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Data Analysis in Multimedia Quality Assessment:

Revisiting the Statistical Tests
Manish Narwaria, Lukáš Krasula, and Patrick Le Callet

Abstract—Assessment of multimedia quality relies heavily on
subjective assessment, and is typically done by human subjects
in the form of preferences or continuous ratings. Such data is
crucial for analysis of different multimedia processing algorithms
as well as validation of objective (computational) methods for
the said purpose. To that end, statistical testing provides a the-
oretical framework towards drawing meaningful inferences, and
making well grounded conclusions and recommendations. While
parametric tests (such as t test, ANOVA, and error estimates
like confidence intervals) are popular and widely used in the
community, there appears to be a certain degree of confusion in
the application of such tests. Specifically, the assumption of nor-
mality and homogeneity of variance is often not well understood.
Therefore, the main goal of this paper is to revisit them from a
theoretical perspective and in the process provide useful insights
into their practical implications. Experimental results on both
simulated and real data are presented to support the arguments
made. A software implementing the said recommendations is
also made publicly available, in order to achieve the goal of
reproducible research.

I. INTRODUCTION

The growth of low-cost devices has virtually made mul-

timedia signals an integral part of our daily lives. Todays

end users are constantly interacting with multimedia, and are

more demanding in terms of their multimedia experience, and

perceptual quality is one of the intrinsic factors affecting such

interaction. As a result, assessment of perceptual quality is an

important aspect in todays multimedia communication systems

[1]. The most reliable way of quality estimation typically

involves the use of a human subject panel who provides

ratings/preferences for the targeted multimedia content [1],

[2]. This is referred to as subjective assessment. In contrast,

objective estimation of quality relies on the use of computa-

tional (mathematical) models [3] that are expected to mimic

subjective perception.

Parametric statistical tests find extensive application in

multimedia quality estimation mainly for two purposes. First,

they are used to compare and analyze subjective data collected

from human participants. For instance, a t-test can be used

to compare Mean Opinion Score (MOS) from two different

conditions in a variety of applications (eg. analyzing codec

performance [4], investigating the effect of upscalers on video

quality [5], studying optimization criteria in HDR tone map-

ping [6] and so on). Analysis of Variance (ANOVA) is also

a commonly used technique for analyzing the effect of two
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or more factors/treatment levels and their interactions. These

include identifying audiovisual interactions [7], examining

the impact of reflections in HDR video tone mapping [8],

investigating the effect of resolution, bit rate and color space

on under water videos [9], studying the possible impact of

compression level and type of content on perceptual quality

towards finding optimal presentation duration in subjective

quality assessment [10] etc. Second, these tests are used to

validate objective (computational) methods against subjective

data. This can in turn be used to statistically compare several

objective methods in terms of their prediction accuracies as

compared to the subjective data. Such validation studies are

obviously central to benchmarking objective methods before

they can be deployed in practice.

The need for statistical testing arises due to the fact that

subjective studies use a finite sample of human subjects.

Therefore, these tests can help in generalizing and making in-

ferences for the population. For that purpose, parametric tests

such as t-test, F -test, ANOVA, and error estimation (eg. using

confidence intervals) are widely used in the community. While

the application of parametric tests is generally straightforward

(aided by the availability of numerous software packages), the

interpretation of the results requires some care. In particular,

statistical tests in many cases are simply treated as black boxes,

and are applied without considering the practical implications

of the assumptions in these tests.

As the name implies, such tests are based on apriori knowl-

edge of parameterizable probability distribution functions (eg.

t distribution, F distribution which are respectively character-

ized by one and two degrees of freedom.). While it is true

that parametric tests are distribution dependent (as opposed

to non-parametric tests which are some times referred to as

being distribution-free), there appears to be some confusion

regarding the assumptions made in these tests. In particular, the

assumption of normality and homogeneity of variance in many

cases appears to be not well understood for both subjective

and objective data analysis. In practice, these assumptions are

sometimes considered as bottle necks in applying parametric

tests. As a result, nonparametric tests are recommended if the

data violates one or both the assumptions. A typical approach

to applying parametric statistical tests is depicted in the left

flow diagram in Figure 1, and consists of arriving at one of

the three decisions D1, D2 or D3:

• D1: normality checks (eg. JB test, K-S test) are applied

to examine if the given subjective/objective data is nor-

mal. If such normality checks determine the data to be

nonnormal then nonparametric tests are carried out.

• D2: If the normality test determines the data to be normal,

then homogeneity of variance is tested by applying a
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Fig. 1: Typical procedure of applying parametric tests (the left flow chart) and the recommended approach (right flow diagram).

The drawbacks associated with making decisions D1, D2 or D3 are discussed in sections II and III. Figure best viewed in color.

test of variance (eg. Levene’s test, F test etc). If the

groups/samples do not satisfy the said assumption then

modified tests (eg. unpooled t test) are applied which do

not use pooled variance in computing the test statistic.

