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In quantum key distribution, one conservatively assumes that the eavesdropper Eve is restricted
only by physical laws, whereas the legitimate parties, namely the sender Alice and receiver Bob, are
subject to realistic constraints, such as noise due to environment-induced decoherence. In practice,
Eve too may be bound by the limits imposed by noise, which can give rise to the possibility that
decoherence works to the advantage of the legitimate parties. A particular scenario of this type is one
where Eve can’t replace the noisy communication channel with an ideal one, but her eavesdropping
channel itself remains noiseless. Here, we point out such a situation, where the security of the
Ping-Pong protocol (modified to a key distribution scheme) against a noise-restricted adversary
improves under a non-unital noisy channel, but deteriorates under unital channels. This highlights
the surprising fact that, contrary to the conventional expectation, noise can be helpful to quantum
information processing. Furthermore, we point out that the measurement outcome data in the
context of the non-unital channel can’t be simulated by classical noise locally added by the legitimate
users.

I. INTRODUCTION

Cryptography helps secure information being commu-
nicated between legitimate users [1, 2] across a quantum
communication channel [3–6], which may be optical, open
space or satellite-based [7, 8]. Since the seminal BB84
quantum key distribution (QKD) proposal [9], the idea
that unconditional security of the distributed key can
be obtained by using quantum resources has been ex-
tensively studied through more detailed security analy-
ses and newer QKD protocols, among them [10–16]. See
Refs. [17] and [18] and references therein.

A variant of QKD is one involving direct communica-
tion avoiding the step of key generation [19]. These pro-
tocols may be classified as QSDC (quantum secure direct
communication) [20–22] and DSQC (deterministic secure
quantum communication) protocols. The difference is
that, unlike DSQC protocols, QSDC protocols don’t re-
quire any additional classical communication, except for
checking eavesdropping. Other important cryptotasks
under active investigation include quantum coin flipping
[23], quantum money [24], quantum private query [25],
quantum secure computation [26].

Environmental noise is ubiquitous in the real world,
and is generally detrimental to quantum communication
[27–30]. In quantum key distribution, it is conservative
to assume that all of the noise is due to an eavesdropper
Eve, who replaces the noisy (and/or lossy) channel with
an ideal one [31]. Eve is assumed to be as powerful as the
laws of physics would allow. This determines the largest
noise level that can be tolerated.
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In reality, we may expect that Eve, too, to be restricted
by the noise. Alice, Bob and Eve may be assumed to be
aware of this. As the legitimate and eavesdropping chan-
nels are not identical, this scenario of noise-restricted Eve
gives rise to the interesting possibility that noise may be
more disadvantageous for Eve than for Alice and Bob.
Here we shall present a concrete instance of such a situa-
tion. This can be trivially ensured by making the eaves-
dropping channel more noisy than Alice’s and Bob’ com-
munication channel. A more non-trivial scenario is one
where the noisy channel acts directly only on the commu-
nication channel and not on the eavesdropping channel.
On the other hand, Eve is assumed to be unable to re-
place the noisy channel of Alice and Bob with an ideal
one.

Our main result is the demonstration of a quantum key
distribution (QKD) situation where non-unital noise can
be beneficial to the legitimate participants in this sense,
whereas unital noise is detrimental to them. This can po-
tentially form the basis for “trusted noise”, wherein Alice
and Bob add noise prior to classical post-processing to
improve the protocol’s security or performance. Inter-
estingly, such an application of noise for QKD has been
noted earlier. In particular, in an analysis of various
QKD protocols, [32] shows that they can be made more
robust against channel noise by the addition of noise by
Alice or Bob to the measurement data prior to key recon-
ciliation. Refs. [33, 34] discuss adding noise to the signal
to improve noise tolerance in the context of continuous-
variable QKD over Gaussian channels. Interestingly, a
somewhat similar favorable effect of noise on quantum
information processing was noted in [35].

Secure direct communication (SDC) is a stronger form
of secure communication than key distribution wherein
message bits, rather than random key bits, are transmit-
ted from sender Alice to receiver Bob. Since the proposal
of the first quantum SDC protocol, namely the Ping-pong
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protocol [20], a number of other realizations of this theme
have been proposed [36–43]. The Ping-Pong protocol’s
security, as well as its modified versions, have been ex-
tensively studied by various other authors [37, 44–56]. A
comprehensive review of some of the attacks and protec-
tive measures against them are discussed by the authors
of the Ping-pong protocol [57].

