ⇒
d−1
∑

u=1

b2u = 0.

4

xi

Correspondence

Ideal Point

xi′

Radius

Perturbation

(i, i′)

σ2

Perturbed Point

(R, t)

Fig. 2. Each point of a perfect pattern, shown in gray color, is perturbed
to a point within a circular region around it where the radius is different for
all the points and is unknown. Our goal is to determine the correspondences
(i, i′) and the reflection transformation (R, t).

Therefore, b1 = b2 = . . . = bd−1 = 0 and bd ∈ R. Hence, the

vector b lies in the one dimensional space {q : q1 = q2 =
. . . = qd−1 = 0, qd ∈ R}. Since b = T⊤p⇒ p = Tb. Since

the rotation does not change the dimension of a linear space,

the vector p also lies in one dimensional space.

Given the set S , our goal is to find all the correct re-

flection correspondences (i, i′) ∈ [n] × [n] and the matrices

(R1,R2, . . . ,Rd−1, t) which define the reflection symmetry

hyperplane π. We represent all the correspondences by a

permutation matrix P ∈ {0, 1}n×n, such that Pii′ = 1
if the point xi′ is the reflection point of the point xi and

Pii′ = 0, otherwise. Here, we note from Theorem 1 that

Pii′ = 1⇔ Pi′i = 1.

Now, we let R = (R1,R2, . . . ,Rd−1) ∈ V. Here, V =
R

d×d × R
d×d × . . .× R

d×d. Let X =
[

x1 x2 . . . xn

]

∈
R

d×n be the matrix containing all the points of the set S as its

columns. Since the ith column of the matrix XP is the reflec-

tion point of the point xi, the reflection transformation (R, t)
maps the matrix X to the reflected points matrix XP. Using

Equation 1, we write the reflected points in the form of the

matrix TET⊤(X−te⊤)+te⊤, where e =
[

1 1 . . . 1
]⊤

is a vector of size n × 1. Therefore, Equation (4) holds true

when the input set contains a perfect reflection symmetry

pattern.

TET⊤
(

X− te⊤
)

+ te⊤ = XP. (4)

In practice, a reflection symmetry pattern might have been

distorted. Therefore, we would be able to find only the

approximate reflection symmetry. We find the reflection trans-

formation (R, t) and the correspondences matrix P in such a

way that the symmetry error, which we define as ‖TET⊤(X−
te⊤)+te⊤−XP‖2F, is minimized. Here ‖.‖F is the Frobenius

norm operator. We frame this problem in an optimization

framework as shown in Equation (5).

min
R,t,P

∥

∥

∥

∥

(
d−1
∏

u=1
Ru)E(

d−1
∏

u=1
Ru)

⊤(X− te⊤) + te⊤ −XP

∥

∥

∥

∥

2

F

s.t. Pe = e,P⊤e = e,P ∈ {0, 1}n×n,

R⊤
uRu = Id = RuR

⊤
u , det(Ru) = 1,Ru ∈ R

d×d,

∀u ∈ [d− 1], t ∈ R
d. (5)

By imposing the constraints Pe = e and P⊤e = e, we ensure

that each point has only one reflection point. We adopt an

alternating optimization approach to solve the problem defined

in Equation (5). We start with initializing the reflection trans-

formation (R, t) and solve for the optimal correspondences P

and then for this optimal P, we solve for optimal the (R, t).
We continue to alternate till convergence.

Once P is fixed, if we minimize the cost over the set

V × R
d, then we have to make sure that the orthogonality

and the unit determinant constraints hold true for the matrices

Ru, ∀u ∈ [d − 1]. One approach could be the Lagrange

augmentation which requires us to handle 3d − 3 additional

Lagrange multipliers. However, we observe that the set M =
{(R1, . . . ,Rd−1, t) : R⊤

uRu = RuR
⊤
u = Id, det(Ru) =

1,Ru ∈ R
d×d, ∀u ∈ [d−1], t ∈ R

d} of constraints is a smooth

Riemannian product manifold over which the optimization

algorithms are well studied [50].

We solve the sub-optimization problem for optimal (R, t)
on a manifold which we discuss in Section III-B. We observe

that the optimization of Equation (5) for P is a standard linear

assignment problem for which we formulate an integer linear

program which we discuss in Section III-C.

B. Optimizing reflection transformation (R, t)

In this step, we fix the correspondences matrix P and

find the optimal reflection transformation (R, t) by taking

advantages from the differential structure of the set M. We

shall now briefly introduce the differential geometry of the set

M.

Differential geometry of the set M of constraints. In

order to introduce the essential differential geometry of the

set M, we follow [50]. The elements of the set M are of the

form (R, t) ≃ (R1, . . . ,Rd−1, t). All the orthogonal matrices

(each for rotation along a single axis) with determinant +1

form a Lie group, also known as special orthogonal group,

which is a smooth Riemannian manifold. The Euclidean space

R
d is also a smooth Riemannian manifold. Therefore the set

M is a product manifold, SO(2, d) × . . . × SO(2, d) × R
d,

the product of d − 1 special orthogonal groups SO(2, d)
and an Euclidean space R

d. Each rotation matrix performs

rotation about a single axis. Therefore, all the possible rotation

matrices about a particular axis form a SO(2) embedded in

the Euclidean space R
d×d. We denote this group as SO(2, d).

The tangent space T(R,t)M at the point (R, t) ∈M is

{(RΩ, t) : Ω⊤
u = −Ωu,Ωu ∈ R

d×d, ∀u ∈ [d− 1], t ∈ R
d}.
(6)

Here, RΩ = (R1Ω1, . . . ,Rd−1Ωd−1). The Riemannian

metric 〈., .〉(R,t) on the product manifold M, which gives

the intrinsic distance between two elements (RΩ,ηt) and

5

(RΩ′,η′
t) of the tangent space at the point (R, t) of the

manifold M, is defined in Equation (7).

〈(RΩ,ηt), (RΩ′,η′
t)〉(R,t) = η⊤

t η
′
t +

d−1
∑

u=1

trace(Ω⊤
uΩ

′
u).

(7)

Let f̄ : V × R
d → R be a scalar function. Let the function

f = f̄ |M be the restriction of the function f̄ on the product

manifoldM. Since the product manifoldM is a submanifold

of the Riemannian manifold V×R
d, the Riemannian gradient

of the function f at the point (R, t) is obtained by project-

ing the Riemannian gradient of the function f̄ at the point

(R, t) ∈ V×Rd on the tangent space at the point (R, t) ∈M.

Therefore, the Riemannian gradient of the function f at the

point (R, t) is defined in Equation (8).

grad f(R, t) = (PR(∇Rf̄),Pt(∇tf̄)) ∈ T(R,t)M. (8)

Since the tangent space at a point in an Euclidean space is

again an Euclidean space, the second component is given by

Pt(∇tf̄) = ∇tf̄ . The first component is defined as

PR(∇Rf̄) = (PR1
(∇R1

f̄), . . . ,PRd−1
(∇Rd−1

f̄)).

Here,

PRj
(∇Rj

f̄) = Rjskew(R⊤
j ∇Rj

f̄),

where skew(A) = 0.5(A − A⊤). We define ξRj
(Rj) =

PRj
(∇Rj

f̄). The Riemannian Hessian of the function f at

a point (R, t) is a linear map, Hess f : T(R,t)M→ T(R,t)M
and is defined as shown in Equation (9).

Hess f(R, t)[ηR,ηt] = (PR(DξR(R)[ηR]),Pt(Dξt(t)[ηt])).
(9)

Here, the first component PR(DξR(R)[ηR]) is equal to

(PR1
(DξR1

(R1)[ηR1
]), . . . ,PRd−1

(DξRd−1
(Rd−1)[ηRd−1

])),

where ηRj
= RjΩj . The term

Dξx(x)[ηx] = lim
t→0

ξ(x+ tηx)− ξ(x)

t

is the classical derivative of the vector field ξ(x) in the

direction ηx.

The Riemannian trust region method. Our goal is to

minimize the function f(R, t) over the product manifold

M. There exists a generalization of the popular optimization

methods on the Riemannian manifolds. Since our problem

is locally convex in each variable Rj , which we prove in

Theorem 6, we employ the Riemannian trust region approach

[51]. It requires the Riemannian gradient and the Riemannian

Hessian operator for the function f , which we find as follows.

Let f̄ be a function from the set V×R
d to R and defined as

f̄(R, t) = ‖TET⊤(X − te⊤) + te⊤ − XP‖2F. Its classical

gradients with respect to both the variables are given in the

Equations (10) and (11). The detailed derivation is given in

the Appendices §A1 and §A2.

∇tf̄ = 2
(

Id −TET⊤
)

(2e⊤et−Xe−XPe). (10)

∇Rj
f̄ = −2

(

j−1
∏

u=1

Ru)
⊤A
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤
. (11)

Here,

A = (XP− te⊤)(X− te⊤)⊤ + (X− te⊤)(XP− te⊤)⊤

which satisfies A⊤ = A. Now let the function f = f̄ |M be

the restriction of the function f̄ on the set M. We obtain the

Riemannian gradient of the function f at a point (R, t) by

projecting the Riemannian gradient of the function f̄ over the

tangent space T(R,t) at the point (R, t). Since the manifold

V × R
d is an Euclidean space, the Riemannian gradient of

the function f̄ is equal to its classical gradient. Therefore,

we apply the definition given in Equation (8) in order to find

the Riemannian gradient gradf(R, t) of the function f which

we denote as (ξR1
(R1), . . . , ξRd−1

(Rd−1), ξt) and define in

Equations (12) and (13). The detailed derivation is given in

the Appendices §A3 and §A4.