• D3: If the data satisfies both assumptions of normality and

homogeneity of variance then the usual t test or ANOVA

(which employ pooled variance) are applied.

In this paper, we seek to draw attention to few drawbacks

associated with such decisions. Specifically, we revisit theo-

retical formulations and the resultant practical implications to

highlight shortcomings and recommend alternative approach

(right flow diagram in Figure 1) in the light of the said

assumptions. We emphasize that these assumptions should not

be viewed as constraints or bottle necks in the application of

parametric tests. Instead these should be carefully considered

and understood in the context of their practical implications.

Subsequently, we provide a set of recommendations to ame-

liorate some of the drawbacks that may stem from either

wrong interpretation or application of the said assumptions

in parametric testing. A software implementing the said rec-

ommendations is also made publicly available∗, in order to

achieve the goal of reproducible research.

The remainder of the paper is organized as follows. In sec-

tion II we analyze the distributional assumptions in parametric

test. Section III provides an analysis of the assumption of

homogeneity of variance. Section IV points out the practical

implications in the context of multimedia quality assessment.

In section V we present the experimental results and analysis

while Section VI lists a set of recommendations towards proper

∗https://sites.google.com/site/narwariam/home/research

use of parametric testing in the context of the said assumptions.

We provide concluding thoughts in section VII.

II. REVISITING DISTRIBUTIONAL ASSUMPTIONS IN

PARAMETRIC TESTS

Parametric tests require certain assumptions including the

assumption of normality, homogeneity of variance and data

independence. As highlighted in left flow diagram in Figure

1, normality checks have usually been applied on subjective or

objective data [2], [3], [4], [11]. Such use of normality checks

indicates that the assumption of normality is, in many cases,

misunderstood to be applicable on the data for which statistical

tests are to be carried out. This is, however, incorrect in the

light of the fact that all parametric tests essentially work by

locating the observed test statistic on a known probability dis-

tribution function. Then, depending on the desired significance

level and the location of test statistic, one typically accepts or

rejects the null hypothesis. For example, in t-test, the t-statistic

is first computed from the observed sample. This t-statistic is

then compared with values from a t-distribution (correspond-

ing to the particular degrees of freedom). In other words, the

computed test statistic (t-statistic, F -statistic etc.) is assumed

to follow the corresponding distribution (t-distribution in t-
test, F -distribution in F -test and ANOVA etc.).

Thus, the more appropriate question to be asked in para-

metric testing is whether the test statistic follows the assumed

distribution (rather than the data being normally distributed).

The answer to such question requires that the subjective (or

objective) test be repeated for a large number of times, each

time using a different sample (both in terms of human subjects

and content). Then, in each instance, the test statistic can be
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computed to obtain its sampling distribution. This process

is, however, neither practical for obvious reasons nor desir-

able. Instead, one can rely on the fundamental central limit

theorem (CLT). Informally, the CLT states that the sampling

distribution of the arithmetic mean (and sum) will approach

a normal distribution as the sample size increases, regardless

of the underlying population distribution [12]. It is due to this

result that the test statistic in parametric tests are guaranteed

to follow the assumed distribution, provided that the sample

size is large enough (approaching infinity in theory).

We begin by considering two populations p1 and p2 with

means µ1 and µ2 and variances σ2
1 and σ2

2 , respectively. In

the context of multimedia quality assessment, these popula-

tions will typically represent the collection of subjective (or

objective) opinion scores for two conditions (eg. subjective or

objective quality scores for two profiles of a video codec, indi-

vudual quality scores for audiovisual content corresponding to

two parameter settings, quality scores for content rendered by

two depth image based rendering methods, individual quality

scores for two tonemapped HDR videos and so on) for which

we need to compare mean quality scores i.e. µ1 and µ2.

Assume that p1 and p2 are sampled i.e. subjective or objective

assessment is actually performed on a set of content using a

sample of human subjects or using objective methods. Let the

corresponding samples be denoted by x1 = [x11, ..., x1n1
] and

x2 = [x21, ..., x2n2
] where n1 and n2 are the sample sizes,

and the sample observations are assumed to be independent

and identically distributed (iid) random variables. Note that

there are no assumptions regarding the distribution of either

the populations (p1 and p2) or corresponding samples (x1

and x2).