The original Ping-pong protocol is based on two
modes: the message mode during which a bit is trans-
mitted deterministically, and control mode, to monitor
eavesdropping. This structure is necessitated by the re-
quirement for the protocol to perform as a scheme for
SDC. Here, however, we will use a simplified version of
the Ping-pong protocol (though it will still be called as
such), which is suitable for key distribution, but in gen-
eral not for SDC. This is done by dropping the con-
trol mode, and instead using a quantum bit error rate
(QBER) analysis (which involves sacrficing some other-
wise secret bits) for detecting eavesdropping.

For our purpose, it will suffice to consider the depo-
larizing and AD (amplitude damping) channels, repre-
sentative of unital channels (those that map the identity
operator to itself) and non-unital channels, respectively.
Furthermore, the noise acts only on the communication
channel and not directly on the eavesdropping channel, so
that Eve is affected only by the interaction of her probes
with the noisy communication channel, rather than noise
acting on her probes directly. In this scenario, the semi-
powerful Eve is able to deploy noiseless probes, but un-
able to replace Alice-Bob’s noisy channel with a noiseless
one.

The remaining work is divided as follows. In Section
II, we briefly review the Ping-Pong protocol reformulated
as a QKD (rather than SDC) scheme, and an attacking
strategy on it [44]. In Section III, we introduce the noise
scenario used in this work. In Sections III A and III B, we
study the performance of the (modified) Ping-Pong pro-
tocol in the presence of the AD and depolarizing chan-
nels, respectively, pointing out the (surprisingly) benefi-
cial aspect of the former. The question of the simulation
of the measurement outcome data under a noisy chan-
nel by the resource of local classical noise applied by the
legitimate users, is considered in the conclusing Section
IV.

II. EAVESDROPPING ON THE PING-PONG

PROTOCOL

First, we briefly describe the (modified) Ping-Pong key
distribution protocol, based on the original secure deter-
ministic communication protocol [20]. In what follows,
we use the notation where |0〉 and |1〉 represent the two
polarization states H and V of a single photon, respec-
tively, whilst |2〉 represents the vacuum state.

1. Bob transmits to Alice one half (the “travel qubit”)
of the Bell state |ψ+〉 = 1√

2
(|01〉+ |10〉).

2. Alice encodes one bit of information by applying
operation I (resp., Pauli σZ), corresponding to the
bit value a = 0 (resp., a = 1).

3. She retransmits the travel qubit back to Bob.

4. The two-qubit state now left with Bob is ideally in
one the Bell states |ψ±〉, which is determined by
Bob by a Bell-state measurement.

5. For a sufficiently large set of the (noisy) shared bits,
Alice announces the encoded bit on some of the
transmissions. The fraction of bits where Alice’s
and Bob’s records differ determines the quantum
bit error rate (QBER). If the QBER is below a
threshold value, they proceed to distill a secret key.
Else, they abort.

Wöjcik proposed an eavesdropping strategy on the
original ping-pong protocol, which is now adapted for
the modified Ping-pong protocol. The basic intuition of
security in the Ping-pong protocol is that the travel qubit
remains always in the maximally mixed state, irrespec-
tive of Alice’s encoding. The subtlety of Wöjcik’s attack
is that by making the probe interact before and after the
encoding, Eve is able to extract some information about
the encoding. A brief description of the attack adapted
to the above protocol is enumerated below.

1. Eve prepares two probes x and y in the state
|2〉x|0〉y, where |2〉 is the vacuum state. Thus, the
combined initial quantum state with Bob and Eve
is |ψinitial〉 = |ψ+〉ht|2〉x|0〉y.

2. In the onward leg, Eve attacks the travel
qubit by applying the operation Qtxy =
SWAPtxCPBStxyHy, with CPBS being the con-
trolled polarization beam splitter operation, given
by:

|020〉
|021〉
|120〉
|121〉











CPBS−→











|002〉
|021〉
|120〉
|112〉

(1)

3. After Alice has encoded her bit on the travel qubit
and she returns it, Eve applies the operation Q−1

txy

on the travel qubit and forwards it to Bob.

