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This paper reports an energy-based method for the

dynamic pull-in instability analysis of a spherical

dielectric elastomer (DE) balloon subjected to a quasi-

statically applied inflation pressure and a Heaviside

step voltage across the balloon wall. The proposed

technique relies on establishing the energy balance

at the point of maximum stretch in an oscillation

cycle, followed by the imposition of an instability

condition for extracting the threshold parameters. The

material models of the Ogden family are employed

for describing the hyperelasticity of the balloon. The

accuracy of the critical dynamic pull-in parameters is

established by examining the saddle-node bifurcation

in the transient response of the balloon obtained

by integrating numerically the equation of motion,

derived using the Euler–Lagrange equation. The

parametric study brings out the effect of inflation

pressure on the onset of the pull-in instability in the

DE balloon. A quantitative comparison between the

static and dynamic pull-in parameters at four different

levels of the inflation pressure is presented. The results

indicate that the dynamic pull-in instability gets

triggered at electric fields that are lower than those

corresponding to the static instability. The results of

the present investigation can find potential use in

the design and development of the balloon actuators

subjected to transient loading. The method developed

is versatile and can be used in the dynamic instability

analysis of other conservative systems of interest.

2018 The Author(s) Published by the Royal Society. All rights reserved.
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1. Introduction
The nonlinear behaviour of a spherical elastomeric balloon during inflation, in particular, the non-

monotonic behaviour of inflation pressure as a function of the balloon volume and the associated

problem of bifurcation and ‘snap-through’ instability, have been well known for many years.

Since the early 1970s, after Alexander’s [1] seminal experimental work based on the hypothesis

proposed by Green & Adkins [2], a large volume of theoretical studies have been conducted on

this subject [3–7].

Dielectric elastomers (DEs), electro-active polymer (EAP) capable of producing large strain

when subjected to stimulus of combined mechanical and electrical loading, have gained

increasing attention in the recent past [8]. Owing to their peculiar properties, such as fast response,

light weight, low cost, high energy density and large voltage-induced deformation, these

materials are being explored intensively in the development of electromechanical transducers. [9].

The typical architectures of these devices comprise a DE membrane sandwiched between a pair

of compliant electrodes. Subject to a potential difference through the thickness, the elastomeric

membrane reduces in thickness and expands in surface area [10]. It has been reported that the

areal strain may reach well beyond 100% before breakdown [8,9]. The DE actuators (DEAs)

are susceptible to a phenomena called electromechanical instability or pull-in instability when

actuated electrostatically. Physically, when the voltage increases, the DE membrane thins down,

and the same voltage leads to a higher electric field. Because of this positive feedback, the DE

membrane thins down catastrophically and finally fails by electrical breakdown [11,12]. The pull-

in instability parameters, i.e. electric field and corresponding actuation stretch strongly depend

on the material model and on the other several factors, such as temperature, material permittivity

and prestress [13–16].

The particular configuration of a spherical balloon made from dielectric material is

especially interesting for the soft generators and actuators [17,18]. In this regard, Ahmadi

et al. [19] presented a method for fabricating and testing a spherical DE balloon. In the past,

electromechanical behaviour and electromechanical instability of the spherical DE balloon,

when subjected to quasi-statically applied voltage has been extensively studied theoretically

as well as experimentally [20–26]. Rudykh et al. [20] studied the static actuation of a thick-

walled electroactive balloon for different material models and inferred that electromechanical

instability is affected by both boundary conditions and material models. Xie et al. [22] studied

the shape bifurcation of ideal and non-ideal DE balloons under pressurized inflation and

electric voltage. Sun et al. [27] investigated the actuation and instability of interconnected

DE balloons.

However, relatively few researchers have addressed the dynamic performance of the DEAs,

specifically for the spherical shape balloon actuators. Zhu et al. [28] studied the dynamic

electromechanical behaviour of a thin spherical balloon made from the DE, when subjected to

a constant internal pressure and an AC voltage. For investigating the dynamic response of a thick

spherical shell made of soft dielectric membrane, an explicit equation of motion was developed

analytically by Yong et al. [29]. Mockensturm et al. [30] studied the dynamic behaviour of a

spherical DE shell under pressure in which electric effects were accounted for through a body

force term. Chen et al. [31] studied the dynamic performance of a DE balloon actuator when driven

by high internal pressure of air inside and the periodic electric voltage signal. The nonlinear

oscillation of a thin circular DE membrane when subjected to combined mechanical and electrical

loading was investigated by Zhu et al. [32] who inferred that variation in the prestretch, pressure

and voltage may be used for tuning the natural frequency of the membrane. The effects of several

factors such as prestress [16], initial stretch ratio [33], viscoelasticity [34,35] and a combined DC

and AC voltage [36] on the electromechanical performance of the DE transducers have been

reported in the literature in the recent past. Liu et al. [37] investigated the effect of viscoelasticity

on the nonlinear dynamics of a DE balloon using the shooting and arc-length continuation

method. In view of the potential applications of the spherical DE balloons in reciprocating or

peristaltic pumps [38], tactile devices [39], acoustic actuators [40], soft loudspeakers [41] that
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innately involve a dynamic motion, it is necessary to study pull-in instability of the DE balloon

actuators in a dynamic mode of actuation.