ξt(t) = 2
(

Id −TET⊤
)

(2e⊤et−Xe−XPe), (12)

ξRj
(Rj) = −Rj

(

j
∏

u=1

Ru

)⊤
A
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤

+Rj

(

d−1
∏

u=j+1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤
A⊤
(

j
∏

u=1

Ru

)

. (13)

We determine the Riemannian Hessian of the function f us-

ing the definition given in Equation (9). In order to determine

the jth component HessRj
(f(R, t))[RjΩj] of the Riemannian

Hessian, which is equal to PRj
(DξRj

(Rj)[RjΩj]), we first

find the classical derivative DξRj
(Rj)[RjΩj] of the Rieman-

nian gradient ξRj
(Rj) in the direction RjΩj and then apply

the projection operator PRj
. Therefore, the jth component

HessRj
(f(R, t))[RjΩj] of the Riemannian Hessian is equal

to

1

2
Rj([B1, [R

⊤
j B2Rj ,Ωj]] + [[Ωj ,B1],R

⊤
j B2Rj]). (14)

The detailed derivation is given in the Appendix §A5. Here

[., .] is the Lie bracket and defined as [U,V] = UV −VU

for any two matrices U and V,

B1 =
(

d−1
∏

u=j+1

Ru)E
(

d−1
∏

u=j+1

Ru)
⊤,

and

B2 =
(

j−1
∏

u=1

Ru

)⊤
A
(

j−1
∏

u=1

Ru

)

.

In a similar way, we determine the component,

Pt(Dξt(t)[ηt]), of the Riemannian Hessian which is

shown in Equation (15).

Hesst(f(R, t))[ηt] = 4n
(

Id −TET⊤
)

ηt. (15)

The detailed derivation is given in the Appendix §A6.

Now, we apply the Riemannian-trust-region method using the

Riemannian gradient and Hessian defined in Equations (12),

(13), (14), and (15) in order to obtain the optimal solution. We

use the manopt toolbox in order to implement the optimization

problem given in Equation (5) for a fixed P [52].

6

Determining the reflection symmetry hyperplane π.

In order to determine the reflection hyperplane π, we use

Theorem 2 which states that the normal vector of π lies in

the null space of the matrix Id+
(
∏d−1

u=1 Ru

)

E
(
∏d−1

u=1 Ru

)⊤

and the optimal translation t lies on the hyperplane.

C. Optimizing Correspondences P

After obtaining the current estimate of the reflection trans-

formation (R, t), we improve the correspondences matrix P

by solving the problem given in Equation (5) while fixing

(R, t). We show that this sub-problem is equivalent to a linear

assignment problem, where an assignment is a pair (i, i′) of

reflection symmetry points.

Claim 1: The optimization problem given in Equation (5)

is a linear assignment problem in P, for a fixed (R, t).

Proof: Let us consider the cost function in Equation (5) and

let Xm = TET⊤(X− te⊤) + te⊤. We have

‖Xm −XP‖2F = trace((Xm −XP)⊤(Xm −XP))

= trace(X⊤
mXm − 2X⊤

mXP+X⊤XPP⊤).

Since, the first and the third terms (using the fact that the

permutation matrices are orthogonal) are not the functions

of P, the problem of finding the point of minimum of the

function ‖Xm −XP‖2F is identical to the problem of finding

the point of maximum of the function trace(X⊤
mXP). Using

the identity trace(A⊤B) = vec(A)⊤vec(B), we have that

trace(X⊤
mXP) = vec(X⊤Xm)

⊤
vec(P), where the operator

vec vectorizes a matrix by stacking all the columns succes-

sively in a column vector.

Therefore, for a fixed reflection transformation, the problem

defined in Equation (5) is equivalent to the problem defined

in Equation (16).

max
P∈{0,1}n×n

trace(X⊤
mXP) = vec(X⊤

mX)⊤vec(P)

subject to Pe ≤ e, P⊤e ≤ e, (16)

which is a standard linear assignment problem.�

Claim 2: The problem defined in Equation (16) is an integer

linear program.

Proof: Let v1 be a vector of size n2 × 1 with the first n

coordinates equal to one and the last n(n − 1) coordinates

equal to zero. Let e1 be a vector of size n × 1 with all the

coordinates equal to zero except the first coordinate which is

equal to one. Let v2 =
[

e⊤1 e⊤1 . . . e⊤1
]⊤

be a vector of

size n2 × 1. Now let us construct the matrices A1 and A2,

each of size n× n2, such that the ith row of the matrix A1 is

equal to the row vector cs(v⊤
1 , n(i − 1)) and the ith row of

the matrix A2 is equal to the row vector cs(v⊤
2 , i− 1). Here

cs(v⊤, i) is a row vector obtained by circularly shifting any

row vector v⊤ right by i coordinates.

Now, it is trivial to verify that the constraint P⊤e ≤ e

is equivalent to A1vec(P) ≤ e and the constraint Pe ≤ e

is equivalent to A2vec(P) ≤ e. Therefore, the problem

defined in Equation (16) is equivalent to the problem defined

in Equation (17).

max
a∈{0,1}n2×1

vec(X⊤
mX)⊤a

subject to
[

A⊤
1 A⊤

2

]⊤
a ≤

[

e⊤ e⊤
]⊤

(17)

which is an integer linear program with a = vec(P).�
Solving the ILP. Since ILP is an NP-complete problem,

there may not exist a polynomial time algorithm to find the

optimal solution. We relax this ILP to a linear program by

converting the constraint a ∈ {0, 1}n
2×1 into a ∈ [0, 1]n

2×1.

Now, the above ILP becomes a linear program. We first solve

this LP using the Karmarkar’s algorithm in [53] which takes

O(n3.5) time. The solution a⋆ =
[

a⋆1 a⋆2 . . . a⋆
n2

]⊤
of

this LP belongs to [0, 1]n
2×1 which is a continuous solution.

However, our final solution af =
[

a
f
1 a

f
2 . . . a

f

n2

]⊤
of

the proposed ILP should be a discrete solution. We follow the

rounding approach, as explained in ([54], ch. 11). The i-th

element a
f
i of the final solution is equal to 1, if a⋆i ≥ 0.5

and equal to 0, if a⋆i < 0.5. This solution af may not be the

optimal solution because according to [54], vec(X⊤
mX)⊤af ≥

1
2 × vec(X⊤

mX)⊤aOPT . Here, aOPT is the optimal solution

of the above ILP.

D. Convergence Analysis

We derive the essential results in order to prove that the

alternating optimization framework converges.

Theorem 3: The cost function f(R, t,P) is convex in the

variable t.

Proof: In order to prove this, we prove that the Rieman-

nian Hessian of the function f with respect to the vari-

able t is a positive semi-definite (PSD) matrix. Let ηt =
[

η1 η2 . . . ηd
]⊤
∈ R

d. Then using the definition of

Riemannian metric, we have

〈ηt,Hesst(f)[ηt]〉t = η⊤
t Hesst(f)[ηt].

Now, using the Riemannian Hessian Hesst(f)[ηt] defined in

Equation (15), we have that

η⊤
t Hesst(f)[ηt] = η⊤

t ηt −
(

T⊤ηt

)⊤
E
(

T⊤ηt

)

Now let q = T⊤ηt. Then, we obtain

η⊤
t Hesst(f)[ηt] = η⊤

t ηt − q⊤Eq

= ‖ηt‖
2
2 −

d−1
∑

u=1

qu + q2d = ‖ηt‖
2
2 − ‖q‖

2
2 + 2q2d.

Now, we know that TT⊤ = I. Hence, we have

‖q‖22 = q⊤q = η⊤
t TT⊤ηt = η⊤

t ηt = ‖ηt‖
2
2.

Therefore,

‖ηt‖
2
2 − ‖q‖

2
2 = 0⇒ η⊤

t Hesst(f)[ηt] = 2q2d ≥ 0.�

Theorem 4: At the critical point, the matrix T⋆ =
∏d

u=1 R
⋆
u contains the eigenvectors of the matrix A as

columns.

7

Proof: At the critical point, the Riemannian gradient given

in Equation (13) vanishes. Therefore, ξRj
(Rj) = 0d×d.

Now pre-multiplying it with
(
∏j

u=1 Ru

)

R⊤
j and then post-

multiplying with
(
∏d−1

u=j+1 Ru

)

, we achieve

AT⋆E = T⋆E(T⋆)⊤AT⋆ ⇒ (T⋆)⊤AT⋆E = E(T⋆)⊤AT⋆.

Now, let Q =

[

Q1 q2

q⊤
3 q4

]

= (T⋆)⊤AT⋆ be a matrix. Then,

we have QE = EQ. Therefore,
[

Q1 q2

q⊤
3 q4

] [

Id−1 0d−1

0⊤
d−1 −1

]

=

[

Id−1 0d−1

0⊤
d−1 −1

] [

Q1 q2

q⊤
3 q4

]

⇒ q2 = 0d−1,q3 = 0d−1,Q1Id−1 = Id−1Q1.