Eve then obtains some information about Alice’s en-
coding by measuring her probes. To see how the attack
works, we note that after Bob has received back the at-
tacked travel qubit, the final state of the Alice-Bob-Eve
system is

|ψa〉htxy =
1√
2
(|012a〉+ |1020〉). (2)
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From this, one finds that the only non-vanishing prob-
abilities PAEB are

P000 =
1

2

P100 = P101 = P110 = P111 =
1

8
. (3)

This corresponds to a QBER of
∑

e(p0e1 + p1e0) = 1
4 .

Using these, one may compute the mutual information
between Alice and Bob, IAB ≡ H(A) − H(A|B), where
H(A) and H(A|B) are the classical (Shannon) entropy
associated with probability distribution P (a) and the
conditional probability distribution P (a|b) [58]. This is a
measure of entropic correlation between Alice and Bob.
Similarly, one defines the mutual information between
Alice and Eve, given by IAE ≡ H(A) − H(A|E). From
(3), one then finds that [44]

IAB = IAE =
3

4
log2

4

3
≈ 0.311. (4)

Thus, the attack makes the protocol insecure, since secu-
rity (with one-way communication) requires that IAB >
IAE .

This attack is not symmetric between a = 0 and a =
1, and [44] proposes another, symmetric attack. Ref.
[57] discusses a number of other attacks on the Ping-
pong protocol, showing it to be effectively robust against
them. Thus, while the attack described is not known
to be optimal, it represents a powerful and well-studied
attack, and its performance under decoherence is likely to
carry general implications of a wider nature, in particular
the occurence of the “trusted noise” scenario. Therefore,
our present work is focused on studying this aspect of it.

Furthermore, it is generally difficult to prove the se-
curity of a given QKD protocol against the most gen-
eral (collective) attacks, though, specific protocols can be
proposed where such security can be proven. Under the
circumstances, a reasonable approach is to prove secu-
rity against a non-general, but sufficiently powerful and
sophisticated attack, which is the case here.

III. QUANTUM COMMUNICATION UNDER A

NOISY ENVIRONMENT

The action of noise manifesting as a completely pos-
itive (CP) map on a system’s density operator, can be
given a Kraus representation:

φ(ρ) =
∑

i

AiρA
†
i , (5)

where the A′
is must conform to the completeness con-

straint
∑

iA
†
iAi = I. In this work, we choose the simpli-

fied noise scenario depicted in Figure 1. In the onward
leg, the noise first acts on the travel qubit, followed by
Eve’s attack Q on this qubit, and then by Alice’s encod-
ing operation. In the return leg, this sequence is time-
reversed, so that Eve’s second attack Q−1 is followed by

FIG. 1. Scenario of noise and attack as used in this work: Bob
transmits to Alice one half of a Bell state, on which Alice
encodes her bit by applying either the operation I or σZ ,
before returning it to Bob. The action of noise is idealized as
acting before Eve’s action Q in the onward leg and after her
action Q−1 in the return leg.

the noise, before receipt of the travel qubit and decoding
of the two-qubit state by Bob.

In a noisy channel, suppose bits 0 and 1 correspond to
noisy states ρa=0 and ρa=1. Then, the mutual informa-
tion between the Alice and Bob is upper-bounded by the
Holevo bound:

χ = S

(

ρa=0
ht + ρa=1

ht

2

)

− 1

2

[

S

(

ρa=0
ht

)

+ S

(

ρa=1
ht

)]

, (6)

where S(ρ) ≡ −Tr[ρ log(ρ)] denotes the von Neumann
entropy.

We next consider noisy conditions with Eve’s above
attack on the Ping-Pong QKD protocol, with the travel
qubit subjected to the amplitude damping (AD) [59] and
depolarizing channels.

A. Amplitude-Damping Noise

The Kraus operators for AD channel are [28]:

EA
0 =

[

1 0
0

√
1− p

]

; EA
1 =

[

0
√
p

0 0

]

, (7)

where p is the noise parameter, sometimes called the de-
coherence rate, and 0 ≤ p ≤ 1.

The first attack of [44] (during the onward leg) makes
the channel lossy and involves creating the vacuum state
of the travel photon. This necessitates extending the
qubit noise model (7) to that of a qutrit. There is no
unique way to do this.

