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Abstract

We demonstrate the possibility of controlling the suc-
cess probability of a secret sharing protocol using a
quantum cloning circuit. The cloning circuit is used
to clone the qubits containing the encoded informa-
tion and en route to the intended receipients. The
success probability of the protocol depends on the
cloning parameters used to clone the qubits. We also
establish a relation between the concurrence of ini-
tially prepared state, entanglement of the mixed state
received by the receivers after cloning scheme and the
cloning parameters of cloning machine.

1 Introduction

Quantum entanglement [1] is purely a quantum me-
chanical phenomena which has no classical analogue.
Apart from being central to the foundational aspects
of quantum physics, it has also been used as a re-
source in communication protocols to perform tasks
such as quantum computing [2], quantum teleporta-
tion [3, 4], quantum cryptography [5], quantum secret
sharing [6, 7] etc. which are impossible to achieve
using classical resources. In quantum secret shar-
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ing, quantum information encoded in a qubit is split
among several parties such that only one of them is
able to recover the information exactly, provided all
the other parties agree to cooperate [6]. Quantum se-
cret sharing protocol was carried out using a bipartite
pure entangled state in [8] and using tripartite pure
entangled states in [9, 10, 11, 12, 13]. In [14], a semi-
quantum secret sharing protocol was proposed us-
ing maximally entangled GHZ state that was secured
against eavesdropping. Quantum secret sharing has
also been realized experimentally in [15, 16, 17, 18].
In real experimental set ups, the entangled resource
shared by the users would be a mixed entangled state
due to noise or eavesdropping. We address the ques-
tion of exploiting the mechanism of noise introduced
in the system for gaining advantage in certain situa-
tions.

In order to explain the results obtained in this arti-
cle, we first review the original quantum secret shar-
ing protocol- Suppose a spy named Charlie is working
under two commanders, Alice and Bob. Charlie’s job
is to communicate a secret information to both the
commanders. However, he suspects that one of the
commanders may be dishonest without knowing who
among Alice and Bob might it be. Thus, he decides
to send the secret information in such a way that one
commander cannot collect the information without
the help of other.



In this article, we consider a situation where there
are two secret agents- one honest and one dishon-
est. The dishonest agent has some information
that he/she wants to communicate to two of his/her
friends using secret sharing protocol. However, the
honest secret agent wants to stop him/her from com-
municating the information by acting as an eaves-
dropper and controlling the success of the secret shar-
ing protocol. For this, we assume that Charlie is a
dishonest agent who wants to communicate a secret
information to his fellow friends Alice and Bob using
secret sharing without the knowledge of the agency.
CIliff being a loyal and honest agent comes to know
about it and wants to stop Charlie from communicat-
ing the information. We show that Cliff can in fact
stop Charlie from communicating the secret informa-
tion using a quantum cloning circuit (acting as an
eavesdropper) and controlling the success probability
of the protocol.

We study secret sharing protocol with the above
mentioned problem in focus where the noise is in-
troduced in the system through eavesdropping us-
ing a quantum cloning circuit. Our study reveals
some interesting facts regarding the relation between
the cloning parameters and success probability of the
protocol. We show that the bipartite state (sent by
Charlie with the encoded classical information) re-
ceived by Alice and Bob will be an entangled resource
iff the concurrence of the initially prepared pure state
surpasses a certain threshold value. We further estab-
lish that Cliff can always control the success probabil-
ity of the protocol. Interestingly for a specific quan-
tum cloning scheme, Cliff would succeed in stopping
the protocol with certainty using appropriately cho-
sen cloning parameters.

The structure of this article is as follows. In
section-II, we study the effect of a quantum cloning
circuit on a pure state in k£ x k-dimensional Hilbert
space. For two qubit systems, we find that the mixed
state shared between two distant partners remains
entangled if the concurrence of the initially pre-
pared pure entangled state exceeds a certain thresh-
old value. In section-III, we discuss the advantages
of using a quantum cloning circuit under the scenario
discussed in section I. Finally we conclude in section-
1V.