A. Sampling distribution of test statistic in t-test

Let x1, x2 and s21, s22 denote the sample means and

variances, respectively. Then the goal of the analysis is to infer

if µ1 = µ2 (the null hypothesis) or not. To that end, one can

employ the t-test. To define the t-statistic, we use the result

from the CLT i.e.

x1 ∼ N

(

µ1,
σ1√
n1

)

and x2 ∼ N

(

µ2,
σ2√
n2

)

(1)

Then, the difference between the samples means will also be

normally distributed i.e.

x1 − x2 ∼ N



µ1 − µ2,

√

σ2
1

n1
+

σ2
2

n2



 (2)

By standardization, we have

x1 − x2 − (µ1 − µ2)
√

σ2

1

n1

+
σ2

2

n2

∼ N (0, 1) (3)

Note that in eq. (3) only the numerator is a random variable

while the denominator is constant. However, in practice, the

population variance is generally not known. We therefore

need to use sample variance as an unbiased estimator of the

population variance. To proceed further, we consider two cases

for defining the null hypothesis.

1) Case 1: Samples drawn from same population: We can

define the null hypothesis as H0 : the two samples are taken

from the same population. This implies that not only are

we assuming the population means to be equal but other

population parameters including variances are equal. Thus, we

have µ1 = µ2 and σ2
1 = σ2

2 = σ2 (say). In order to obtain a

more accurate estimate of the (common) population variance,

we can employ the pooled variance s2p which is defined as

s2p =
s21(n1 − 1) + s22(n2 − 1)

(n1 − 1) + (n2 − 1)
(4)

Thus, under H0, the denominator in eq. (3) can be modified

accordingly and the t-statistic defined as

tpooled =
x1 − x2

sp

√

1
n1

+ 1
n2

, dfpooled = n1 + n2 − 2 (5)

With the said modification, the reader will now note that

the denominator in eq. (5) is also a random variable, unlike

eq. (3) where it was a constant. Thus, tpooled is a ratio of

two random variables. The numerator is the difference of

two independent normally distributed random variables (x1

and x2), and will therefore be normally distributed [13].

Further, the squared denominator will be equal to
s2p
n1

+
s2p
n2

which denotes the variance of the said normal distribution

in the numerator. Hence, the denominator in eq. (5) will

be chi-squared distributed [13]. Accordingly, the test statistic

tpooled is characterized by the ratio of normally and square

root of chi-squared distributed variables. It will therefore be

approximately† distributed according to the t-distribution [13]

with dfpooled = n1 +n2 − 2 degrees of freedom, and this will

be irrespective of the distribution of either the populations (p1

and p2) or corresponding samples (x1 and x2).

2) Case 2: Samples drawn from two different populations

with same population mean: In the second case, we assume

that the two samples have been drawn from two different popu-

lations with same population mean i.e. µ1 = µ2 (but σ2
1 6= σ2

2).

Hence, other population parameters such as variance or any

other statistic need not be equal. Then, we can use sample

variances as an estimate of the two population variances, and

under the assumption of the null hypothesis, eq. (3) can be

modified to obtain the following test statistic

tunpooled =
x1 − x2

√

s2
1

n1

+
s2
2

n2

, dfunpooled =

(

σ2

1

n1

+
σ2

2

n2

)2

σ4

1

n2

1
(n1−1)

+
σ4

2

n2

2
(n2−1)

(6)

In practice, we use s21 and s22 to compute dfunpooled in eq.

(6) because σ2
1 and σ2

2 are not known. We will discuss the two

cases in section III.

†In theory, the sample size should tend to infinity for the sample means
to be normally distributed according to CLT. However, in practice, smaller
samples sizes allow us to approximate the assumption of normality, regardless
of population or sample distribution.
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B. The case of ANOVA and F -test

The sampling distribution of the test statistic (F ) in F -

test (ANOVA also relies on F -test) is assumed to follow the

F -distribution [13]. It can be shown that this assumption is

valid irrespective of the data distribution with the same caveat

concerning the CLT mentioned in the previous sub-section.

Before doing that, we assume that there are k groups each

with ni observations (let the total number of observations be

denoted by M =

k
∑

i=1

ni), and define the following: mean xi

of ith group, grand mean X and variance s2i of the ith group

as

xi =

ni
∑

j=1

xij

ni

, s2i =

ni
∑

j=1

(xij − xi)
2

ni

, X =

k
∑

i=1

ni
∑

j=1

xij

k
∑

i=1

ni

(7)

The F -statistic in ANOVA is defined as the ratio of inter-

group (i.e. between groups) and intra-group (i.e. within each

group) variations. We denote these quantities by SSB and

SSW , respectively, with the corresponding degrees of freedom

being dfB and dfW . Then, the F -statistic is computed as

F =
SSB/dfB
SSW /dfW

=

k
∑

i=1

ni

(

xi −X
)2

/ (k − 1)

k
∑

i=1

ni
∑

j=1

(xij − xi)
2
/(M − k)

(8)

By noting that the denominator in eq. (8) is essentially a

weighted sum of individual group variances, we can view the

F -statistic as

F =

k
∑

i=1

ni

(

xi −X
)2

/ (k − 1)

n1s
2

1
+n2s

2

2
+...+nks

2

k

(n1−1)+(n2−1)...+(nk−1)

(9)

One can see that the numerator in eq. (9) is squared difference

of two normally distributed variables (xi and X), and will be

thus chi-squared distributed. The denominator can be seen to

be very similar to the pooled variance used in eq. (4), and

will be chi-squared distributed following similar arguments. It

follows that F is a ratio of two chi-squared distributed random

variables which in turn implies that it will be approximately

distributed according to the F -distribution (with k − 1 and

M − k degrees of freedom). Once again, this is independent

of the distribution of the population or the groups, and only

relies on the approximations related to sample size as required

in the CLT.