We use the extension represented by the following
Kraus operators:

EA
0 =





1 0 0
0

√
1− p 0

0 0 1



 ; EA
1 =





0
√
p 0

0 0 0
0 0 0



 , (8)

which essentially implements the AD noise Eq. (7) on
the polarization Hilbert space and does nothing to the
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FIG. 2. (Color online) Performance of the modified Ping-
pong protocol under AD noise: The bold (blue), dashed (red)
and dotted (green) plots represents IAB , IAE and the Holevo
bound for Alice-Bob. That IAB > IAE for 0 < p ≤ 1 implies
that noise is beneficial to the legitimate users. In the noiseless
limit, the Holevo bound coincides with IAB , implying that the
measurement strategy is optimal.

vacuum state. Here the vacuum state is taken to be the
third dimension, denoted |2〉.

When the photon returns back to Bob, the state of
the system hty for either encoding ’a’ can be shown to
have support of dimensionality 4, spanned by the states
|010〉 , |100〉 , |011〉 and |000〉, with the state of the x par-
ticle being |2〉, as in the noiseless attack case. The final
states with Bob-Eve for the encodings a = 0 and a = 1
are:

ρa=0
hty =

1

2







(1− p)2 1− p 0 0
1− p 1 0 0
0 0 p(2− p) 0
0 0 0 0






;

ρa=1
hty =

1

2







0 0 0 0
0 1 0 1− p
0 0 p(2− p) 0
0 1− p 0 (1− p)2






. (9)

From Eq. (9), we obtain the following joint probabilities
pAEB , in place of Eq. (3):

P000 =
1

8
(2− p)2

P001 =
p2

8

P002 = P003 = P102 = P103 =
1

8
(2− p)p

P110 = P111 =
1

8
(1− p)2

P010 = P011 = P012 = P013 = 0

P100 = P101 =
1

8
, (10)

with all other joint probability terms vanishing. Note
that in the presence of AD noise, Bob will also obtain
outcomes |φ±〉 = 1√

2
(|00〉 ± |11〉) in his Bell state mea-

surement, which corresponds to the outcome symbols 2
and 3 in Eq. (10).

From the above probabilities PAEB , one derives the
mutual information between Alice and Bob and that be-
tween Alice and Eve, to be

I(A : B) =
1

8

[

p

(

p log

(

p2

2p2 − 2p+ 2

)

+ p log

(

8(p− 2)2

(p− 3)p+ 3

)

+ (p− 2) log

(

(p− 2)p+ 2

(p− 1)p+ 1

)

+ (p− 2) log

(

p− 1

(p− 3)p+ 3
+ 1

))

− 2p(p+ 2) log(2)− 4(p− 1) log

(

(p− 2)2

2((p− 3)p+ 3)

)

+ 2 log

(

(p− 2)p+ 2

(p− 1)p+ 1

)

+ 2 log

(

p− 1

(p− 3)p+ 3
+ 1

)

+ 4

]

, (11)

and

I(A : E) =
1

8

(

6 + 2 log

(

1

−p2 + 2p+ 3

)

+ (1− (p− 2)p) log

(

(p− 2)p− 1

(p− 3)(p+ 1)

))

, (12)

respectively. These two quantities are depicted as a func-

tion of noise p in Figure 2. This shows that under the
AD channel, there is a positive key rate κ ≡ IAB − IAE

for finite noise. It is as if the symmetry existing between
Bob and Eve in terms of information gained, is broken
by the noise, to the advantage of Alice and Bob. This is
a surprising result, and implies that Alice and Bob will
find this type of noise beneficial in this eavesdropping
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scenario.

If Alice and Bob are employing the original Ping-pong
strategy and the eavesdropper is known to employ the
above attack, then in the noise range 0 < p < 1, Alice
and Bob know that they can extract a finite secret key,
after suitable privacy amplification.