In this connection, Chen et al. [31] reported a method which is based on time-integration of the

equation of motion of the DE balloons for investigating dynamic electromechanical instability.

With reference to planar DEAs, Xu et al. [42] also suggested the same approach for pull-in

instability analysis in the dynamic mode of operation and inferred that the dynamic pull-in

instability can be set at an electric field remarkably lower than that in the quasi-static mode of

operation. This was followed by Joglekar [43,44], who proposed an energy-based method for

excerpting the instability parameters of a planar DEA in the dynamic mode considering the effect

of prestress. To the best of our knowledge, the effect of pre-inflation pressure on the dynamic

pull-in instability parameters of a DE balloon has not been yet reported. To this end, the main aim

of this paper is to report an energy-based technique for excerpting the instability parameters of a

spherical DE balloon with different levels of inflation pressure, in the static and dynamic modes

of operations. This energy method eludes the iterative process of performing time integration of

the equation of motion for obtaining the dynamic pull-in instability parameters [42] and is based

on setting the energy balance at the stagnation point in the oscillation cycles followed by the

imposition of the condition of instability. A parametric study is performed for estimating the effect

of pre-inflation pressure on the instability parameters of the DE balloon for three widely used

material models, i.e. neo-Hookean, Mooney–Rivlin and Ogden models. The pull-in instability

estimates in the dynamic mode of operation for each material model are concurred by numerically

integrating the equation of motion of the DE balloon.

The rest of this article is organized into four sections as follows. In the following §2, after

defining the problem statement, we discuss the material modelling of an ideal DE. In §3, we

present an energy-based method for estimating the pull-in instability parameters of a DE balloon

for two-parameter Ogden model. To corroborate the dynamic pull-in instability parameters,

the equation of motion is developed using the Euler–Lagrange equation. In §4, static and

dynamic pull-in instability parameters are presented for different inflation pressure levels in

the balloon for three material models of interest. Various trends obtained in the parametric

study are presented and discussed. Eventually, the paper concludes with a summary of salient

inferences, in §5.

2. Problem definition and material model
Figure 1 illustrates the schematic of the problem of interest, an electrostatically actuated

spherical DE balloon sandwiched by compliant electrodes on its two surfaces. In the reference

configuration, the balloon is of radius R and thickness H and subjected to a constant inflation

pressure and a voltage. Each material point of the membrane is denoted by the radius R, as shown

in figure 1a. Under the action of a constant net pressure p inside the balloon and the electrostatic

force developed through a time-varying potential difference φ(t), the dielectric membrane reduces

its thickness, while the balloon expands proportionately in surface area and the two electrodes

gain electric charge of magnitude Q. In the present investigation, the DE balloon is assumed to

be thin-walled and the electric field, developed because of applied voltage, along the thickness

of the membrane is assumed to be homogeneous throughout the deformation. At the moment t,

the DE balloon is of radius r and thickness h in the current configuration as shown in figure 1b.

Let the deformation field of the balloon is defined by the hoop stretch λ, as

λ = r

R
. (2.1)

The hoop stretch λ is a function of time t only, i.e. λ = λ(t). An isothermal condition is assumed

in the present analysis, and hence, no temperature change will be considered explicitly. The

balloon is assumed to be made of isotropic and incompressible hyperelastic material, so that
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(a) (b)

Figure 1. Schematic of a spherical DE balloon, sandwiched between two compliant electrodes, subjected to inflation pressure

(p) and step voltage (φa), in the (a) reference configuration and (b) current configuration.

4πR2H = 4πr(t)2h(t); the thickness of the balloon in the current configuration h(t) is expressed

in terms of hoop stretch as follows:

h = H

λ(t)2
. (2.2)

The true electric field E in the thickness direction of the balloon is defined as the applied

voltage (φa) divided by the balloon thickness in the current state (h(t)), as

E = φa

h(t)
= φaλ

2

H
(2.3)

and the true electric displacement D is defined as the charge on the electrode divided by the

surface area of the electrode in the current state, as

D = Q

4π (r(t))2
= Q

4πR2λ2
. (2.4)

To model the electromechanical behaviour of the balloon membrane, we adopted the

constitutive model of an ideal DE, which assumes the dielectric behaviour to be independent of

deformation [11]. The true electric field E has a linear relation with the true electric displacement

D as

D = εE, (2.5)

in which ε is the permittivity of the balloon membrane, which is assumed to be constant

throughout the deformation. Thus, the thermodynamics of an ideal DE balloon is characterized

by the Helmholtz free-energy density function ψ(λ, D) written as

ψ(λ, D) = ψm(λ) − D2

2ε
, (2.6)

where ψm is the elastic energy density of the elastomer in the deformed state, for which we

widely used the Ogden family of hyperelastic material models, i.e. Ogden, Mooney–Rivlin and
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neo-Hookean models are used to describe the hyperelasticity of balloon membrane. Based on the

Ogden model [45], the strain energy density of the incompressible elastomer balloon is written as

ψm =
n

∑

r=1

µr

αr

(

2λαr + 1

λ2αr
− 3

)