Since, Id−1 is a diagonal matrix and the equality Q1Id−1 =
Id−1Q1 holds true, it is easy to prove that Q1 is a diagonal

matrix. Therefore, the matrix Q is also diagonal. The spectral

theorem states that every real symmetric matrix has eigen-

value decomposition with real eigenvalues and orthogonal

eigenvectors. Here, we have observed that the matrix A is

a real symmetric matrix and satisfies Q = (T⋆)⊤AT⋆, where

the matrix Q is a diagonal matrix and the matrix T⋆ is an

orthogonal matrix. Therefore, the matrix T⋆ is the matrix

containing the eigenvectors of the matrix A. In Theorem 5, we

prove that the order of stacking eigenvectors of A as columns

of T⋆ affects the convexity of the problem. �

Theorem 5: The cost function f(R, t,P) is locally convex

in each rotation matrix Rj .

Proof: In order to show the local convexity in Rj , we

have to show that the value 〈RjΩj ,H[RjΩj]〉Rj
≥ 0 in

the neighborhood of the optimal angle θ⋆j . Here, H[RjΩj] =
HessRj

(f(R, t))[RjΩj]. By using the Riemannian metric

defined in Equation (7), we have

〈RjΩj ,H[RjΩj]〉Rj
= trace(Ω⊤

j R
⊤
j H[RjΩj]).

By using Equation (14), the matrix R⊤
j H[RjΩj] is equal to

0.5[B1, [R
⊤
j B2Rj ,Ωj]] + 0.5[[Ωj ,B1],R

⊤
j B2Rj].

In the Appendix §A7, we show that the

trace(Ω⊤
j R

⊤
j H[RjΩj]) is equal to

4× trace(R⊤
j B2Rj(ΩjB1Ωj −ΩjΩjB1)). (18)

We visualize this term for d = 2. For d = 2, the matrix

Ω =

[

0 −θ
θ 0

]

, E =

[

1 0
0 −1

]

, and let A =

[

a1 a2
a2 a3

]

and

R =

[

cos θ − sin θ
sin θ cos θ

]

. We have that

〈RΩ,H[RΩ]〉
R
= 8a2θ

2 sin(2θ) + 4θ2 cos(2θ)(a1 − a3).

In Fig. 3, we plot the value
〈RΩ,H[RΩ]〉

R

θ2 against the initial-

ization angle θ for six reflection symmetry patterns having

different orientations for symmetry axis. We observe that the

PSD values are positive in the proximity of the optimal angles.

Therefore, it is locally convex. We further observe that this

quantity is maximum at the optimal angle. We also observe

that, if θ is the symmetry axis orientation, then the PSD value

becomes positive in the proximity of θ and θ + 180◦. The

reason for the second range is that, if θ is the slope of a line,

then θ + 180◦ is also the slope of the same line.

In Theorem 4, we claimed that the order in which the

eigenvectors are stacked as columns of the matrix R affects

the local convexity. We prove it as follows. At the critical

point, we have that R⊤AR = diag(d1, d2). We note that

ΩjB1Ωj − ΩjΩjB1 = E for d = 2. Now from Equation

(18), we achieve

〈RΩ,H[RΩ]〉
R
= d1 − d2 ⇒ d1 ≥ d2.

Therefore, the first column of the matrix R⋆ should be the

eigenvector corresponding to the maximum eigenvalue and the

second column of the matrix R⋆ should be the eigenvector

corresponding to the minimum eigenvalue of the matrix A.�

0 20 40 60 80 100 180 200 220 240 260 280

Initialization Angle (in degree)

-1.5

-1

-0.5

0

0.5

1

1.5

10 8

Fig. 3. Illustration of the local convexity. The value
〈RΩ,H[RΩ]〉

R

θ2
against

the initialization angle θ for 6 reflection symmetry patterns having different
orientations, {0◦, 20◦, 40◦, 60◦, 80◦, 100◦} for symmetry axis. The PSD
value (divided by θ2) is positive in the proximity of the optimal angle.

Theorem 6: The proposed alternating framework con-

verges to the global minimum if the initialization of the

rotation matrices R1, . . ., Rd−1 are within the proximity of the

optimal rotation matrices and initialization of the translation

t is any random vector.

Proof: We observe that the proposed alternation framework

is basically the block coordinate descent (BCD) method,

where (R1, . . . ,Rd−1, t) and P are two blocks of coor-

dinates. According to [55], the BCD method converges if

the cost function is convex in each block of coordinates.

Here, we have seen that the cost function is convex in the

coordinates t (Theorem 3), convex in the coordinates P

on the relaxed domain [0, 1]n×n, and locally convex in the

coordinates (R1, . . . ,Rd−1) (Theorem 5). This implies that if

the initialization of (R1, . . . ,Rd−1) is within the proximity of

the optimal solution, then the alternating framework converges

to the global minimum. We experimentally show this theorem

for the case d = 2. We use the dataset for d = 2 with

σ = 0 as mentioned in §V-B. In Fig. 4, we plot the error

(averaged over all optimal angles) at the convergence point

against the initialization angles for the case d = 2 (we shift

the error vectors for different optimal angles so that the optimal

angle is always 90◦). We observe that the variance becomes

zero for initialization angle θ0 ∈ (90◦ − 12◦, 90◦ + 9◦) and

θ0 ∈ (270◦−12◦, 270◦+9◦). The reason for the second range

8

is that, if θ is the slope of a line, then θ + 180◦ is also the

slope of the same line.�

Initialization angle(in degree)

0 78 99 258 279 360

C
o

s
t

v
a

lu
e

×10 10

-5

-4

-3

-2

-1

0

1

2

3

4

5

Fig. 4. We plot the error at the convergence point against the initialization
angles for the case d = 2 (we shift the error vectors for different optimal
angles so that the optimal angle is always 90◦). We observe that the variance
in the error becomes zeros for initialization angle θ0 ∈ (90◦−12◦, 90◦+9◦)
and θ0 ∈ (270◦ − 12◦, 270◦ + 9◦).

In summary, in order to obtain the optimal (R⋆, t⋆,P⋆), we

follow Algorithm 1.

Algorithm 1

1: Input: Set of points S = {xi}
n
i=1.

2: Initialize angles θ0 and translation t.

3: Solve the ILP defined in Equation (17) for P.

4: For this P, solve for (R, t) using the Riemannian-trust-

region method using the Riemannian gradient and Hessian

defined in Equations (12), (13), (14), and (15).

5: Keep iterating steps 3 and 4 till convergence.

6: Output: The optimal R⋆
1,R

⋆
2, . . . ,R

⋆
d−1 and t⋆.

Initialization Strategy: In the Theorem 5, we have shown

that f(R, t,P) is locally convex in rotation matrix R. There-

fore, Algorithm 1 converges to the global minimum if we

initialize the rotation matrix in the proximity of the global

solution. Hence, we approximate the initial R by finding

a small set of candidate pairs of mirror symmetric points.

We discuss the proposed approach for finding a small set of

candidate pairs of mirror symmetric points as follows.

Let us consider the input set S = {xi}
n
i=1. We propose a

randomized approach to find a small set of candidate pairs

of mirror symmetric points. We select two points, xp and

xq , uniformly at random from the set S . Let xp′ and xq′ be

their actual mirror images, respectively. We then construct two

sets, P = {(xp,xi)}
n
i=1,i 6=p,q and Q = {(xq,xi)}

n
i=1,i 6=q,p of

pairs of points. Given the sets P and Q, our goal is to find

the pairs (xp,xp′) and (xq,xq′). It is trivial to observe that

(xp,xp′) ∈ P and (xq,xq′) ∈ Q. We note that each pair

of points define its own symmetry plane, the one which is

perpendicular to the line segment joining the two points and

passing through the mid-point of this line segment. Now, if

the pairs (xp,xp′) and (xq,xq′) are true pairs then both the

reflection planes, defined by these two pairs, should be the

same. For each pair (xp,xi) ∈ P , we keep sampling a pair

(xq,xj) ∈ Q uniformly at random without replacement until

the reflection planes defined by these two pairs are the same.

We determine whether the two reflection planes, defined by

these two pairs, πpi : η
⊤
pix−cpi = 0 and πqj : η

⊤
qjx−cqj = 0

are the same if the conditions, cos−1(η⊤
piηqj) ≤ ǫθ and

min{dq,dj}
max{dq,dj}

≥ 1 − ǫd are true. Here, ηpi =
xp−xi

‖xp−xi‖2

is the

normal vector to the plane πpi, cpi = η⊤
pi(

xp+xi

2) is the

distance of the origin from the plane πpi, ηqj =
xq−xj

‖xq−xj‖2

is

the normal vector to the plane πqj , cqj = η⊤
qj(

xq+xj

2) is the

distance of the origin from the plane πqj , dq = |η⊤
pixq − cpi|,

and dj = |η
⊤
pixj − cpi|.

We repeat the above procedure ten times. With this, we

get a set of 20 (2 for each run) candidate pairs of mirror

symmetric points. Since we consider the case where only

a single symmetric object is present in the input set, we

consider the median plane of the 20 planes defined by the

above computed 20 candidate pairs. Now, we use the normal

η to this median plane for initialization. We also initialize the

initial translation vector t as the median of the mid-points of

the line segment joining the points of the candidate pairs of

the mirror symmetric points.

First, we subtract each data point of the point cloud from

the estimated t of the point cloud. This ensures that the

reflection symmetry plane passes through the origin. Now,

we know the unit normal to the reflection symmetry plane.

Therefore, we use the Householder transform to reflect each

point which is xi′ = (I − 2ηη⊤)xi. Therefore, we have

the matrix X containing the original point cloud and the

matrix Xm containing the reflected point cloud about the

estimated reflection symmetry plane. Now, using X and Xm,

we solve the linear assignment problem, defined in Equation

(17) to find the matrix P. Now, we use these approximate

correspondences to estimate the reflection symmetry plane as

step 4 of Algorithm 1.