From Eq. (9) one obtains the reduced density opera-
tors for the particles ht:

ρa=0
ht = 1

2





(1− p)2 1− p 0
1− p 1 0
0 0 p(2− p)



 ;

ρa=1
ht = 1

2





(1− p)2 0 0
0 1 0
0 0 p(2− p)



 . (13)

in the basis {|01〉 , |10〉 , |00〉}.
The maximum information Bob can receive is upper-

bounded by the Holevo quantity (6). To obtain this, we
note that the eigenvalues λ0j , λ

1
j and λ01j for the density

operators ρa=0
ht , ρa=1

ht and their equal average, are:

λ0j =

{

0,−1

2
(p− 2)p,

1

2
((p− 2)p+ 2)

}

λ1j =

{

1

2
,
1

2
(p− 1)2,−1

2
(p− 2)p

}

λ01j =

{

(2− p)

2
p,

1

4

(

(p− 2)p±
√

(p− 2)p(p− 1)2 + 1 + 2
)

}

(14)

The Holevo bound (6) is thus given by:

χAD = h
[

λ01j
]

− 1

2

(

h
[

λ0j
]

+ h
[

λ1j
])

, (15)

where h
[

λαj
]

= −∑2
j=0 λ

α
j log2

(

λαj
)

. The quantity χAD

is plotted in Figure 2.

That the Holevo bound exceeding IAB here suggests
that Bob’s Bell state measurement strategy, although
guaranteeing a positive key rate, is sub-optimal. Note
that it is indeed optimal in the noiseless case.

B. Depolarizing noise

Consider the travel qubit subjected to depolarizing
noise. This noise is characterized by the transformation
ρ −→ p I

2+(1−p)ρ [30, 60], for which the Kraus operators

are:

D0 =
√

1− p

(

1 0
0 1

)

, D1 =

√

p

3

(

0 1
1 0

)

;

D2 =

√

p

3

(

0 −i
i 0

)

, D3 =

√

p

3

(

1 0
0 −1

)

, (16)

where p = (1 − exp−
τt

2 ), τ being the decay factor. Here
we shall use the extension of Eq. (16) given by:

D0 =
√

1− p





1 0 0
0 1 0
0 0 1



 , D1 =

√

p

3





0 1 0
1 0 0
0 0 1



 ;

D2 =

√

p

3





0 −i 0
i 0 0
0 0 1



 , D3 =

√

p

3





1 0 0
0 −1 0
0 0 1



 , (17)

which essentially implements a depolarizing noise on the
polarization Hilbert space and does nothing to the vac-
uum state.
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FIG. 3. (Color online) Performance of the Ping-pong QKD
protocol under depolarizing noise: The bold (black) and
dashed (red) plots represent IAB and IAE with the Holevo
bound for Alice-Bob coinciding with IAB . As a function of
noise parameter p, IAE remains constant at the noiseless value
of 0.311, because Eve’s attack strategy is indifferent to unital
noise. That IAB equals the Holevo bound implies that Bob’s
Bell state measurement in the modified Ping-pong protocol is
already optimal.

When the photon returns back to Bob, as per the sce-
nario of Figure 1, with the noise given by the depolarizing
channel, the state of the system hty for either encod-
ing a can be shown to have support of dimensionality 8,
spanned by the states |jkl〉, with j, k, l ∈ {0, 1}, and the
state of the x particle being |2〉 as in the noiseless attack
case. The final states with Bob-Eve for the encodings
a = 0 and a = 1 are:
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ρ0 =
1

2



























p(4−p)
4 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

0 0 (p−2)2

4 0 (p− 1)2 0 0 0
0 0 0 0 0 0 0 0

0 0 (p− 1)2 0 (p−2)2

4 0 0 0
0 0 0 0 0 0 0 0

0 0 0 0 0 0 p(4−p)
4 0

0 0 0 0 0 0 0 0



























;

ρ1 =
1

2





























p(2−p)
4 0 0 0 0 0 0 0

0 p(2−p)
4 0 0 0 0 0 0

0 0 p2

4 0 0 0 0 0

0 0 0 (p−2)2

4 (p− 1)2 0 0 0

0 0 0 (p− 1)2 (p−2)2

4 0 0 0

0 0 0 0 0 p2

4 0 0

0 0 0 0 0 0 p(2−p)
4 0

0 0 0 0 0 0 0 p(2−p)
4





























. (18)

From Eq. (18), we obtain the following joint probabilities
PAEB , in place of Eq. (3):

P000 =
1

2
+

3p

8
(p− 2)

P001 = P002 = P003 =
p

8
(2− p)

P010 = P011 = P012 = P013 = 0

P100 = P101 = P110 = P111 =
1

8
+

p

16
(p− 2)

P102 = P103 = P112 = P113 =
p

16
(2− p) (19)

with all other joint probability terms vanishing. As with
AD noise, here again Bob will also obtain outcomes
|φ±〉 = 1√

2
(|00〉 ± |11〉) in his Bell state measurement,

which correspond to the outcome symbols 2 and 3 in Eq.
(19).