, (2.7)

where αr and µr are material constants. To be specific, the analysis in this paper is restricted to the

two-parameter Ogden model (n = 2), Mooney–Rivlin model (n = 2, α1 = 2, α2 = −2) and single-

parameter neo-Hookean model (n = 1, α1 = 2). However, the analysis can be extended to higher

values of constant n. Taking (n = 2), the expression for the elastic energy density of the balloon in

the deformed state is written as

ψm = µ1

α1

[(

2λα1 + 1

λ2α1
− 3

)

+ ξ

(

2λα2 + 1

λ2α2
− 3

)]

, (2.8)

where ξ is a material constant written as ξ = µ2α1/µ1α2. On substituting the expression of true

electric field E from equation (2.3) into equation (2.5), and on inheriting the resulting expression

of true electric displacement D and elastic energy density ψm from equation (2.8), the Helmholtz

free-energy density ψ of the balloon is expressed as

ψ =
[

µ1

α1

{

2λα1 + 1

λ2α1
− 3 + ξ

(

2λα2 + 1

λ2α2
− 3

)}

− 1

2
εẼ2λ4

]

, (2.9)

where Ẽ = φa/H is the electric field in the reference configuration with φa being the applied

potential difference.

The DE balloon experiences an electromechanical instability or pull-in instability at the critical

value of applied voltage. If the applied voltage is further increased beyond its critical value, an

uncontrolled reduction in the thickness occurs and the balloon actuator ultimately undergoes

failure because of dielectric breakdown [42,46]. In the upcoming section, a computationally

efficient energy-based technique is presented for estimating the pull-in instability parameters of

the DE balloon in both the dynamic and static modes of actuation.

3. Solution method
This section presents an energy-based method with an intent to estimate the pull-in instability

parameters of a DE balloon actuator. First of all, we outline the proposed energy approach for

extracting the static and dynamic pull-in instability parameters of a DE balloon with a two-

parameter Ogden model. Subsequently, the equation of motion of the DE balloon is developed

using the Euler–Lagrange equation for corroborating the dynamic pull-in instability parameters.

(a) Extraction of static pull-in instability parameters

In the following discussion, we consider that a spherical elastomer balloon is first inflated quasi-

statically. As the inflation pressure increases, the balloon slowly expands homogeneously until

a critical pressure is reached. The elastomeric balloon experiences snap-through instability if the

inflation pressure exceeds the limiting value. The critical internal pressure and corresponding

critical stretch are first estimated using the principle of stationary total potential energy.

The total strain or elastic energy of the DE balloon in the deformed or current state is obtained

by the integral of the strain energy density function (ψm) in equation (2.8) over the volume of the

balloon and takes the form

Ws =
∫

V
ψm dV = 4πR2Hµ1

α1

[(

2λα1 + 1

λ2α1
− 3

)

+ ξ

(

2λα2 + 1

λ2α2
− 3

)]

, (3.1)

where V is the volume of the balloon.
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The work done by the internal pressure p is obtained by integrating the elemental work done

dWp = 4πr2p dr over the whole elastomer as

Wp = −4πp

∫ r

R
r2 dr = − 4π

3
p(r3 − R3) = −4π

3
pR3(λ3 − 1). (3.2)

The total potential energy Up of the DE balloon in the pressurized state is expressed using

equations (3.1)–(3.2) as

Up = 4πR2H

[

µ1

α1

{

2λα1
p + 1

λ
2α1
p

− 3 + ξ

(

2λα2
p + 1

λ
2α2
p

− 3

)}

−
pR(λ3

p − 1)

3H

]

, (3.3)

where λp is the hoop stretch that arises because of applied internal pressure p. Setting the first

derivative of the total potential energy in equation (3.3) with respect to λp equal to zero, i.e.

dUp/dλp = 0, the numerical value of hoop stretch λp can be extracted for any level of internal

pressure p and for given material parameters by solving the equilibrium equation expressed as

γ = 2

(

λα1−3
p − 1

λ
2α1+3
p

)

+ 2α2ξ

α1

(

λα2−3
p − 1

λ
2α2+3
p

)

. (3.4)

The dimensionless inflation pressure stated in equation (3.4) is defined as γ = pR/µ1H. To

estimate the critical inflation pressure and corresponding stretch, the condition of instability,

i.e. dγ /dλp = 0 is applied, which yields the following nonlinear equation:

(α1 − 3)λα1
p + (2α1 + 3)

λ
2α1
p

+ α2ξ

α1

(

(α2 − 3)λα2
p + (2α2 + 3)

λ
2α2
p

)

= 0. (3.5)

The solution of equation (3.5) along with equation (3.4) for dimensionless pressure γ and λp yields

the critical inflation pressure and hoop stretch represented by γ c and λc
p, respectively.

The DE balloon, with internal pressure below its critical value estimated in the aforementioned

discussion, experiences the electromechanical or pull-in instability when the electric field applied

across its wall exceeds a critical value [27,28,31]. Here, we present an energy approach for

obtaining the pull-in instability parameters (critical actuation stretch and critical electric field)

of a pre-inflated DE balloon, when potential difference φ across the balloon wall is applied

quasi-statically.