IV. TIME COMPLEXITY

There are two main steps involved in our algorithm. The first

one is to solve for reflection symmetry transformation matrices

R1,R2, . . . ,Rd−1, t using the Riemannian trust region [51].

The second step is to find the pairs of reflective symmetric

points using an integer linear program. The time complexity

of Riemannian trust region method is O(nd2). Since solving

integer linear program is an NP -complete problem, we first

relax it to a linear program (as discussed at the end of §III-C).

The time complexity of solving a linear program is polynomial

in the number of points in the point cloud. We use the

Karmarkar’s algorithm in [53] which has the time complexity

of O(n3.5). Therefore, the overall complexity of our approach

is polynomial in the number of points in the point cloud which

is equal to O(nd2) + O(n3.5) ≈ O(n3.5), since d << n. It

takes around 38.4 seconds (d = 3) to find the symmetry plane

and all the pairs of mirror symmetric points in a point cloud

with 500 points using MATLAB on a Linux machine with

i7-7500U CPU @ 2.70GHz, and 16GB RAM.

9

0 0.2 0.4 0.6 0.8 1

Recall

0

0.2

0.4

0.6

0.8

1
P

re
c
is

io
n

0
.1

0.1 0.1

0
.2

0.2
0.2

0.3

0.3

0
.4

0.4

0
.5

0.5

0
.6

0.6

0.7

0.8

0.9

Cicconet et al. F=0.67

Speciale et al. F=0.73

Ecins et al. F=0.83

Proposed F=0.86

Fig. 5. Recall vs Precision curves for methods Cicconet et al. [13], Ecins et

al. [12], Speciale et al. [11], and the proposed approach on the dataset given
[56]. We show the maximum F-score for each method in the legends and
corresponding points on the precision vs. recall curve using the same colored
point.

V. EVALUATION AND RESULTS

A. Evaluation of Reflection Symmetry Plane

In order to evaluate the performance of reflection symmetry

plane detection, we compare the performance of our approach

with the performance of the methods in [12], [13], and [11].

We compare the detected plane of reflection symmetry to that

of these methods on the dataset in [56] with F-score as the

evaluation metric proposed in [56]. The dataset given in [56]

contains models of 1354 3D real world objects in which the

ground-truth plane of reflection symmetry is provided for all

the objects.

Speciale et al. proposed a Hough transform voting based

approach [11]. Ecins et al. proposed an ICP based approach

[12]. First, they initialize the reflection symmetry plane and

then iteratively update the reflection symmetry plane using

the Levenberg-Marquardt solver till convergence. They have

further used the normals at each point to reject outliers points.

Therefore, they need oriented point clouds, i.e., normal at each

point be given. Cicconet et al. first reflected the original point

cloud about an arbitrary reflection plane and then used the ICP

algorithm to align the original point cloud and the reflected

point cloud [13]. Then, they determine the reflection symmetry

plane.

In order to evaluate the accuracy of detecting reflection

symmetry plane for each method, we find the precision and

recall rates and the F -score. According to [56], the precision

and the recall rates are defined as P = TP
TP+FP

, R = TP
TP+FN

,

respectively. The F -Score is defined as F = 2RP
R+P

. According

to [56], TP is equal to the number of correctly estimated

reflection symmetry planes, FP is equal to the number of

Perturbation Radius

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
e
rf

o
rm

a
n
c
e
 M

e
tr

ic
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

em proposed approach

ed proposed approach

em ground-truth

ed ground-truth

(a)

Perturbation Radius

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

P
e
rf

o
rm

a
n
c
e
 M

e
tr

ic
s

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

em proposed approach

ed proposed approach

em ground-truth

ed ground-truth

(b)

Fig. 6. The values ed and em vs the perturbation radius σ2. (a) d=2, and (b)
d=3. We observe that the performance measure quantities ed and em remain
close to that of the ground truth quantities.

incorrectly estimated reflection symmetry planes, and FN

is equal to the number of ground-truth reflection symmetry

planes which are not detected. According to [56], a detected

plane of reflective symmetry is declared to be correct or

incorrect as follows. Let xe
1, xe

2, and xe
3 be three points on the

detected plane of reflection symmetry. Let x
g
1, x

g
2, and x

g
3 be

three points on the ground truth plane of reflection symmetry

of the underlying symmetric object. These three points on

the plane of reflection symmetry planes are any three points

from the four points of intersection of the plane of reflection

symmetry with the bounding box of the underlying reflective

symmetric object. Now, according to [56], the detected plane

of reflection symmetry is declared correct if the angle between

the normal of the detected plane of reflection symmetry, which

is defined as ηe = (xe
1−x

e
2)×(x

e
1−x

e
3), and the normal of the

ground truth plane of reflection symmetry, which is defined as

ηg = (xg
1−x

g
2)×(x

g
1−x

g
3), is less than a predefined threshold,

i.e., cos−1

(

|η⊤

e ηg|

‖ηe‖2‖ηg‖2

)

< tθ. Furthermore, according to

[56], the distance between the center of the detected plane

of reflection symmetry, which defined as ce =
x

e
1
+x

e
2

2 , from

the ground truth plane of reflection symmetry is less than

a predefined threshold, i.e.,
|c⊤

e ηg−η
⊤

g x
g

1
|

‖ηg‖2

< td. In order to

find the precision vs. recall curve, we change the threshold

for angle as tθ ∈ [0, 45◦] and the threshold for distance as

10

td ∈ [0, 2s]. Here, s = min{‖xe
1 − xe

2‖2, ‖x
e
1 − xe

3‖2, ‖x
g
1 −

x
g
2‖2, ‖x

g
1 − x

g
3‖2}. In Fig. 5, we plot the recall vs. precision

curves for the methods in [13], [12], [11], and the proposed

approach on the dataset given in [56]. We show the maximum

F -score for each method in the legends. The maximum F -

score for [12] is equal to 0.83, for [13] is equal to 0.67, for

[11] is equal to 0.73, and for the proposed approach is equal

to 0.86.

B. Robustness to Perturbations

In order to measure the qualitative performance of the

proposed approach, we investigate the following two errors

which are functions of the perturbation radius σ2:

ed =
1

n

n
∑

i=1

| 〈ẑi, v̂〉 | and em =
1

n

n
∑

i=1

| v̂⊤xm
i + w0 | .

The error ed represents how well the vectors, along the line

segments joining the estimated reflection symmetry points,

align with the normal to the hyperplane π at convergence.

The error em represents how well the mid-points of line

segments joining reflection symmetry points lie on the es-

timated hyperplane π. Here, ẑi = xi−xi′

‖xi−xi′‖2

, v̂ is the unit

normal to the hyperplane π, xm
i = xi+xi′

2 , and w0 is the

distance of the hyperplane π from the origin. In Fig. 6, we

show the errors ed and em against the perturbation radius

σ2. We observe that the values em and ed for the proposed

approach are close to that of the ground-truth reflection

symmetry even as the value of σ2 increases. We construct

the following dataset to perform the above experiment. Let

{x1,x2, . . . ,xn
2
} be the randomly chosen n

2 points. Given

the reflection transformations {R1, . . . ,Rd−1, t}, we reflect

these points using the Definition 1 in order to get the fi-

nal symmetric set S = {x1,x2, . . . ,xn
2
,x′

1,x
′
2, . . . ,x

′
n
2

}.
Then, we perturb each point with random noise as x ←
x + N (0d, diag(σ2, σ2, . . . , σ2)), ∀x ∈ S . Here, σ2 is the

perturbation radius and the perturbation is different for each

point. For the case d = 2, we create sets containing reflection

symmetry patterns with n ∈ {50, 100, 150, 200, 250, 300} with

0 ≤ x, y ≤ 1. For each n, we take 19 different symmetry

axis orientations in the range from −90◦ to 90◦ with step

size of 10◦. We choose σ2 ∈ {0, 0.01, 0.02, . . . , 0.1} to get

11 different perturbations. In total, we have 1254 sets for the

evaluation. In Fig. 7, we show an example point set from this

dataset. For the case d = 3, we create reflective symmetric sets

with n ∈ {50, 100, 150, 200, 250, 300} with 0 ≤ x, y ≤ 1.

For each n, we take 16 different symmetry plane orienta-

tions by considering θ1 ∈ {−30
◦, 0◦, 35◦, 80◦} and θ2 ∈

{−30◦, 0◦, 35◦, 80◦}. We choose σ2 ∈ {0, 0.01, . . . , 0.1}. In

total, we obtain 1056 point sets.

C. Evaluation in Higher Dimensional Data

Datasets. Since datasets for higher dimensions (d > 3)

are not available with ground-truth reflection symmetry, we

synthetically create datasets as follows. For the case d = 6
and d = 8, we create mirror symmetric point clouds using

Definition 1, with n ∈ {50, 100, 150, 200, 250, 300} and

Fig. 7. An example point set for d = 2.

0 ≤ x, y ≤ 1. For each n, we take 20 random symmetry

plane normals. We choose σ2 ∈ {0, 0.02, 0.04, . . . , 0.1} to

get 6 different perturbations. In total, we have 720 sets for

evaluation. For all these point clouds, we have the ground-

truth correspondences between the symmetric points and the

normals to the ground-truth symmetry planes.