C. Data normality checks: are they required?

As discussed in previous sub-sections, the CLT being a

theoretical result only provides asymptotic approximation in

that as sample size tends to infinity the sampling distribution

of mean tends to be normally distributed, and this holds

irrespective of the sample or population distribution [12]. Note

that the CLT does not specify any sample size above which the

said sampling distribution will be normal. In practice, smaller

sample sizes are generally sufficient to allow reasonable ap-

proximations. For instance, in the context of subjective quality

assessment, Ref. [14] recommends a minimum of 15 subjects

while the authors in [15] suggested using at least 24 subjects

for audiovisual quality measurement. Because the sampling

distribution of mean is directly or indirectly used in computing

the test statistics such as t, F etc., there are no requirements

of normality (or any other distribution) on the data to be

analyzed. It is, therefore, not surprising that previous works

[2], [16], [17] have noted that parametric tests such as ANOVA

are robust to non-normal data distributions, and the focus on

distributional assumptions in these tests is not required [18].

The second theoretical argument against the application of

normality checks before conducting parametric tests is the in-

flation of Type I error probability. A commonly adopted strat-

egy is to first check whether the given sample/data is normally

distributed or not. To that end, normality tests such as the

Kolmogorov-Smirnov (K-S) test, Jarque-Bera test, Shapiro-

Wilk test etc. are popular. If the tests determine the given data

is normally distributed then a parametric test is used. Other-

wise, a non-parametric test is performed. As a result of this

two-step process, there will be an increase in type I error prob-

ability. Assume that H∗
0 : given data is normally distributed

(the null hypothesis in a normality test) and H0 be the null

hypothesis of the test that will follow. Then, the probability of

rejecting H0 can be written as the sum of mutually exclusive

events i.e.

P (reject H0) = P (reject H0 and not reject H∗
0 )

+P (reject H0 and reject H∗
0 ) (10)

In the above equation the first expression on right hand side

corresponds to the case of using a parametric test while the

second expression corresponds to the use of a suitable non-

parametric test. Because the critical regions corresponding to

the parametric and non-parametric tests will be in general

different, the resultant critical region which is a union of

the critical regions of the individual tests is increased. Con-

sequently, the probability‡ to reject H0 (when it is true) is

increased thereby increasing the probability of a type I error.

The third argument against the use of normality tests is

the theoretical contradiction concerning the sample size. It is

known that most normality tests, by definition, tend to reject

the null hypothesis H∗
0 (given data is normally distributed)

as the sample size increases. For instance, in the JB test for

normality, the test statistic value is directly proportional to the

sample size. In other words, larger the sample size, it is more

likely to be determined as non-normal. However, according

to CLT, the approximation of normality of the sampling

distribution of mean improves as the sample size increases.

This leads to a contradiction between the requirement of data

normality and the asymptotic behavior in the CLT.

‡This probability value is not related to the p value of the significance test.
Instead, it refers to the probability (over repeated trials) of making a type I
error i.e. rejecting H0 when it is true.
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While other methods such visual (eg. histogram visualiza-

tion, normal probability plots) or those based on empirical

rules (eg. if sample kurtosis is between 2-4, then the sample

is deemed to be normally distributed) can overcome the

limitations associated with the more formal normality tests,

these are not required because it is the normality of sampling

distribution of mean that is needed rather than the data being

normal.

III. TO POOL OR NOT TO POOL?

In this section, we analyze the assumption of homogeneity

of variance and point out the theoretical aspects that need to

be considered in the context of this assumption. The relevant

practical considerations will be discussed in the next section.

A. Should homogeneity of variance be checked?

As discussed in the previous section, the null hypothesis

can be defined in two cases. For Case 1, we require the

assumption of homogeneity of variance (i.e. σ2
1 = σ2

2) and

is applicable in the context of ANOVA (for more than two

groups) and tpooled (for two groups). Note that both the tests

use an estimate of the pooled variance in order to compute

the corresponding test statistic. On the other hand, Case 2

does not require homogeneity of variance and is applicable

in defining the test statistic tunpooled. Therefore, tunpooled is

widely used in statistical data analysis and has been included

in many statistical packages such as SPSS. However, it can

be noted that in general dfunpooled < dfpooled (except when

σ2
1 = σ2

2 and n1 = n2, in which case both are equal), and

hence the use of tunpooled will increase the probability of Type

II error (i.e. the test will be more conservative). In light of this,

a popular and seemingly logical strategy is to first conduct a

preliminary test of variance based on which a decision to either

use tpooled (or ANOVA) or tunpooled (if the test of variance

leads to the conclusion that σ2
1 6= σ2

2).