The total potential energy of a pre-inflated DE balloon actuator under the quasi-static mode of

actuation is obtained as

U =
∫

V
ψ(λ, Ẽ) dV + Wp

= 4πR2H

[

µ1

α1

{

2λα1 + 1

λ2α1
− 3 + ξ

(

2λα2 + 1

λ2α2
− 3

)}

− 1

2
εẼ2λ4 − pR(λ3 − 1)

3H

]

. (3.6)

In the non-dimensional form, the expression for the total potential energy of the balloon actuator

is written as

Û =
[

1

α1

{

2λα1 + 1

λ2α1
− 3 + ξ

(

2λα2 + 1

λ2α2
− 3

)}

− 1

2
e2λ4 − 1

3
γ (λ3 − 1)

]

, (3.7)

in which, Û = U/4πR2Hµ1 is the dimensionless total potential energy of the balloon in the

actuated state, while e = Ẽ
√

ε/µ1 is the non-dimensional nominal electric field. The static pull-

in instability parameters of the DE balloon are extracted by setting the first two derivatives of the

dimensionless total potential energy Û with respect to hoop stretch λ equal to zero and solving
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the resulting system of nonlinear algebraic equations for the dimensionless instability field e and

hoop stretch λ. The resulting nonlinear algebraic equations are written as

dÛ

dλ
= 0 ⇒ α1

(

λα1 − 1

λ2α1

)

+ α2ξ

(

λα2 − 1

λ2α2

)

− α1γ λ3

2
− α1e2λ4 = 0 (3.8)

and

d2Û

dλ2
= 0 ⇒ α2

1

(

λα1 + 2

λ2α1

)

+ α2
2ξ

(

λα2 + 2

λ2α2

)

− 3α1γ λ3

2
− 4α1e2λ4 = 0. (3.9)

The solution of nonlinear algebraic equations (3.8)–(3.9) for hoop stretch and dimensionless

electric field results into the critical values denoted by λS
c , and eS

c for any given value of

dimensionless pressure γ and material constants. In the present work, the value of pre-

inflation pressure is kept below its limiting value γc. The static instability actuation stretch (λS
ac)

corresponding to these parameters is calculated as λS
ac = λS

c/λp. These dimensionless parameters

es
c and λS

ac are collectively introduced as the static pull-in instability parameters. The stretch in the

pressurized state λp can be calculated by solving nonlinear algebraic as stated in equation (3.4)

for the known value of γ . The generalized nonlinear equations (3.8)–(3.9) stated for extracting the

static instability parameters of the Ogden material model can be reduced to that corresponding

to the Mooney–Rivlin model by substituting α1 = 2 and α2 = −2 or the neo-Hookean model by

substituting α1 = 2, α2 = 0 and ξ = 0.

(b) Extraction of dynamic pull-in instability parameters

When the DE balloon is subjected to quasi-statically applied internal pressure and DC step voltage

signal, the hoop stretch (λ) in the balloon shows the periodic response [28]. The planer DEAs show

a similar periodic response observed experimentally when subjected to step voltage [47]. The

amplitude and time period of the periodic response is dependent on the extent of applied step

voltage signal [42]. The stretch in the balloon because of the applied step voltage overshoots, the

hoop stretch arises due to the same magnitude of voltage when applied quasi-statically. When

the overshoot in the hoop stretch because of the applied step voltage is sufficiently large, the

DE balloon cannot regain its original state and the dielectric membrane can fail because of the

dielectric breakdown [48]. The proposed energy technique of obtaining the pull-in instability

parameters in the dynamic mode of actuation is based on the principle of energy conservation,

which states that, at each and every state in the oscillation cycle, the electrostatically supplied

energy will be equal to the sum of the kinetic and the potential energy of the DE balloon.

Thus, upon setting up the energy balance between the electrostatic energy, elastic energy and

kinetic energy, at the position of maximum actuation in an oscillation cycle, and invoking the

Hamiltonian method, the equation of the stagnation state is obtained. For conservative systems,

the Hamiltonian is the sum of total potential energy and the kinetic energy of the system and may

be expressed as

H= U + T, (3.10)

where U is the total potential energy and T is the kinetic energy of a conservative balloon actuator.

The kinetic energy (T) of the DE balloon, neglecting the velocity components in the hoop

direction of the balloon, is written as [37]

T = 1

2
mv2 = 1

2
ρV

(

∂r(t)

∂t

)2

= 2πρR4H

(

dλ

dt

)2

, (3.11)

where ρ is the density of the DE material and assumed to be independent of deformation because

of conservation of volume, v is the radial velocity of the balloon and m is the mass of balloon in
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the deformed state. In the dimensionless form the kinetic energy is expressed as

T̂ = T

4πR2Hµ1
= ρR2

2µ1

(

dλ

dt

)2

. (3.12)

On inserting the expression of the dimensionless total potential energy from equation (3.7) and

the dimensionless kinetic energy from equation (3.12) into equation (3.10), the non-dimensional

form of the Hamiltonian of the balloon actuator is written in terms of hoop stretch λ and its time

derivative dλ/dt as follows:

Ĥ(t) =

⎡

⎢

⎢

⎣

1

α1

{

2λα1 + 1

λ2α1
− 3 + ξ

(

2λα2 + 1

λ2α2
− 3

)}

−1

2
e2λ4 − 1

3
γ (λ3 − 1) + ρR2

2µ1

(

dλ

dt

)2

⎤

⎥

⎥

⎦

. (3.13)

In the present investigation, we assume that the actuator starts from rest with the two initial

conditions given as

λ|t=0 = λp;
d λ

dt

∣

∣

∣

∣

t=0

= 0, (3.14)

where λ denotes the stretch level in the balloon at the equilibrium state when subjected to

inflation pressure p and is estimated by solving equilibrium equation stated in equation (3.4).