Evaluation of correspondences. In order to evaluate the

performance, we measure the correspondence rate which is

the number of correct correspondences out of the estimated

correspondences. Let (i, i′e) be the estimated correspondence

and let (i, i′g) be the ground-truth correspondence. Then, we

decide if the estimated correspondence (i, i′e) is correct based

on a distance threshold τd. If the distance ‖xi′e
−xi′g

‖2 between

the points xi′e
and xi′g

is less than the distance threshold τd,

then the correspondence (i, i′e) is correct and otherwise, incor-

rect. For a given threshold τd, we count the correspondences

(i, i′e) for which the condition ‖xi′e
− xi′g

‖2 < τd holds true.

In Fig. 8, we show the correspondence rate vs the distance

threshold curves for the different perturbation radius σ2 ∈
{0, 0.02, 0.04, . . . , 0.1} and for d = 6 and d = 8. We vary

the distance threshold as τd ∈ {0, 0.01, 0.02, . . . , 0.34}. We

observe that the correspondence rate increases as the distance

threshold increases and the correspondence rate decreases as

the perturbation radius increases for both d = 6 and d = 8.

Evaluation of symmetry plane. To evaluate the performance

of the reflection plane detection in higher dimensional point

clouds (d > 3), instead of finding d − 1 points on the

estimated hyperplane (since finding d − 1 points could be

difficult), we measure the distance between their normals.

Without loss of generality, we prepare the dataset such that

the reflection symmetry plane passes through the origin. Now,

let ηg and ηe be the unit normals to the ground-truth and the

estimated reflection symmetry planes, respectively. Then, we

declare the estimated reflection symmetry plane to be correct,

if cos−1(|(ηg)⊤ηe|) < τθ. We vary the angle threshold τθ
in the range [0◦, 5◦] with a step size of 0.01◦. In Fig. 9, we

show the precision rate vs the angle threshold τθ curves for

different perturbation radius σ2 ∈ {0, 0.02, 0.04, . . . , 0.1} and

for d = 6 and d = 8. We observe that the precision rate

11

increases as the angle threshold increases and decreases as

the perturbation radius increases for both d = 6 and d = 8.

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

C
o

rr
e

s
p

o
n

d
e

n
c
e

 r
a

te

2
=0

2
=0.02

2
=0.04

2
=0.06

2
=0.08

2
=0.1

d = 6

0 0.1 0.2 0.3
0

0.2

0.4

0.6

0.8

1

C
o

rr
e

s
p

o
n

d
e

n
c
e

 r
a

te

2
=0

2
=0.02

2
=0.04

2
=0.06

2
=0.08

2
=0.1

d = 8
Fig. 8. Correspondence rate vs distance threshold curves for d = 6 and
d = 8.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n
 r

a
te

2
=0

2
=0.02

2
=0.04

2
=0.06

2
=0.08

2
=0.1

d = 6

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

P
re

c
is

io
n
 r

a
te

2
=0

2
=0.02

2
=0.04

2
=0.06

2
=0.08

2
=0.1

d = 8
Fig. 9. Precision rate vs angle threshold curves for d = 6 and d = 8.

Fig. 10. Detected reflection symmetry on two real 3D scans of buildings
from the dataset [56].

D. Results

In Fig. 10, we show the detected reflection symmetry for

two real 3D scans of buildings from the dataset [56]. In Fig.

11, we present the results for the case d = 3. The point cloud

in Fig. 10(a) contains 912045 points and the point cloud in

Fig. 10(b) contains 767474 points. Since the computational

complexity is O(n3.5) + O(nd2), the computation time and

space requirement (storing the matrices A1 and A2) are very

high. Therefore, in order to compute the reflection symmetry

in these scans, we randomly sample around 600 points. In

both cases, we show the reflection symmetry plane by the blue

color and estimated pairs of reflective symmetric points by the

red colored line segment joining them. In order to make our

algorithm robust to the part removal, we simply put the extra

constraint e⊤Pe ≤ 2k in ILP defined in Equation (17) which

limits the number of pairs to at most k. For d = 2, we detect

reflection symmetry in the set of corner points in a real image.

In order to determine the symmetry axis, we use Theorem

2. For d = 3, we use existing standard 3D models dataset

[57]. In order to calculate the symmetry axis in an image

using the proposed approach, we first find the set of corner

points [58]. This set may contain the corners not lying on the

symmetric object. Therefore, we apply the proposed approach

with RANSAC [59]. We compare the proposed results with

the results of two descriptor based methods [39] and [46].

12

1

0.8

0.6

0.4

0.2

00.4

0.3

0.2

0.1

0

0.3

0.2

0.1

0 1

0.8

0.6

0.4

0.2

00.6

0.5

0.4

0.3

0.2

0.1

1

0.5

0

0
0

0

0.2

0.1

10.4
0.8

0.6 0.6

0.40.8

0.2

0.2
1 0

0.3

0

0

0.2

0.4

0.6 1

0.8

0.60.8
0.4

0.2
1

0

0.5

1

0.8

0.6

0.4

0.2

01

0.8

0.6

0.4

0.2

0

0.3

0

0.1

0.2

1

0.8

0.6

0.4

0.2

0
1

0.8

0.6

0.4

0.2

0

0.15

0.1

0.05

0

0.2

0.25

Fig. 11. Results of symmetry detection in the 3D object models from the dataset [57]. In the first and third columns we show the point set on the original
surface. And in the second and fourth columns we show the detected reflection symmetry. The correspondences are shown by joining the mirror symmetric
points by the black colored lines. The Reflection symmetry plane is shown in light brown color. The mid-points of the mirror symmetric points are show in
blue color. Here, we show the surface for visualization purpose only.

We evaluate on real and synthetic images containing single

symmetric object from the dataset [60]. In TABLE I, we

present the precision and the recall rates. We observe that

for synthetic images, the precision rate is very high for the

proposed approach because most of the corner points lie on

the symmetric object. Whereas, in real images, the set of

corner points contains many outlier corners which leads to

the degraded performance. Precision rates for the proposed

approach are higher than that for the methods [39] and [46].

The recall rates are better than that of the method [39] and

comparable to that of the method [46]. This leads to the

conclusion that symmetry detection can be performed even

when the feature descriptors are not available. In Fig. 12,

we show the results on the datasets [61], [62], and [60]. The

last two images show the failure cases from the datasets [60].

The reason could be that the pixels which are responsible for

symmetry detection such as pixels on eyes and ear tips in the

second image are not detected in the corner point detection

step.

TABLE I
PRECISION AND RECALL RATES FOR THE METHODS [39], [46], AND THE

PROPOSED APPROACH ON THE DATASET [60].

Precision Recall
[39] [46] Ours [39] [46] Ours

Real Images 0.21 0.30 0.42 0.75 0.95 0.93
Synthetic Images 0.28 0.29 0.73 0.93 1.00 0.96

Influence of Different Initializations. We first create

the following dataset of 3D point clouds. We create 5000

point clouds {Si}
5000
i=1 with known ground-truth symmetries

as discussed in §5.2. We keep 500 points in each point

cloud. Without loss of generality, we choose the reflection

symmetry plane such that it makes 90◦ angle with x-axis

and y-axis, i.e., the x-y plane. For each point cloud, we

initialize the variable t0i = mean(Si) and (θ0x, θ
0
y) on every

point of the grid domain {−90◦,−80◦, . . . ,+80◦,+90◦} ×
{−90◦,−80◦, . . . ,+80◦,+90◦}. We then run our approach

and measure the error at the convergence ei(θ
0
x, θ

0
y) =

∥

∥R⋆
xR

⋆
yE(R⋆

xR
⋆
y)

⊤(Xi − t⋆e⊤) + t⋆e⊤ −XiP
⋆
∥

∥

2

F
for each

initialization (θ0x, θ
0
y). Then, we find the average error

e(θ0x, θ
0
y) = 1

5000

∑5000
i=1 ei(θ

0
x, θ

0
y). Here, Rx and Ry are

defined as follows.

Rx =





1 0 0
0 cos θ0x − sin θ0x
0 sin θ0x cos θ0x



 ,Ry =





cos θ0y 0 − sin θ0y
0 1 0

sin θ0y 0 cos θ0y



 .

In Fig. 13, we show the average error e(θ0x, θ
0
y). We ob-

serve that if the initialization (θ0x, θ
0
y) is far away from the

global optimum (0◦, 0◦), then the error is very high. As the

distance between the initialization angles (θ0x, θ
0
y) and the

global optimum angles (0◦, 0◦) decrease, the error e(θ0x, θ
0
y)

remains approximately constant and suddenly drops to near

zero after a particular distance. This indicates that, if the

initialization angles are within a particular distance from the

global optimum, then our approach always find the global

optimum solution. This empirical result concurs with the result

we already proved in Theorems 5 and 6.

VI. CONCLUSION

In this work, we have developed a theory for establishing

the correspondences between the mirror symmetric points in

R
d. We, further, determine the reflection symmetry trans-

formation in a volumetric set of points in R
d containing a

perturbed reflection symmetry pattern using optimization on

Riemannian manifold. We have shown that our method is

robust to a significant amount of perturbation and achieves

100% accuracy for no perturbation. We have further shown

the significance of this work by detecting reflection symmetry

in real images and comparing with state-of-the-art methods.