2 Quantum cloning circuit:
Creation of mixed states in
the Secret Sharing Protocol

In this section, we study the entanglement properties
of a shared state (communicated by Charlie to Alice
and Bob) to be used as a resource for secret shar-
ing protocol. For this, we first assume that Char-
lie prepares and encodes the classical information in
a maximally entangled pure state in his laboratory
and sends one qubit each to Alice and Bob through
two separate channels. The initially prepared pure
state in k® k-dimensional Hilbert space evolves into a
mixed state as the individual qubits en route (to the
users) are cloned by Cliff using a quantum cloning
circuit.

Let us now discuss the evolution of initially pre-
pared pure state into a mixed state. Any bipartite
pure state [¢)™ in a k ® k-dimensional system can be
written in the Schmidt polar form as

k
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where \; >0, i =1,2,........ k are the Schmidt coef-
ficients and satisfy the condition Zle Ai = 1. Once
Charlie prepares the bipartite entangled state, he
sends particle 1 to Alice and particle 2 to Bob through
insecure channels where Cliff attempts to clone the
particles 1 and 2, respectively. The operation of the
quantum cloning circuit that Cliff applies to the in-
dividual particles can be described as [19]
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where |0)g denotes the initial state of the environ-
ment and |M), and |X;),(i = 1,2,....k) denote the
ancilla states. The ancilla state vectors |X;),(i =
1,2,...k) form an orthonormal basis of the ancilla
Hilbert space. The unitarity of the transformation
(2) gives the following relation between the parame-
ters ¢ and d

A+20k-1)d*=1 (3)



Using (2), we presume that Cliff applies symmetric state such that
quantum cloning circuit to both the qubits given in

(2). The state |1)™ transforms under (2) as pryntocel = ppgntocel —
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who then share a joint mixed state described by the
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=t 7 7l tion here that Cliff may also send particles 1 (3) and 2

+ (L 1)24)| X5) | X)) (4) (4), respectively to Alice and Bob. However, without
any loss of generality we assume that for Alice and
Bob to share an entangled state, Cliff sends particles
1 and 4 or 3 and 2 to Alice and Bob, respectively.
This is obvious by the way local and non-local den-
sity operators are defined through equations (5) and
After tracing out the ancilla qubits, the four qubit (6). We also demonstrate the viability of above ar-
state would be described by the density operator gument by studying the entanglement properties of
p1324. Moreover, as the sent qubit 1 (2) interacts density operators defined by (5) and (6). For this, we
with its corresponding cloned qubit 3 (4), the state re-express the local and nonlocal outputs for a 2 ® 2

described by the density operator piz (p24) can be system in computational basis as
designated as local output(s) and would be given by

where |)3 and |)4 denote the qubit of the environment.

AN 0 0 0
oca oca. O d2 d2 O
Pl13 = Pl24 = 0 A2 42 0 (7)

k
2
et = plgeel = 237 Nifiy i i+ 000k

1=1
k (5) p?zn—local: ggn—local:
Y Nl g) + 14,9) (G, 3]+ (. i]).
D2 ) 15 D)1+ N pp—
0 R O 0 (8)
0 0 R 0
OV 0 0 Pl + S\

Since the state described by the density operator pi4

(p23) is formed between the original qubit 1 (2) and where P = (c? 4+ d?)?,Q = 4c*d*>, R = ?d* + d*, S =
the cloned qubit 4 (3) which are located at two dis- d*. As CIliff clones the qubits en route to Alice and
tant places, the state can be regarded as a non-local Bob using the cloning circuit, the shared mixed state