Notice that this strategy, however, involves cascaded use

of the given data in rejecting or accepting two hypotheses

(one from test of variance and the other from the t-test). In

other words, two significance tests are performed on the same

data. As a consequence, the Type I error probability will be

increased [13]. Suppose H∗∗
0 : σ2

1 = σ2
2 (the null hypothesis

in a preliminary variance test for equality of population

variances) and H0 : µ1 = µ2 be (the null hypothesis for the

t-test that will follow). Then, the probability of rejecting H0

in this case can be written as (similar to eq. 10) the sum

of probability of rejecting H0 when H∗∗
0 is not rejected and

the probability of rejecting H0 when H∗∗
0 is also rejected.

Following the same arguments as in section II-C, the resultant

critical region which is a union of the critical regions of the

individual t-tests is increased thereby inflating the probability

of Type I error.

Further, note from eq. (6) that the degrees of freedom for

tunpooled depends on population variances σ2
1 and σ2

2 , and will

therefore be a random variable in case these are estimated from

sample variances (which is practically the more likely case).

As a result, its analysis, both theoretical and experimental

is more complicated due to the fact that its distribution is

not independent of sample variances [19]. Thus, the interest

in tunpooled is more from a theoretical perspective in that it

allows for a correction in degrees of freedom which in turn

renders it valid in cases when population variances are not

equal. In practice, however, it is more relevant to consider the

implications of comparing means of two populations whose

spread (variances) are different. Hence, applying statistical

tests for checking homogeneity of variance prior to using t
test, ANOVA etc. is not recommended due to theoretical (due

to increased probability of type I error) reasons, and is of less

interest in practice.

B. The case of balanced design

It can be shown that the test statistic tpooled is valid

even if σ2
1 6= σ2

2 provided that the sample sizes are equal

(balanced design). To prove this, we compare the distributions

of tunpooled and tpooled by writing them in terms of the

theoretical t distribution [19] in the following form:

tpooled = cpooled · tdfpooled , tunpooled = cunpooled · tdfunpooled

(11)

where tdfpooled and tdfunpooled
are the t distributions with

respective degrees of freedom. Thus, for tpooled and tunpooled
to follow the respective theoretical t distributions the corre-

sponding multiplicative factors cpooled and cunpooled should be

equal to 1. It can, however, be shown [19] that while cunpooled
is always equal to 1, the value of cpooled depends on sample

size and population variances i.e.

cpooled =

√

√

√

√

√

(n1 + n2 − 2)
(

σ2

1

n1

+
σ2

2

n2

)

(

1
n1

+ 1
n1

)

{(n1 − 1)σ2
1 + (n2 − 1)σ2

2}
(12)

From the above equation, it is easy to see that cpooled = 1
if the population variances are equal (σ2

1 = σ2
2). However,

cpooled is also equal to 1 if sample sizes are equal (n1 = n2).

In other words, tpooled will follow the expected theoretical

distribution if balanced design is used, despite the violation of

the assumption of homogeneity of variance. Because several

practical applications tend to target a balanced design i.e. equal

sample sizes, the use of tpooled is valid in such cases even if

sample variances differ by a large amount. Particularly, in case

of multimedia quality assessment, the use of balanced design

is common. For instance, typical subjective quality assessment

tests use the same number of human subjects to evaluate the

quality of different conditions (although the subject panel may

or may not comprise of the same subjects in evaluating the

quality of each condition).

IV. PRACTICAL CONSIDERATIONS IN THE DOMAIN OF

MULTIMEDIA QUALITY ASSESSMENT

In this section, we discuss the assumption of homogeneity of

variance from the practical view point, and take an illustrative

example from the domain of video quality assessment. Let us

consider that an original (i.e. undistorted) video sequence is

viewed and rated for its visual quality by all the concerned

observers on a scale of 1 (worst) to 5 (excellent). Hence,
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Fig. 2: Illustration of treatment effects QP1 and QP2. The shift in location does not alter the variance of the groups. The

values of µ1, µ2 and µ3 are assumed for illustration only. Figure best viewed in color.

this set of individual ratings forms the population of interest

Porg for this condition (i.e. undistorted video). We can express

each element of Porg as P
(i)
org = µorg + ǫi where µorg is the

mean of Porg and ǫi denotes the random error (with zero

mean and finite variance) that will be introduced in each

individual rating. This error term can be used to take into

account the fact that some observers may be more critical

(so their corresponding ratings will be less than µorg) while

others may be less critical (i.e. their ratings are expected to be

higher than µorg) of the video quality. Suppose the said video

is now compressed using two quantization parameter (QP )

values QP1 and QP2 and QP2 > QP1 (QP is employed

in video compression as a measure to quantify quantization

levels, higher QP implies higher quantization and in general

lower video quality).