The proposed approach is particularly suitable for detecting

reflection symmetry of objects in applications where obtaining

a robust local descriptor is highly challenging. The linear

assignment problem is a time consuming step which restricts

us to apply it on the large point sets. However, a proper

sampling method can be employed to reduce the size of the

point set without losing the symmetry present in the point

set. We believe that the fundamental theory and algorithm

developed in this work will pave the way for researchers to

exploit them for scenarios where estimating feature descriptors

is a challenging task.

13

Fig. 12. Results of symmetry detection in real images from the dataset [62], [61], [60]. We show the set S using green points, the reflection symmetry axis
by a red line, and the correspondences between the mirror symmetric points by the blue lines.

0

-90 90

0.01

-20 200 0
20 -20

0.02

90 -90

0.03

(a)

Fig. 13. Average error e(θ0x, θ
0
y) vs the initialization angles (θ0x, θ

0
y).

Our approach detects single reflection symmetry plane of an

object. Consider the third row of Fig. 11 in which there are

multiple reflection symmetry planes present. In such cases, the

detected reflection symmetry plane will be the one to which the

initialized plane is the closest. For example, in the third row of

Fig. 11, we have shown both the reflection symmetry planes

detected depending on different initializations. This may not be

a proper way of detecting multiple symmetries, though this is

an interesting direction. We would like to extend our approach

for the detection of multiple reflection symmetry planes of a

symmetric object exhibiting multiple symmetries or a point

cloud containing more than one symmetric objects.

VII. APPENDIX

A1. Euclidean gradient of the function f̄ with respect to the

variable t (Equation (10))

We write the cost function as follows.

f̄(R, t,P) = ‖TET⊤(X− te⊤)− (XP− te⊤)‖2F
= ‖(TET⊤X−XP) + (Id −TET⊤)te⊤‖2F.

We note that

(Id −TET⊤)⊤(Id −TET⊤) = 2(Id −TET⊤).

Therefore, we have (the terms which are not functions of t

are not shown)

f̄(R, t,P) = trace(2et⊤(Id −TET⊤)te⊤

+2(X⊤TET⊤ −P⊤X⊤)(Id −TET⊤)te⊤).

Now taking the derivative with respect to t we have,

∇tf̄ = 2(Id −TET⊤)te⊤e+ 2(e⊤et⊤(Id −TET⊤))⊤

+2(e⊤(X⊤TET⊤ −P⊤X⊤)(Id −TET⊤))⊤

= 4(Id −TET⊤)te⊤e+ 2(Id −TET⊤)(TET⊤X−XP)e

Here we have that (Id−TET⊤)TET⊤ = −(Id−TET⊤).
Therefore,

∇tf̄ = 4(Id −TET⊤)te⊤e− 2(Id −TET⊤)(X+XP)e

= 2(Id −TET⊤)(2te⊤e−Xe−XPe).

A2. Euclidean gradient of the function f̄ with respect to the

variable Rj (Equation (11))

Let us consider the cost function as defined in equation (5)

(in main manuscript):

f̄(R, t,P) = ‖
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤
(X−te⊤)+te⊤−XP‖2F.

Now, let us define T =
d−1
∏

u=1
Ru, U = X − te⊤ and V =

XP− te⊤.

Then the cost function becomes.

f̄(R, t,P) = ‖TET⊤U−V‖2F
= trace((TET⊤U−V)⊤(TET⊤U−V))

= trace((U⊤TET⊤ −V⊤)(TET⊤U−V))

= trace(U⊤TET⊤TET⊤U− 2U⊤TET⊤V

+V⊤V)

14

Here we note that TET⊤TET⊤ = Id, therefore

f̄(R, t,P) = trace(U⊤U− 2U⊤TET⊤V +V⊤V).

Now taking the classical gradient of f̄ with respect to Rj we

have. (We follow [63] for the necessary properties.)

∂f̄

∂Rj

= −2
∂

∂Rj

trace(U⊤
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤
V)

= −2
∂

∂Rj

trace(U⊤
(

j−1
∏

u=1

Ru

)

Rj

(

d−1
∏

u=j+1

Ru

)

E

(

d−1
∏

j+1

Ru

)⊤
R⊤

j (

j−1
∏

u=1

Ru)
⊤V)

= −2
((

d−1
∏

j+1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤
VU⊤

(

j−1
∏

u=1

Ru

))⊤

−2
(

j−1
∏

u=1

Ru

)⊤
VU⊤

(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤

= −2
(

j−1
∏

u=1

Ru

)⊤
UV⊤

(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

j+1

Ru

)⊤

−2
(

j−1
∏

u=1

Ru

)⊤
VU⊤

(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤

= −2
(

j−1
∏

u=1

Ru

)⊤
(UV⊤ +VU⊤)

(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤

= −2
(

j−1
∏

u=1

Ru

)⊤
A
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤

Where

A = (VU⊤ +UV⊤)

= (XP− te⊤)(X− te⊤)⊤ + (X− te⊤)(XP− te⊤)⊤.

A3. The Riemannian gradient of the function f with respect

to the variable t (Equation (12))

Using the definition, as defined in main paper, of Rieman-

nian gradient ξt(t) of the function f with respect to the

variable t we have

ξt(t) = Pt(∇tf̄) = ∇tf̄

= 2
(

Id −
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤)
(2nt−Xe−XPe).

A4. The Riemannian gradient of the function f with respect

to the variable Rj (Equation (13))

Using the definition, as defined in main paper, of Rieman-

nian gradient ξRj
(Rj) of the function f with respect to the

variable Rj we have

ξRj
(Rj) = PRj

(∇Rj
f̄) = Rjskew(R⊤

j ∇Rj
f̄).

ξRj
(Rj) = Rjskew(R⊤

j ∇Rj
f̄).

R⊤
j ∇Rj

f̄ = −2
(

j
∏

u=1

Ru

)⊤
A
(

d−1
∏

u=1

Ru)E
(

d−1
∏

u=j+1

Ru

)⊤

∇Rj
f̄⊤Rj = −2

(

d−1
∏

u=j+1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤
A⊤
(

j
∏

u=1

Ru

)

.

Therefore,

ξRj
(Rj) = Rj

R⊤
j ∇Rj

f̄ −∇Rj
f̄⊤Rj

2

= −Rj

(

j
∏

u=1

Ru

)⊤
A
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤

+Rj

(

d−1
∏

u=j+1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤
A⊤
(

j
∏

u=1

Ru

)

. (19)

A5. The Riemannian Hessian of the function f with respect to

Rj (Equation (14))

Next, we determine the Riemannian Hessian of the

function f . In order to determine the jth component

HessRj
(f(R, t))[RjΩj] = PRj

(DξRj
(Rj)[RjΩj]), of the

Riemannian Hessian, we first find the classical derivative

DξRj
(Rj)[RjΩj] of the Riemannian gradient ξRj

(Rj) in

the direction RjΩj and then we apply the projection operator

PRj
. Now using Equation 19 we have

ξRj
(Rj) = −Rj

(

j
∏

u=1

Ru

)⊤
A
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤

+Rj

(

d−1
∏

u=j+1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤
A⊤
(

j
∏

u=1

Ru

)

= −RjR
⊤
j

(

j−1
∏

u=1

Ru

)⊤
A
(

j−1
∏

u=1

Ru

)

Rj

(

d−1
∏

j+1

Ru

)

E
(

d−1
∏

j+1

Ru

)⊤

+Rj

(

d−1
∏

u=j+1

Ru

)

E
(

d−1
∏

u=j+1

Ru

)⊤
R⊤

j

(

j−1
∏

u=1

Ru

)⊤
A⊤
(

j−1
∏

u=1

Ru

)

Rj

= −RjR
⊤
j B2RjB1 +RjB1R

⊤
j B2Rj .

Here,

B1 =
(

d−1
∏

u=j+1

Ru)E
(

d−1
∏

u=j+1

Ru)
⊤,

B2 =
(

j−1
∏

u=1

Ru

)⊤
A⊤
(

j−1
∏

u=1

Ru

)

.

15

Now

DξRj
(Rj)[RjΩj] =

d

dt
ξRj

(Rj + tRjΩj) |t=0

=
d

dt
(−(Rj+tRjΩj)(Rj+tRjΩj)

⊤B2(Rj+tRjΩj)B1) |t=0

+
d

dt
((Rj+tRjΩj)B1(Rj+tRjΩj)

⊤B2(Rj+tRjΩj)) |t=0 .

The first term is equal to

−RjR
⊤
j B2RjΩjB1.

The second term is equal to

RjB1R
⊤
j B2RjΩj−RjB1ΩjR

⊤
j B2Rj+RjΩjB1R

⊤
j B2Rj .