The expression for initial dimensionless Hamiltonian H(0) of the DE balloon is obtained by using

the two initial conditions expressed in equation (3.14) as follows:

Ĥ(0) =
[

1

α1

{

2λα1
p + 1

λ
2α1
p

− 3 + ξ

(

2λα2
p + 1

λ
2α2
p

− 3

)}

− 1

2
e2λ4

p − 1

3
γ (λ3

p − 1)

]

. (3.15)

As the actuator system under consideration is conservative and the Hamiltonian of the DE

balloon will remain unchanged. We can equate the dimensionless Hamiltonian of the balloon

Ĥ(t) at a particular time t to the initial dimensionless Hamiltonian Ĥ(0) as, Ĥ(t) = Ĥ(0). This

condition physically shows the energy balance between the electrostatic energy supplied to the

actuator, kinetic energy and elastic energy of the DE balloon. Zero velocity of the actuator at the

position of maximum deformation in an oscillation cycle will yield the zero dimensionless kinetic

energy (T̂) of the DE balloon actuator. Thus, the Hamiltonian in the non-dimensional form (Ĥ) can

be equated to the dimensionless total potential energy (Û) of the balloon actuator. The expression

for the Hamiltonian of the actuator in the non-dimensional form at the maximum overshoot point

is obtained by setting (dλ/dt) to zero in equation (3.13) as

Ĥ(t) =
[

1

α1

{

2λ̃α1 + 1

λ̃2α1
+ ξ

(

2λ̃α2 + 1

λ̃2α2

)}

− 1

2
e2λ̃4 − 1

3
γ (λ̃3 − 1)

]

, (3.16)

in which λ̃ is the hoop stretch at the position of maximum overshoot in the oscillations.

On inserting the expression for Ĥ(t) and Ĥ(0) from equations (3.15) and (3.16) into the

aforementioned energy constraint D̂ = Ĥ(t) − Ĥ(0) = 0, the equation of the stagnation curve is

obtained as

D̂ =

⎡

⎢

⎢

⎢

⎣

1

α1

{

2(λ̃α1 − λ
α1
p ) + 1

λ̃2α1
− 1

λ
2α1
p

+ ξ

(

2(λ̃α2 − λ
α2
p ) + 1

λ̃2α2
− 1

λ
2α2
p

)}

−1

2
e2(λ̃4 − λ4

p) −
γ (λ̃3 − λ3

p)

3

⎤

⎥

⎥

⎥

⎦

= 0. (3.17)

This equation of the stagnation state is only valid for all points of maximum overshoot caused

by dimensionless electric field e that are equal to or below the electric field at the onset of pull-in

instability in the dynamic mode of operation. This is followed by application of the condition of

instability, i.e. ∂D̂/∂λ̃ = 0, to equation (3.17) for excerpting the pull-in instability hoop stretch and

the corresponding electric field in the dynamic mode for any level of dimensionless pressure γ .
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This yields the following nonlinear algebraic equation

λ̃α1 − 1

λ̃
2α1

+ α2ξ

α1

(

λ̃α2 − 1

λ̃
2α2

)

− γ λ̃3

2
− e2λ̃4 = 0. (3.18)

The solution of the system of nonlinear algebraic equations stated in equations (3.17)–(3.18) for

two unknowns, electric field e and hoop stretch, λ̃, results into the critical parameters λD
c and

eD
c for known values of non-dimensional internal pressure γ . The critical actuation stretch λD

ac

corresponding to these parameters is calculated as λD
ac = λD

c /λp. These parameters eD
c and λD

ac are

collectively introduced as pull-in instability parameters of the DE balloon in the dynamic mode

of actuation.

(c) Extraction of dynamic pull-in instability parameters: numerical integration

of the equation of motion

For corroborating the dynamic pull-in parameters of the DE balloon extracted using an energy-

based technique discussed in the previous subsection, we construct the equation of motion of

the DE balloon actuator. Based on the principle of least action, the non-dimensional form of the

Euler–Lagrange equation is expressed as [49]:

d

dt

(

∂L̂

∂λ̇

)

− ∂L̂

∂λ
= 0, where L̂= T̂ − Û, (3.19)

where λ̇ is the time derivative of hoop stretch, i.e. (∂λ/∂t), and L̂ is the difference between the

non-dimensional kinetic energy (T̂) and the non-dimensional total potential energy (Û) of the DE

balloon.

On inheriting the non-dimensional kinetic energy (T̂) expression from equation (3.12) and

the non-dimensional total potential energy (Û) expression from equation (3.7) and inserting into

equation (3.19), the resulting equation of motion of the balloon actuator in dimensionless form is

written as

d2λ

dτ 2
+ 2λα1−1 − 2

λ2α1+1
+ α2ξ

α1

(

2λα1−1 − 2

λ2α1+1

)

− γ λ2 − 2e2λ3 = 0, (3.20)

where τ = t
√

µ1/ρR2 is the non-dimensional time. The ordinary differential equation stated in

equation (3.20) shows that the dynamics of the DE balloon involves high nonlinearity, caused by

the balloon geometry and the intrinsic material nonlinearity characterized by the Ogden model.