A. The case of systematic treatment effect

In the considered example, quantization can be considred as

a treatment that is applied to the original video. Assuming all

other conditions to be identical (i.e. same display, ambient

light, viewing distance etc.), the treatments QP1 and QP2

will decrease the video quality and essentially cause a shift

in means (MOS). In other words, the intervention in original

video will result in shifted (in location) version of the popula-

tion Porg , as shown in Figure 2. Let µQP1
and µQP2

denote the

means of the populations PQP1
and PQP2

, respectively. Then,

if these treatments have a systematic effect on video quality,

we can express the elements of the corresponding populations

as P
(i)
QP1

= µorg + EQP1
+ ǫi and P

(i)
QP2

= µorg + EQP2
+ ǫi.

Here EQP1
and EQP2

are the effects of the treatments QP1

and QP2, respectively. Hence, the quality scores for the new

conditions are shifted from µorg by an amount triggered by

the visible impact of the treatments on the video quality, and

can be quantified by EQP1
and EQP2

. In the example shown

in Figure 2, EQP1
= −1.2 and EQP2

= −3.1 (negative

values are indicative of decrease in video quality). Notice that

the resulting populations PQP1
and PQP2

will have the same

variance as Porg because the treatments (QP1 and QP2) will

cause systematic changes in individual ratings (i.e. observers

who were more critical in case of original video will remain

so for the new conditions also). In the alternate case, if the

treatments do not cause any changes in the opinion scores i.e

the effect is not visible to the observers (i.e. EQP1
= 0 and

EQP2
= 0), then the three populations will be the same and

one can conclude that the treatments do not lead to statistically

significant differences in means (MOS).

B. The case of heterogeneous variances

In the third case, if the treatments QP1 and QP2 do not in-

troduce systematic effect on video quality, then the individual

opinion scores may randomly increase (video quality improves

visibly according to some observers), decrease (video quality

degrades visibly according to some observers) or remain

the same (video quality levels remains same as without any

treatment). In such case, we can say that the treatments caused

the ratings to become heterogeneous because apart from the

inherent random error (ǫi), the varying values of EQP1
and

EQP2
will introduce additional and possibly different varia-

tions in PQP1
and PQP2

. Consequently, the variances of the

three populations Porg , PQP1
and PQP2

will be different.

Hence, testing if µorg = µQP1
= µQP2

may not be useful

since the populations will be different in any case. Practically,

such cases are of less interest because one generally knows the

effect of a given treatment apriori (in the given example of

video compression, it is known QP1 and QP2 will lower video

quality levels as compared to the original video) and statistical

tests help to establish if the observed differences due to the

treatment are merely due to chance (i.e. due to sampling error)

or not.

If the population variances are unequal, it may point out to

2 possibilities: (1) additional factors may have crept in, (2)

the observers have not been consistent in their ratings. The

first possibility is generally minimized by careful experimental

design including training sessions at the beginning of the

test to ensure that the participants have understood the task

well. The effect of second possibility is mitigated by rejecting

outliers i.e. inconsistent observers that can cause variance

to change are removed from further studies or analysis.
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Such outlier rejection is well accepted and recommended

in multimedia quality analysis, and well documented outlier

rejection strategies exist [14], [20]. Therefore, outlier rejection

provides indirect support for the assumption of homogeneity of

variance, even though the explicit goal is to remove data points

which might be dissimilar rather than making the variances

of groups similar. In other words, experimental design in

subjective tests for quality will help to ensure that the variances

of the groups to be analyzed are similar. In general, the issue

of heterogeneous group variances can be avoided [21] if proper

experimental guidelines have been followed. In other words,

Case 2 (i.e. samples/groups drawn from different populations

with same population mean) may be practically less useful

although it is perfectly valid for theoretical analysis. In sum-

mary, careful experimental design is more crucial for reliable

statistical analysis and comparisons rather than focusing on

homogeneity of variance and/or distributional assumptions

(data normality).

It may also be noted that while the use of tpooled, ANOVA

requires that population variances are equal, it does not imply

that sample/group variances be exactly equal. Rather the

said variances should be similar. This can be quantified by

computing the ratio of maximum to minimum group variance.

Empirically, if the said ratio is greater than or less than

1/4 (= 0.25), then the population variances can be deemed to

be unequal. In such case, it may not be meaningful to conduct

t-test or ANOVA because the samples are likely to be drawn

from two different populations.

C. Comparing groups with different variances

Homogeneity of variance condition should be viewed in

the light of practical considerations and not as a constraint.