From the above probabilities PAEB , one finds the mu-
tual information between Alice and Bob to be

IAB(p) =
1

36

[

9 log

(

4

9
p(2p− 3) + 1

)

+ 8p(2p− 3) coth−1

(

9

(3− 4p)2

)

+ 6
(

4p2 − 6p+ 3
)

log

(

3

4
− 9

64p(2p− 3) + 108

)

+ (4p(2p− 3) + 9) log

(

36

16p(2p− 3) + 27
+ 4

)]

.

(20)

On the other hand, it follows from Eq. (19) that

PAE=00 =
1

2
;PAE=01 = 0

PAE=10 = PAE=11 =
1

4
, (21)

i.e., PAE is independent of the noise parameter. Conse-
quently, IAE(p) is just the noiseless value of 1

8 log
(

64
27

)

.
Figure (3) shows that under the depolarizing channel,

there is no positive key rate κ ≡ IAB−IAE for finite noise,
essentially because IAE remains constant, being unaf-
fected by the depolarizing noise ( as explained above),
whereas IAB drops with the noise level. Therefore, this
channel, in contrast to the AD channel, offers no advan-
tage to Alice and Bob in our scenario.

A similar disadvantageous behavior holds for dephas-
ing and other unital noisy channels, which may be un-
derstood generally as follows. In our scenario, the noise
acts before the first attack by Eve (see Figure 1), and
the second instance of noise (in the backward trip of the
particle) acts after Eve’s second attack.

Therefore, the second instance of noise doesn’t affect
IAE (though, in general, it will affect IAB). As to the
onward trip of the particle, the travel qubit, as seen by
Eve, is initially in a maximally mixed state I

2 . Depolariz-
ing noise or any other unital channel CU is characterized
by the property

CU :
I

2
7→ I

2
, (22)

ie., it maps the state I
2 to itself. Thus, this state of the

travel qubit remains unaffected, and hence Eve’s correla-
tion with Alice is indifferent to the noise.

It is worth noting here that if the unital noise acts after
Eve’s first intervention (rather than before, see Figure 1),
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then IAE is not expected to be invariant under the noise,
since Eve’s action can deviate the state of the particle
from I

2 .
From Eq. (18) one obtains the reduced density opera-

tors for the state of particles ht

ρa=0

ht = 1

4









(2− q)q 0 0 0
0 ((q − 2)q + 2) 2(q − 1)2 0
0 2(q − 1)2 (q − 2)q + 2 0
0 0 0 (2− q)q









;

ρa=1

ht = 1

4









(2− q)q 0 0 0
0 (q − 2)q + 2 0 0
0 0 (q − 2)q + 2 0
0 0 0 (2− q)q









.

As with Eq. (14), the maximum information Bob can
receive is upper-bounded by the Holevo quantity (6). To
derive this, we obtain the eigenvalues λ0j , λ

1
j and λ01j for

the density operators ρa=0
ht , ρa=1

ht and their equal average,
which are found to be:

λ0j = 1
4 {(2− p)p, (2− p)p, (2− p)p, 3(p− 2)p+ 4} ,

λ1j = 1
4 {(2− p)p, (2− p)p, (p− 2)p+ 2, (p− 2)p+ 2} ,

λ01j = 1
4 {1, (2− p)p, (2− p)p, 2(p− 2)p+ 3} .

Using this, the Holevo bound χDP under the depolar-
izing channel can be found in a manner similar to Eq.
(15). Interestingly χDP is found to coincide with IAB .
This coincidence suggests that the Bell state measure-
ment strategy by Bob is indeed optimal, unlike in the
case of the AD channel.