Therefore,

DξRj
(Rj)[RjΩj] = −RjR

⊤
j B2RjΩjB1+(RjB1R

⊤
j B2RjΩj

−RjB1ΩjR
⊤
j B2Rj+RjΩjB1R

⊤
j B2Rj)R

⊤
j DξRj

(Rj)[RjΩj]

= −R⊤
j RjR

⊤
j B2RjΩjB1 +R⊤

j (RjB1R
⊤
j B2RjΩj

−RjB1ΩjR
⊤
j B2Rj +RjΩjB1R

⊤
j B2Rj)

= −R⊤
j B2RjΩjB1 + (B1R

⊤
j B2RjΩj

−B1ΩjR
⊤
j B2Rj+ΩjB1R

⊤
j B2Rj)(DξRj

(Rj)[RjΩj])
⊤Rj

= B⊤
1 ΩjR

⊤
j B

⊤
2 RjR

⊤
j Rj + (−ΩjR

⊤
j B

⊤
2 RjB

⊤
1 R

⊤
j

+R⊤
j B

⊤
2 RjΩjB

⊤
1 R

⊤
j −R⊤

j B
⊤
2 RjB

⊤
1 ΩjR

⊤
j)Rj

= B⊤
1 ΩjR

⊤
j B

⊤
2 Rj + (−ΩjR

⊤
j B

⊤
2 RjB

⊤
1

+R⊤
j B

⊤
2 RjΩjB

⊤
1 −R⊤

j B
⊤
2 RjB

⊤
1 Ωj)

R⊤
j DξRj

(Rj)[RjΩj]− (DξRj
(Rj)[RjΩj])

⊤Rj

= −R⊤
j B2RjΩjB1 +B1R

⊤
j B2RjΩj −B1ΩjR

⊤
j B2Rj

+ΩjB1R
⊤
j B2Rj −B⊤

1 ΩjR
⊤
j B

⊤
2 Rj +ΩjR

⊤
j B

⊤
2 RjB

⊤
1

−R⊤
j B

⊤
2 RjΩjB

⊤
1 +R⊤

j B
⊤
2 RjB

⊤
1 Ωj

= B1[R
⊤
j B

⊤
2 Rj ,Ωj]− [R⊤

j B
⊤
2 Rj ,Ωj]B1+

[Ωj ,B1]R
⊤
j B2Rj −R⊤

j B
⊤
2 Rj [Ωj ,B1]

= [B1, [R
⊤
j B2Rj ,Ωj]] + [[Ωj ,B1],R

⊤
j B2Rj].

Here [., .] is the Lie bracket and defined as [U,V] = UV −
VU for any two matrices U and V.

HessRj
(f(R, t))[RjΩj] = PRj

(DξRj
(Rj)[RjΩj])

= Rjskew(R⊤
j DξRj

(Rj)[RjΩj])

=
1

2
Rj(R

⊤
j DξRj

(Rj)[RjΩj]− (DξRj
(Rj)[RjΩj])

⊤Rj)

=
1

2
Rj([B1, [R

⊤
j B2Rj ,Ωj]] + [[Ωj ,B1],R

⊤
j B2Rj]).

A6. The Riemannian Hessian of the function f with respect to

t (Equation (15))

In a similar way, we determine the second component,

Pt(Dξt(t)[ηt]), of the Riemannian Hessian. Since R
d is a

vector space we have Pt(Dξt(t)[ηt]) = Dξt(t)[ηt]

Dξt(t)[ηt] =
d

dq
ξt(t+ qηt) |q=0

= 4n
(

Id −
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤)
ηt.

Therefore

Hesst(f(R, t))[ηt] = 4n
(

Id −
(

d−1
∏

u=1

Ru

)

E
(

d−1
∏

u=1

Ru

)⊤)
ηt.

(20)

A7. Steps of Theorem 5

Showing the fact

trace(Ω⊤
j R

⊤
j H[RjΩj]) = 4trace(R⊤

j B2RjΩj(B1Ωj−ΩjB1)).

Now

trace(Ω⊤
j R

⊤
j H[RjΩj]) = trace(−Ω⊤

j R
⊤
j B2RjΩjB1

+Ω⊤
j B1R

⊤
j B2RjΩj−Ω

⊤
j B1ΩjR

⊤
j B2Rj+Ω⊤

j ΩjB1R
⊤
j B2Rj

−Ω⊤
j B

⊤
1 ΩjR

⊤
j B

⊤
2 Rj +Ω⊤

j ΩjR
⊤
j B

⊤
2 RjB

⊤
1

−Ω⊤
j R

⊤
j B

⊤
2 RjΩjB

⊤
1 +Ω⊤

j R
⊤
j B

⊤
2 RjB

⊤
1 Ωj)

= trace(ΩjR
⊤
j B2RjΩjB1 −ΩjB1R

⊤
j B2RjΩj

+ΩjB1ΩjR
⊤
j B2Rj −ΩjΩjB1R

⊤
j B2Rj

+ΩjB1ΩjR
⊤
j B2Rj −ΩjΩjR

⊤
j B2RjB1

+ΩjR
⊤
j B2RjΩjB1 −ΩjR

⊤
j B2RjB1Ωj)

= trace(4R⊤
j B2RjΩjB1Ωj − 2R⊤

j B2RjΩjΩjB1

−2R⊤
j B2RjB1ΩjΩj)

Since,

trace(R⊤
j B2RjB1ΩjΩj) = trace((B1ΩjΩj)

⊤R⊤
j B2Rj)

= trace(ΩjΩjB1R
⊤
j B2Rj)

= trace(R⊤
j B2RjΩjΩjB1),

we have

trace(Ω⊤
j R

⊤
j H[RjΩj]) = trace(4R⊤

j B2RjΩjB1Ωj

−4R⊤
j B2RjΩjΩjB1)

= 4 trace(R⊤
j B2Rj(ΩjB1Ωj −ΩjΩjB1)).

16

REFERENCES

[1] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International journal of computer vision, vol. 60, no. 2, pp. 91–110,
2004.

[2] N. J. Mitra, M. Pauly, M. Wand, and D. Ceylan, “Symmetry in 3d
geometry: Extraction and applications,” in Computer Graphics Forum,
vol. 32, no. 6. Wiley Online Library, 2013, pp. 1–23.

[3] A. Berner, M. Bokeloh, M. Wand, A. Schilling, and H.-P. Seidel, “A
graph-based approach to symmetry detection.” in Volume Graphics,
vol. 40, 2008, pp. 1–8.

[4] N. J. Mitra, L. J. Guibas, and M. Pauly, “Partial and approximate
symmetry detection for 3d geometry,” in ACM Transactions on Graphics

(TOG), vol. 25, no. 3. ACM, 2006, pp. 560–568.

[5] M. Ovsjanikov, J. Sun, and L. Guibas, “Global intrinsic symmetries of
shapes,” in Computer graphics forum, vol. 27, no. 5. Wiley Online
Library, 2008, pp. 1341–1348.

[6] Y. Lipman, X. Chen, I. Daubechies, and T. Funkhouser, “Symmetry
factored embedding and distance,” in ACM Transactions on Graphics

(TOG), vol. 29, no. 4. ACM, 2010, p. 103.

[7] K. Xu, H. Zhang, W. Jiang, R. Dyer, Z. Cheng, L. Liu, and B. Chen,
“Multi-scale partial intrinsic symmetry detection,” ACM Transactions on

Graphics (TOG), vol. 31, no. 6, p. 181, 2012.

[8] Y. Liu, H. Hel-Or, and C. S. Kaplan, Computational symmetry in

computer vision and computer graphics. Foundations and Trends in
Computer Vision and Computer Graphics, Now publishers Inc, 2010.

[9] H. Zabrodsky, S. Peleg, and D. Avnir, “Symmetry as a continuous fea-
ture,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 17, no. 12, pp. 1154–1166, 1995.

[10] B. Combès, R. Hennessy, J. Waddington, N. Roberts, and S. Prima,
“Automatic symmetry plane estimation of bilateral objects in point
clouds,” in IEEE CVPR. IEEE, 2008, pp. 1–8.

[11] P. Speciale, M. R. Oswald, A. Cohen, and M. Pollefeys, “A symmetry
prior for convex variational 3d reconstruction,” in ECCV. Springer,
2016, pp. 313–328.

[12] A. Ecins, C. Fermuller, and Y. Aloimonos, “Detecting reflectional
symmetries in 3d data through symmetrical fitting,” in IEEE ICCV

Workshop on Detecting Symmetry in the Wild, Venice, vol. 7, 2017,
p. 8.

[13] M. Cicconet, D. G. C. Hildebrand, and H. Elliott, “Finding mirror
symmetry via registration and optimal symmetric pairwise assignment
of curves,” in IEEE ICCV Workshops, Oct 2017.

[14] B. Li, H. Johan, Y. Ye, and Y. Lu, “Efficient 3d reflection symmetry
detection: A view-based approach,” Graphical Models, vol. 83, pp. 2–
14, 2016.

[15] I. Sipiran, R. Gregor, and T. Schreck, “Approximate symmetry detection
in partial 3d meshes,” in Computer Graphics Forum, vol. 33, no. 7.
Wiley Online Library, 2014, pp. 131–140.

[16] A. Martinet, C. Soler, N. Holzschuch, and F. X. Sillion, “Accurate
detection of symmetries in 3d shapes,” ACM Transactions on Graphics

(TOG), vol. 25, no. 2, pp. 439–464, 2006.

[17] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Symme-
tries of non-rigid shapes.” in ICCV. IEEE, 2007.

[18] A. Cohen, C. Zach, S. N. Sinha, and M. Pollefeys, “Discovering and
exploiting 3d symmetries in structure from motion,” in IEEE CVPR.
IEEE, 2012, pp. 1514–1521.

[19] M. Bokeloh, A. Berner, M. Wand, H.-P. Seidel, and A. Schilling,
“Symmetry detection using feature lines,” in Computer Graphics Forum,
vol. 28, no. 2. Wiley Online Library, 2009, pp. 697–706.

[20] R. Lasowski, A. Tevs, H.-P. Seidel, and M. Wand, “A probabilistic
framework for partial intrinsic symmetries in geometric data,” in IEEE

ICCV. IEEE, 2009, pp. 963–970.

[21] N. J. Mitra, L. J. Guibas, and M. Pauly, “Symmetrization,” ACM

Transactions on Graphics (TOG), vol. 26, no. 3, p. 63, 2007.