Therefore, it can be assessed via the empirical rule in order

to obtain information about the presence of groups/samples

that may have very different variances as compared to the

remaining ones, and might suggest the possibility that the

samples are taken from different populations (in which case

comparing the means via tunpooled or other test which does

not use pooled variance may be less meaningful). Once again,

practical context should be used to ascertain if unequal vari-

ance condition is reasonable in view of the goals of analysis.

For instance, it is possible that only a fraction of groups

may violate this condition in which case the possible reasons

can be examined. In other cases, such groups could possibly

be removed from analysis. As discussed in section III-B, in

theory tpooled, ANOVA are in any case not affected by unequal

variance if balanced design (equal sample size) is employed.

Therefore experimental design should target balanced design

as far as possible (in multimedia quality estimation, balanced

design are common). Nevertheless, practically it may be more

insightful to analyze the possible reasons and consequences

of unequal variance rather than merely applying the statistical

tests.

As discussed, Case 2 is valid from a theoretical perspec-

tive but is of less interest in practice. In other words, the

implications of comparing k samples whose corresponding

populations have different variances but with equal means i.e.

TABLE I: Description of distribution types and their charac-

teristics.

Type Parameters Shape Kurtosis

Beta

a = 0.5,

b = 0.5

symmetric,

bimodal (two peaks) 1.5

Exponential λ = 0.5

decaying curve,

non-symmetric 9

Normal

µ = 0,

σ = 1

bell-shaped, symmetric,

unimodal (one peak) 3

Uniform

a = 0,

b = 1

flat (no peaks),

symmetric 1.8

µ1 = µ2 = ... = µk, should also be noted. In this context,

it is useful to point out that MOS is sometimes not the most

accurate measure of multimedia quality, and other measures

may be required to supplement it. For instance, the authors in

[22] proposed the use of SOS (standard deviation of opinion

scores) while Ref. [23] suggested using PDU (percentage

dissatisfied users) in addition to MOS. Note that measures

such as SOS, PDU can be different even if corresponding

population MOS are equal. Such cases will arise if groups

(samples) from different populations (with same population

means) are compared, and may not lead to meaningful analysis

of perceptual quality and/or user satisfaction levels.

V. EXPERIMENTAL RESULTS AND DISCUSSION

In the first set of experiments, we investigate the effect of

type of distribution that the sample follows. We considered

four different types of distributions (from which random

numbers were generated to simulate sample observations), and

these are summarized in Table I. Note that the parameters for

these distributions were chosen in order to result in diverse

shapes (in terms of symmetry, number of peaks etc.). The

kurtosis values reported in Table I reflect this.

As an example, we use ANOVA, and study the sampling

distribution of F when the samples follow the distributions

mentioned in Table I. We consider 5 groups (k = 5), equal

number of observations in each group (ni = n = 25), and

ensured that the groups have similar variances. Thus, we

represent the sample for exponential distribution as Sexp =
[d1exp d2exp d3exp d4exp d5exp]. Here d1exp to d5exp are 25-

dimensional column vectors representing the groups. Similarly,

we can define the samples for other distributions i.e. Sbeta,

Snormal and Suniform.

Since our goal was to study the sampling distribution of

F in ANOVA, Sexp, Sbeta, Snormal and Suniform were

generated randomly in each iteration, making sure the that

observations followed the respective distributions. The sam-

pling distributions of F for each case are shown in Figure

3. The number of iterations Niter = 105. We have also

plotted (represented by continuous line) the theoretical F
distribution with the corresponding degrees of freedom i.e.

F (k − 1,M − k) = F (4, 120) for comparison.

We can make the following two observations from this

figure:

• The sampling distribution of F follows the theoretical

F -distribution curve irrespective of the type of sample

distribution. Thus, sample normality is not a prerequisite

for F to be distributed according to F -distribution.
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Fig. 3: Sampling distribution of F values when the samples follow the indicated distributions. In each plot, the continuous

curve indicates the theoretical F -distribution with 4 and 120 degrees of freedom. Figure best viewed in color.

• Despite a small sample size (n = 25), the sampling

distribution of F approximates well the theoretical curve.

Hence, as argued, in practice ANOVA (and other para-

metric tests) can be applied to approximate the theoretical

distribution. Obviously, the approximations will improve

with increasing sample size.

We can carry out similar analysis regarding the sampling

distribution of the test statistic on real data. However, in

practice we typically have only one sample since the subjective

or objective experiment is not repeated for obvious reasons.