Equation (3.20) recovers the equation of static equilibrium stated in equation (3.8) if the time-

dependent terms are set equal to zero. The differential equation in equation (3.20) together with

two initial conditions given in equation (3.14) is solved using MATLAB ODE solver for different

levels of dimensionless pressure (γ ) and non-dimensional electric field (e) for obtaining transient

response of hoop stretch of the DE balloon. The response of the DE balloon actuator for the

applied value of dimensionless electric field e below critical value is periodic for any given value

of non-dimensional pressure. The least value of the applied field that distinguishes the periodic

and aperiodic motion of the balloon is known as the electric field at the onset of dynamic pull-in

instability [42,50,51]. On further increment in the applied electric field, the DE balloon finally fails

because of dielectric breakdown [44].

In the following section, the effect of pre-inflation pressure on the static and dynamic pull-

in instability parameters of a spherical DE balloon made up of three material models of interest

is investigated.

4. Results and discussion
In the following, the effect of pre-inflation pressure on the static and dynamic pull-in instability

parameters of a DE balloon actuator is studied on the basis of the energy approach outlined
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Figure 2. Variation of dimensionless inflation pressure γ with respect to the hoop stretch λ under a constant electric field in

uniform inflation for neo-Hookean (continuous line) and Mooney–Rivlin with ξ = 0.21 (dashed line) models. (Online version

in colour.)

in §3. From the present analysis, the pre-inflation pressure is found to have a remarkable effect

on the pull-in instability parameters of the DE balloon in both the static and dynamic modes of

operation, as shown in the upcoming discussion.

Firstly, we investigate the snap-through instability experienced by the DE balloon during

inflation or under pressure control. The non-dimensional pressure (γc) and corresponding stretch

(λc
p) at snap-through instability are extracted by solving the system of nonlinear algebraic

equations (3.4) and (3.5). For neo-Hookean material model, we obtained the explicit expressions

for critical dimensionless pressure and corresponding stretch as

γ c = 1.2394 and λc
p = 1.3831. (4.1)

Based on equilibrium equation (equation (3.4)), figure 2 plots the hoop stretch of DE balloon

as a function of dimensionless internal pressure for four different non-dimensional electric fields,

i.e. e = 0, 0.2, 0.4 and 0.6. The results for the neo-Hookean and the Mooney–Rivlin (with material

constant ξ = 0.21) materials are represented by continuous and dashed lines, respectively. It is

seen that the DE balloon expands with increase in the dimensionless pressure until a certain

threshold pressure value. If the pressure is further increased, the balloon switches to a new

stable state with sudden enhancement in its size because of the ‘snap-through’ phenomenon.

This critical pressure (γc) reduces with increase in the electric field (e).

In this paper, for the parametric study on pull-in instability of the DE balloon, we consider

four different cases having dimensionless pressure γ equal to 0, 0.3, 0.6 and 0.9 for the neo-

Hookean and Mooney–Rivlin models, while for the Ogden model, γ is taken to be 0, 0.2,

0.4 and 0.6. Firstly, we adopted the neo-Hookean model of hyperelasticity for extracting pull-

in parameters in both static and dynamic modes with the proposed approach. The nonlinear

algebraic equations stated in equations (3.8)–(3.9) with aforementioned level of dimensionless

pressure γ and material parameters α1 = 2, α2 = 0 and ξ = 0 are solved in MATLAB for extracting

the static pull-in instability parameters of the DE balloon. The dimensionless static instability

fields ec and corresponding dimensionless actuation stretch λS
ac = λS

c/λp for all the four cases

are given in table 1. The numerical value of dynamic pull-in instability parameters eD
c and

λD
ac = λD

c /λp, i.e. instability electric field and corresponding actuation stretch, obtained by solving
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Figure 3. (a) The dimensionless instability electric field and (b) dimensionless instability actuation stretch, of the DE balloon as

a function of dimensionless inflation pressure γ , for the neo-Hookean model.

nonlinear algebraic equations, i.e. equations (3.17)–(3.18), for the four different levels of non-

dimensional pressure γ are also given in table 1. It is can be seen from the numerical values

of the instability parameters listed in table 1 that, for the same level of pre-inflation pressure

γ , the dynamic pull-in instability field is less than that corresponding to the static instability.

Moreover, it also evident from numerical data that the critical actuation hoop stretch at the

dynamic pull-in instability is remarkably more than that at the static pull-in. For the current

model of hyperelasticity, the dimensionless instability parameters are independent of the material

constants and are the function of dimensionless pressure γ only.

Figure 3 plots the non-dimensional static and dynamic pull-in instability parameters as a

function of pre-inflation pressure. The variations for the static mode of operation are plotted

using a continuous line, while that in dynamic operation are represented using a dashed line.