[22] M. Pauly, N. J. Mitra, J. Wallner, H. Pottmann, and L. J. Guibas,
“Discovering structural regularity in 3d geometry,” in ACM Transactions

on Graphics (TOG), vol. 27, no. 3. ACM, 2008, p. 43.

[23] D. M. Thomas and V. Natarajan, “Multiscale symmetry detection in
scalar fields by clustering contours,” IEEE transactions on visualization

and computer graphics, vol. 20, no. 12, pp. 2427–2436, 2014.

[24] M. Kazhdan, B. Chazelle, D. Dobkin, A. Finkelstein, and T. Funkhouser,
“A reflective symmetry descriptor,” ECCV, pp. 777–778, 2002.

[25] H. Liu, J. Xia, J. Chen, and J. Wang, “Detection of hierarchical intrinsic
symmetry structure in 3d models,” Computers & Graphics, 2017.

[26] Z. Shi, P. Alliez, M. Desbrun, H. Bao, and J. Huang, “Symmetry and
orbit detection via lie-algebra voting,” in Computer Graphics Forum,
vol. 35, no. 5. Wiley Online Library, 2016, pp. 217–227.

[27] H. Wang and H. Huang, “Group representation of global intrinsic
symmetries,” in Computer Graphics Forum, vol. 36, no. 7. Wiley
Online Library, 2017, pp. 51–61.

[28] V. G. Kim, Y. Lipman, X. Chen, and T. Funkhouser, “Möbius transfor-
mations for global intrinsic symmetry analysis,” in Computer Graphics

Forum, vol. 29, no. 5. Wiley Online Library, 2010, pp. 1689–1700.
[29] N. J. Mitra, A. Bronstein, and M. Bronstein, “Intrinsic regularity

detection in 3d geometry,” in ECCV. Springer, 2010, pp. 398–410.
[30] J. Podolak, P. Shilane, A. Golovinskiy, S. Rusinkiewicz, and

T. Funkhouser, “A planar-reflective symmetry transform for 3d shapes,”
ACM Transactions on Graphics (TOG), vol. 25, no. 3, pp. 549–559,
2006.

[31] D. Raviv, A. M. Bronstein, M. M. Bronstein, and R. Kimmel, “Full
and partial symmetries of non-rigid shapes,” International Journal of

Computer Vision, vol. 89, no. 1, pp. 18–39, 2010.
[32] S. Thrun and B. Wegbreit, “Shape from symmetry,” in IEEE ICCV,

vol. 2. IEEE, 2005, pp. 1824–1831.
[33] K. Xu, H. Zhang, A. Tagliasacchi, L. Liu, G. Li, M. Meng, and

Y. Xiong, “Partial intrinsic reflectional symmetry of 3d shapes,” in ACM

Transactions on Graphics (TOG), vol. 28, no. 5. ACM, 2009, p. 138.
[34] C. Sun and J. Sherrah, “3d symmetry detection using the extended

gaussian image,” IEEE Transactions on Pattern Analysis and Machine

Intelligence, vol. 19, no. 2, pp. 164–168, 1997.
[35] W. Jiang, K. Xu, Z.-Q. Cheng, and H. Zhang, “Skeleton-based intrinsic

symmetry detection on point clouds,” Graphical Models, vol. 75, no. 4,
pp. 177–188, 2013.

[36] M. Lukáč, D. Sýkora, K. Sunkavalli, E. Shechtman, O. Jamriška, N. Carr,
and T. Pajdla, “Nautilus: Recovering regional symmetry transformations
for image editing,” ACM Transactions on Graphics, vol. 36, no. 4, 2017.

[37] A. Levinshtein, C. Sminchisescu, and S. Dickinson, “Multiscale sym-
metric part detection and grouping,” International journal of computer

vision, vol. 104, no. 2, pp. 117–134, 2013.
[38] T. Sie Ho Lee, S. Fidler, and S. Dickinson, “Detecting curved symmetric

parts using a deformable disc model,” in ICCV, 2013, pp. 1753–1760.
[39] G. Loy and J.-O. Eklundh, “Detecting symmetry and symmetric con-

stellations of features,” in ECCV. Springer, 2006, pp. 508–521.
[40] C. L. Teo, C. Fermuller, and Y. Aloimonos, “Detection and segmentation

of 2d curved reflection symmetric structures,” in IEEE ICCV, 2015, pp.
1644–1652.

[41] D. C. Hauagge and N. Snavely, “Image matching using local symmetry
features,” in IEEE CVPR. IEEE, 2012, pp. 206–213.

[42] Z. Wang, Z. Tang, and X. Zhang, “Reflection symmetry detection using
locally affine invariant edge correspondence,” IEEE Transactions on

Image Processing, vol. 24, no. 4, pp. 1297–1301, 2015.
[43] V. Patraucean, R. Grompone von Gioi, and M. Ovsjanikov, “Detection

of mirror-symmetric image patches,” in IEEE CVPR Workshops, 2013,
pp. 211–216.

[44] S. Tsogkas and I. Kokkinos, “Learning-based symmetry detection in
natural images,” in ECCV. Springer, 2012, pp. 41–54.

[45] M. Chertok and Y. Keller, “Spectral symmetry analysis,” IEEE Transac-

tions on Pattern Analysis and Machine Intelligence, vol. 32, no. 7, pp.
1227–1238, 2010.

[46] I. R. Atadjanov and S. Lee, “Reflection symmetry detection via appear-
ance of structure descriptor,” in ECCV. Springer, 2016, pp. 3–18.

[47] K. Köser, C. Zach, and M. Pollefeys, “Dense 3d reconstruction of
symmetric scenes from a single image,” in Joint Pattern Recognition

Symposium. Springer, 2011, pp. 266–275.
[48] P. J. Besl and N. D. McKay, “Method for registration of 3-d shapes,” in

Sensor Fusion IV: Control Paradigms and Data Structures, vol. 1611.
International Society for Optics and Photonics, 1992, pp. 586–607.

[49] S. Rusinkiewicz and M. Levoy, “Efficient variants of the icp algorithm,”
in 3-D Digital Imaging and Modeling, 2001. Proceedings. Third Inter-

national Conference on. IEEE, 2001, pp. 145–152.
[50] P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization algorithms on

matrix manifolds. Princeton University Press, 2009.
[51] P.-A. Absil, C. G. Baker, and K. A. Gallivan, “Trust-region methods

on riemannian manifolds,” Foundations of Computational Mathematics,
vol. 7, no. 3, pp. 303–330, 2007.

[52] N. Boumal, B. Mishra, P.-A. Absil, and R. Sepulchre, “Manopt, a
Matlab toolbox for optimization on manifolds,” Journal of Machine

Learning Research, vol. 15, pp. 1455–1459, 2014. [Online]. Available:
http://www.manopt.org

[53] N. Karmarkar, “A new polynomial-time algorithm for linear program-
ming,” in Proceedings of the sixteenth annual ACM symposium on

Theory of computing. ACM, 1984, pp. 302–311.
[54] J. Kleinberg and E. Tardos, Algorithm design. Pearson Education India,

2006.

17

[55] P. Tseng, “Convergence of a block coordinate descent method for
nondifferentiable minimization,” Journal of optimization theory and

applications, vol. 109, no. 3, pp. 475–494, 2001.
[56] C. Funk, S. Lee, M. R. Oswald, S. Tsogkas, W. Shen, A. Cohen,

S. Dickinson, and Y. Liu, “2017 iccv challenge: Detecting symmetry
in the wild,” in IEEE ICCV Workshops, Oct 2017.

[57] P. Shilane, P. Min, M. Kazhdan, and T. Funkhouser, “The princeton
shape benchmark,” in Shape modeling applications, 2004. Proceedings.
IEEE, 2004, pp. 167–178.

[58] C. Harris and M. Stephens, “A combined corner and edge detector.” in
Alvey vision conference, vol. 15, no. 50. Manchester, UK, 1988, pp.
10–5244.

[59] M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm
for model fitting with applications to image analysis and automated
cartography,” Communications of the ACM, vol. 24, no. 6, pp. 381–395,
1981.

[60] I. Rauschert, J. Liu, and Y. Liu, “Symmetry detection competition:
A summary of how the competition is carried out,” in IEEE CVPR

Workshop Symmetry Detection Real World Images, 2011, pp. 1–66.
[61] M. Cicconet, V. Birodkar, M. Lund, M. Werman, and D. Geiger,

“A convolutional approach to reflection symmetry,” arXiv preprint

arXiv:1609.05257, 2016.
[62] J. Liu, G. Slota, G. Zheng, Z. Wu, M. Park, S. Lee, I. Rauschert, and

Y. Liu, “Symmetry detection from realworld images competition 2013:
Summary and results,” in IEEE CVPR Workshops, 2013, pp. 200–205.

[63] K. B. Petersen, M. S. Pedersen et al., “The matrix cookbook,” Technical

University of Denmark, vol. 7, p. 15, 2008.

	I Introduction
	II Related Works
	III Proposed Approach
	III-A Problem Formulation
	III-B Optimizing reflection transformation (R,t)
	III-C Optimizing Correspondences P
	III-D Convergence Analysis

	IV Time Complexity
	V Evaluation and Results
	V-A Evaluation of Reflection Symmetry Plane
	V-B Robustness to Perturbations
	V-C Evaluation in Higher Dimensional Data
	V-D Results

	VI Conclusion
	VII Appendix
	References