Therefore, to generate the sampling distributions in such

scenario, we employ the idea of resampling. Specifically, given

two or more samples which are to be compared, we can create

randomized versions of these under the assumption that the

given samples are similar (i.e. assuming the null hypothesis

to be true). To demonstrate this, we use raw opinion scores

from the dataset described in [5] where a comparison of

upscalers was performed at varying compression rates. Since

we want to study the sampling distribution of F in ANOVA,

we first selected three groups from the said data. These groups

represent quality scores of three conditions evaluated by 26

observers. Thus, the group size was 26 (ni = n = 26). Other

descriptive properties of the selected groups are summarized

TABLE II: Description of groups taken from [5].

group 1 group 2 group 3

Mean (MOS) 5.5769 7.3846 7.3077

Variance 3.1338 3.2862 2.4615

Kurtosis 1.7971 6.9602 6.4978

Shape

unimodal,

non-symmetric

bi-modal,

non-symmetric

unimodal,

non-symmetric

in Table II from which we note that none of the groups

are normally distributed as indicated by very high or very

low kurtosis values and their shapes. In addition, the group

variances are similar.

First, we applied ANOVA to compare the resampled ver-

sions of the three groups (we employed 105 randomizations

under the null hypothesis) and, the resulting sampling dis-

tribution of F values is shown in Figure 4a. As expected,

it approximates well the theoretical F distribution. To give

another example, we show the sampling distribution of tpooled
when comparing group 1 and group 2 using the pooled t-test

in Figure 4b. In this case also, the experimental distribution

reasonably follows the theoretical t-distribution.
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Fig. 4: Sampling distribution of F and tpooled values for the groups of data taken from [5]. The groups are summarized in

Table II. In each plot, the continuous curve indicates the corresponding theoretical distribution. Figure best viewed in color.

VI. PRACTICAL RECOMMENDATIONS

Based on the theoretical and experimental analysis in previ-

ous sections, it is clear that the application of parametric tests

should focus on the consequences of the assumptions in these

tests. The practical recommendations towards using the tests

are highlighted in the right flow diagram in Figure 1, and are

summarized in the following.

Applying normality checks on given data is neither required

nor recommended as the CLT provides information about

the shape and parameters of the sampling distribution of

mean. Instead the more important consideration is whether

mean (MOS) adequately represents the desired information

from the sample(s). For instance, mean is a useful measure

of central tendency in case of many symmetric distributions

(not necessarily normal). Moreover, mean is still a practically

useful statistic even if there are few outliers (skewness) in

the data. In all such cases, parametric tests are practically

meaningful for statistical analysis.

Homogeneity of variance should be exploited to obtain

further insights into the data, and therefore not be viewed as

a bottleneck for the purpose of statistical testing. To that end,

the empirical rule (refer to section IV-B) should be applied

to detect the presence of groups/samples that may have very

different variances as compared to the remaining ones. If

such groups exist, then the corresponding conditions should

be revisited to find possible reasons for unequal variance.

Consequently, if unequal variance condition is practically rea-

sonable (or such groups can be removed), tpooled or ANOVA

can be used. A balanced experimental design (equal sample

size) would therefore be preferable in such cases (recall from

section III-B both the tests are not affected by unequal variance

if group/sample sizes are same).

The use of nonparametric tests is recommended if mean is

not a suitable summary statistic of the data to be analyzed.

Note that nonparametric tests should not be used merely

because the given data is nonnormal. Rather they should be

used to generate the sampling distribution of the desired test

statistic.

In summary, analysis of data pertaining to multimedia

quality using mean (average) as a test statistic should focus

on experimental design (this includes the selection of chal-

lenging content recruiting adequate number of human subjects

with possible emphasis on balanced design, conditions to be

evaluated, and the final goal of analysis) rather than empha-

sizing distributional assumptions, equal variance condition or

resorting to multiple hypothesis tests. However, if mean is not

a suitable test statistic, then nonparametric tests can be used

by leveraging the power of computers to construct empirical

sampling distribution of the desired test statistic.

VII. CONCLUDING REMARKS

Parametric tests provide a theoretical framework for drawing

statistical inferences from the data and thus help in formulating

well grounded recommendations. However, the application of

these tests and interpretation of the results require some care in

the light of the assumptions required in these tests. To that end,

we revisited the theoretical formulations and clarified the role

of the assumption of normality and homogeneity of variance.

By analyzing the sampling distribution of the test statistics,

we argued that the more appropriate question to be asked

before deploying parametric tests is whether the test statistic

follows the corresponding distribution or not (instead of the

data following any specific distribution). We also emphasized

that the said assumptions should not be viewed as constraints

on the data. Instead it is more important to focus on their

practical implications.

The presented analysis is particularly relevant in the context

of multimedia quality assessment because the said issues have

not been emphasized enough in the corresponding literature.

We also made practical recommendations in order to avoid

the theoretical issues related to multiple hypothesis testing.

Even though the targeted application was multimedia quality

estimation, the theoretical arguments and the recommendations

are expected to be useful in several other areas (such as

medical data analysis, information retrieval, natural language

processing etc.) where parametric tests are widely used. In or-
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der to provide a tool for practical use, a software implementing

the said recommendations is also made publicly available§.
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