From figure 3a, it can be inferred that the less electric field is required for triggering the pull-

in instability, when the DE balloon is subjected to larger inflation pressure. Comparing the two

curves in figure 3a, one can find that the dimensionless electric field required to trigger the

dynamic pull-in instability is lower than that for the static instability at the same value of inflation

pressure γ . Figure 3b demonstrates the variation of dynamic and static pull-in instability-induced

actuation stretch (λac = λc/λp) with the pre-inflating pressure. Figure 3b suggests that actuation

stretch at instability decreases with increase in the dimensionless inflation pressure γ in both the

modes of actuation. Furthermore, it is evident from figure 3b that at the same inflation pressure

level γ , the actuation stretch (λa) experienced by the DE balloon actuator at the dynamic pull-in

instability is much larger than that at the static pull-in instability.

Figure 4 plots the applied electric field (e) as a function of induced hoop stretch (λ) for

three different levels of inflation pressure in both dynamic (denoted by the dashed lines) and

static (continuous lines) modes. In this figure, the curves of static actuation are described by

equation (3.8) expressed in a dimensionless form for the known value of γ , while the curves

of dynamic actuation are described by equation (3.17). In case of dynamic actuation, the abscissa

refers to the stretch amplitude of the oscillation cycle. The portion of curves left to the X belong

to the stable branch, while the rest of the portion in the right of the cross symbol (X) represents

the unstable branch. The respective branches for each value of γ meet at the bifurcation point,

popularly referred to as the saddle-node bifurcation, as indicated in figure 4. It can be seen that

the dynamic pull-in instability point lies at the intersection of the dynamic and static curves. This

is because at the point of dynamic pull-in, the system is in the state of stagnation, characterized

by zero acceleration and zero velocity.

Next, we consider a DE balloon made up of the Mooney–Rivlin-type materials and the

instability parameters are extracted on the parallel lines discussed for the neo-Hookean model.
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Figure 4. The non-dimensional electric field (e) as a function of hoop stretch (λ) of the DE balloon, for the neo-Hookeanmodel

at three different values of dimensionless pressure γ (0, 0.6 and 0.9), in static (continuous lines) and dynamic (dashed lines)

modes. (Online version in colour.)
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Figure 5. (a) The dimensionless instability electric field and (b) dimensionless instability actuation stretch, of the DE balloon

as a function of dimensionless inflation pressure γ , for the Mooney–Rivlin model.

For the analysis, we choose two representative material parameters (ξ = 0.1, 0.21), which are also

listed in table 1. These parameters are taken from references [48,52]. The estimates of dynamic

and static pull-in instability parameters of the DE balloon for both the representative cases are

illustrated in table 1 for the four different values of dimensionless pressure. For both the cases

of Mooney–Rivlin model listed in table 1, the variation of the dimensionless pull-in instability

field and corresponding dimensionless actuation stretch with dimensionless inflation pressure

are depicted in figure 5a,b. These figures demonstrate the similar trends discussed for the neo-

Hookean model in the foregoing discussion. From figure 5a,b, it is evident that the pull-in

instability parameters depend on the material parameter ξ similar to the neo-Hookean model, in

both of the actuation modes. For the same level of dimensionless pressure γ both the instability

field and the instability actuation stretch increase as the value of material constant ξ increases.
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Table 2. The pull-in instability parameters of the DE balloon actuator for different values of non-dimensional pressure with

Ogden material model.

material parameters→ α1 = 1.445,α2 = 4.248, ξ = 0.001 [53] α1 = 1.130,α2 = 5.343, ξ = 0.00004 [13]

static instability dynamic instability static instability dynamic instability
parameters parameters parameters parameters

dimensionless
pressure (γ ) λS

ac eSc λD
ac eDc λS

ac eSc λD
ac eDc

0.0 1.2577 0.5946 1.4543 0.5581 1.2588 0.5292 1.4526 0.4962
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.2 1.2447 0.5240 1.4291 0.4902 1.2383 0.4486 1.4132 0.4190
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 1.2234 0.4435 1.3874 0.4135 1.2074 0.3520 1.3542 0.3266
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.6 1.1934 0.3466 1.3298 0.3209 1.1501 0.2193 1.2479 0.2006
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Next, we consider the case of a DE balloon with the Ogden material model. The dimensionless

pull-in instability parameters in the case of the Ogden model depend on the several material

constants such as α1, α2 and ξ . For this material model, we take two representative cases, for

which the material constants are adopted from the references [13,53]. The estimated critical values

of static and dynamic pull-in parameters for both the representative cases of the DE balloon with

four different values of non-dimensional pressure (γ = 0, 0.2, 0.4 and 0.6) are tabulated in table 2.

Similar to the case of the neo-Hookean and Mooney–Rivlin models, it is observed from table 2

that the critical actuation stretch and electric field at instability in both the modes of actuation

decrease with increasing value of γ . All the estimates discussed till this end in this section are

obtained using the energy method.

Here, the corroboration of dynamic pull-in instability estimates obtained using the energy

method for all material models under consideration is done by extracting the saddle-node

bifurcation point in the transient response of hoop stretch achieved by numerically integrating

the non-dimensional equation of motion given in equation (3.20) with the specific values

of the material parameters. The plot in figure 6a–c depicts the dimensionless time of hoop

stretch of the DE balloons made up of the neo-Hookean and Mooney–Rivlin with ξ = 0.1 and

Ogden model with α1 = 1.13, α2 = 5.343 and ξ = 0.00004, respectively, for three different levels

of pre-inflation pressure.