IV. CONCLUSION AND DISCUSSIONS

It is generally accepted that noise is detrimental to
quantum information processing, in particular quantum
cryptography. Here we identify, counter to this expecta-
tion, a scenario of “trusted noise”, where noise can play a
helpful role. In quantum key distribution, proofs of un-
conditional security assume that the eavesdropper Eve is
restricted only by physical laws, and that all the noise is
due to her attack. We consider a more realistic scenario,
where Eve too is bound by limits imposed by noise due
to environment-induced decoherence. We show how this
can work to the advantage of legitimate parties, when
noise affects the eavesdropper more than the legitimate
parties. Now, an easy version of this scenario would have
been one, where noise universally affects not just the le-
gitimate parties, but also Eve. Therefore, the nontriv-
ial aspect is that the noise only affects the communica-
tion channel and not the eavesdropping channel directly.
Eve’s limitation is her inability to replace the noisy com-
munication channel between Alice and Bob by an noise-
less one. In the particular situation considered here, the
security of the Ping-Pong protocol (modified to a key dis-
tribution scheme) against a noise-restricted adversary is
shown to improve under a non-unital decoherence, but
to deteriorate under unital decoherence.

In light of [32–34], we may ask whether the AD statis-
tics Eq. (10) can be produced using only local uncor-
related classical noise added by Alice and Bob, starting
from the noiseless case Eq. (3). We now answer the
question in the negative.

Alice’s most general noise can be modelled by a combi-
nation of a conditional probability distribution PA(x|y)
(used with probability α) and a random coin toss ϕA

(used with probability 1 − α), while that for Bob by
a combination of a conditional probability distribution
PB(x|y) (used with probability β) and a random coin
toss ϕB (used with probability 1− β).

Further, let PA(0|0) = g, PA(0|1) = h and PB(0|0) =
a, PB(1|0) = b, PB(2|0) = c, PB(3|0) = 1−a− b− c; and
PB(0|1) = d, PB(1|1) = e, PB(2|1) = f, PB(3|1) = 1 −
d−e−f . Applying the noise unilaterally on her side, Alice
can’t reproduce Eq. (10) because of the occurence of
symbols 2 and 3 on Bob’s side. Suppose Bob alone applies
his local noise. Then, one finds that PB

101 = PB
110 =

a+d
8 , which stands in contradiction with the data in Eq.

(10). Thus, we must consider whether both Alice and
Bob applying local noise independently can reproduce
the required statistics. In the above, PA

j denotes the jth
component of the joint probability distribution obtained
by Alice’s application of her local classical noise to the
classical outcome data of Eq. (3); analogously for PB

j in
the case of Bob.

Without loss of generality, suppose Alice applies her
local noise first, and then Bob. We shall use the notation
where the jth component after Bob also has applied his
local classical noisy channel to the classical data PA

j is

denoted PA→B
j . Then, from Eq. (3), we obtain:

PA
010 =

αh

8
+

(1− α)r

8
. (23)

This must, in view of the vanishing of this component in
Eq. (10), implying

α = 0, r = 0 (24a)

α = 1, h = 0. (24b)

If PA
010 doesn’t vanish, then we must have pB(0|0) = 0, to

ensure that under the transformation induced by Bob’s
play, the final PA→B

010 vanishes. This would mean that
pB(1|0) or pB(2|0) or pB(3|0) should be non-vanishing.
But this, in turn, would mean that PA→B

011 or PA→B
012 or

PA→B
013 should be non-vanishing, in contradiction with the

corresponding requirement in data Eq. (10). Thus, we
are led to conditions Eq. (24).

To see why condition Eq. (24a) won’t work out, we
note that it would imply that PA

000 = α
2

(

g + h
4

)

+ (1 −
α)r 58 ≡ 0 as well as pA001 = αh

8 + (1− α) r8 ≡ 0. But, this
would imply that

PA→B
000 = β(aPA

000 + dPA
001) + (1− β)q(pA000 + PA

001)

= 0, (25)

contradicting the fact that this component is non-
vanishing in the AD statistics Eq. (10).
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To see why condition Eq. (24b) also won’t work out,
we note that it would imply that

PA→B
000 =

g

2
(βa+ (1− β)q),

PA→B
100 =

g

8
(βa+ (1− β)q), (26)

implying that these two components differ by a factor
4, contradicting the additional noise dependence seen in
Eq. (10).

In conclusion, the advantage provided by the quantum
AD channel can’t be simulated locally (without any clas-
sical communication) by the legitimate parties, acting on
the noiseless (but eavesdropped) outcome statistics. This
may be attributed to the fundamentally quantum na-
ture of the disturbance introduced into the noisy channel

through Eve’s intervention.
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