From the figure 6a–c, it is observed that the transient response of the DE balloon actuator

for an applied electric field less than the electric field at the onset of dynamic instability is

periodic. If the value of the applied electric field exceeds the critical electric field eD
c , the time

history response becomes non-periodic. However, by examining the figure 6a–c, one can infer

that the dynamic pull-in instability parameters shown in tables 1 and 2 indeed correspond to the

stagnation state of the DE balloon. This shows the utility of the energy method developed in the

present paper. Figure 6d shows the response of the neo-Hookean type DE balloon on phase-plane

plots. For different levels of the applied field at given value of dimensionless pressure, the non-

periodic orbits are represented by a dashed lines, while the periodic orbits are depicted by the

continuous lines. The important conclusions drawn from this investigation are summarized in

the upcoming section.

5. Conclusion
In conclusion, we have outlined an energy-based method for estimating the dynamic pull-

in instability parameters of the DE balloon actuator undergoing homogeneous deformation

when subjected to pre-inflation pressure, and driven by a step voltage signal. We considered

three material models of hyperelasticity, i.e. the Ogden model, Mooney–Rivlin model and neo-

Hookean, for the analysis of electromechanical behaviour of the soft DE balloon. The pull-in

parameters in the dynamic mode of actuation are extracted by setting the energy balance at the

 D
o
w

n
lo

ad
ed

 f
ro

m
 h

tt
p
s:

//
ro

y
al

so
ci

et
y
p
u
b
li

sh
in

g
.o

rg
/ 

o
n
 3

0
 J

u
ly

 2
0
2
1
 



15

rspa.royalsocietypublishing.org
Proc.R.Soc.A

474:20170900
...................................................

0 2 4 6 8 10 12
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

st
re

tc
h

 l

st
re

tc
h

 l

st
re

tc
h

 l

g = 0.0 e = 0.6471

g = 0.0 e = 0.6472

g = 0.6 e = 0.4565

g = 0.6 e = 0.4566

g = 0.9 e = 0.3276

g = 0.9 e = 0.3277

0 2 4 6 8 10 12
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1
g = 0.0 e = 0.7006

g = 0.0 e = 0.7007

g = 0.6 e = 0.5326

g = 0.6 e = 0.5327

g = 0.9 e = 0.4287

g = 0.9 e = 0.4288

a1 = 2, a2 = –2, x = 0.1

0 2 4 6 8 10 12
1.0

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1
a1 = 1.13, a2 = 5.343, x = 0.00004

dimensionless time t

dimensionless time t dimensionless time t

g = 0.0 e = 0.4963

g = 0.0 e = 0.4964

g = 0.4 e = 0.3267

g = 0.4 e = 0.3268

g = 0.6 e = 0.2005

g = 0.6 e = 0.2010

0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6 1.7
–0.4

–0.2

0

0.2

0.4

0.6

0.8

d
im

en
si

o
n

le
ss

 s
tr

et
ch

 r
at

e 
d
l

/d
t

g = 0.0 e = 0.6471

g = 0.0 e = 0.6472

g = 0.6 e = 0.4565

g = 0.6 e = 0.4566

g = 0.9 e = 0.3276

g = 0.9 e = 0.3277

stretch l

(a) (b)

(c) (d)

Figure 6. Dimensionless time evolution of hoop stretch for the (a) neo-Hookean, (b) Mooney–Rivlin, (c) Ogdenmodels and (d)

phase diagram for the neo-Hookean model, of the DE balloon with different levels of dimensionless pressure (γ ) and electric

fields (e). (Online version in colour.)

stagnation point in an oscillation cycle. The proposed method facilitates the accurate estimation of

the dynamic pull-in parameters and evades the iterative method, examining the bifurcation points

in the time history response of hoop stretch acquired by numerical integration of the equation of

motion. The energy-based technique presented in this paper can be applied to the other DEAs

and material models of interest.

A parametric study is performed for bringing out the influence of pre-inflation pressure on

the static and dynamic pull-in parameters. The results indicate that the critical hoop stretch

on the onset of dynamic instability is more than that corresponding to the static instability.

For the neo-Hookean model, in particular, at zero pre-inflation pressure, the threshold hoop

stretch corresponding to dynamic instability is approximately 116% of that at static instability.

This difference reduces monotonically with increasing levels of pre-inflation pressure and finally

diminishes at the limiting pressure γ c. By contrast, a meagre difference is observed between

the threshold electric fields sufficient for triggering the electromechanical instability in the static

and dynamic modes of actuation. For the neo-Hookean model, at zero pre-inflation pressure,

the electric field at static instability is 6.25% higher than that at dynamic instability, which

reduces to zero at γ c. For the other two material models (i.e. Mooney–Rivlin and Ogden), similar

dependency of pull-in parameters on the pre-inflation pressure is observed; however, the exact

values of instability parameters depend on the material constants. These inferences can find their

potential use in designing the safe operating limits for the DE balloon actuators subjected to

transient electric loads.
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The present investigation has outlined an energy-based method for extracting the dynamic

instability parameters of the DE balloons with constant inflation pressure. To highlight the

method of solution, the discussion has been kept limited to the Ogden family of hyperelastic

material models. In addition to extending its applicability to the other hyperelastic material

models (Arruda–Boyce, Gent), the analysis can be refined to accommodate the effects of

viscoelasticity.
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