(6) may or may not be entangled. Using concurrence
[20] and optimal witness operators [21] for two-qubit
systems, we find that the shared state (6) would be
entangled if there exists a critical value of concurrence
which measures the initial entanglement present in
the two qubit pure system i.e. if the concurrence of
initially prepared state is less than this critical value
then the shared state is separable. For this, we use an
optimal witness operator Wl(z) for a two qubit system
given by [21]
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where ¥ can be expressed in terms of the pauli ma-
trices oy, 0, and o, as
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In matrix form, W1(2) can be re-expressed as
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It is clear that the critical value of concurrence de-
pends on the cloning parameter c. Also, the function
of cloning parameter ¢ in (13) is a decreasing func-
tion and therefore the critical value of concurrence de-
creases as c¢ increases. Hence, the lower value of con-
currence (of the initially prepared entangled state)
would ensure that the non-local shared state is en-
tangled if the quantum cloning circuit parameter c

tends towards unity. Similarly, the local shared state

described by the density matrix pi%® = ploeal is sep-

arable because T’I’(W(2) focaly — Tr(Wl(Q) local) —
L_ > 0. Similar results would be obtained if one
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uses another optimal witness operator [22] expressed

as
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where ¥ is given by (10).

Observation: If Charlie initially prepares a max-
imally entangled state, i.e. when Ay = A2 = 3, then
for a specific value of parameter ¢ = \/2/_3, the shared
state between Alice and Bob takes the form of a max-
imally entangled mixed state represented by
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where |®T) = \/ii(|00>+|11>). Thus if the maximally

entangled pure state sent through insecure channels
is cloned by CIliff using transformations defined in
(2), then there exists a value of the quantum cloning
circuit parameter ¢ for which the maximally entan-
gled pure state transforms to a maximally entangled
mixed state that belongs to the family of Werner
states [23].

3 Application of two-qubit bi-
partite mixed state in the
quantum secret sharing pro-
tocol

We now proceed to demonstrate the application of
secret sharing protocol so that Cliff can stop Charlie
from communicating secret message encoded in the
two-qubit mixed entangled state (6) shared between
Alice and Bob. Our protocol can be described in
following steps:



Step-1: Maximally entangled pure state pre-
pared by Charlie

In order to split the information between Alice and
Bob, Charlie prepares a two qubit maximally entan-
gled pure state either in |¢p1) = \%(|OO> + |11)) or
in|o~) = \%(|OO> —[11)) form. Whether to prepare
|¢pt) or |¢7) state is decided by tossing a coin i.e.
if “head” appears then Charlie prepares |¢™) and if
“tail” appears then Charlie prepares |¢~). One can
designate “head” as “0” and “tail” as “1”. In this
way, Charlie encodes one bit of information into the
prepared state. Once the information is encoded,
Charlie sends the qubits to Alice and Bob. CIiff,
however, intercepts and clones these qubits using a
quantum cloning circuit. For both the qubits, Cliff
applies the same symmetric quantum cloning circuit
described by (2). The protocol proceeds with Cliff
resending any one of the two qubits to Alice and Bob
provided the state is entangled. Without any loss
of generality we assume that Alice and Bob share a
mixed state that can be described either by the den-
sity operator

phs = a2 (00)(00] + 11)(11)
+ Z(ooyaa + 11 00)
+ R(]01)(01] 4 |10)(10]) (17)
or by the density operator
pap = a2 (00)(00] + [11){11)
— 200y a1 + 1100
+ R(]01)(01] + ]10){10|) (18)

where P = (¢ + d?)?, Q = 4¢®d?, R = d*(c* + d?),
S =d* and ¢® +2d* = 1.

Step-1I: Single qubit measurements per-
formed by Alice

Alice performs measurement on her qubit in the

. 0)+|1) [0)—|1 .
Hadamard basis By = {%, %} The sin-
gle qubit state received by Bob would depend on the
measurement, outcome of Alice’s qubit. For example,

(i) If the shared state between Alice and Bob is p’ 5

and Alice’s measurement outcome is %, then
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(ii) If the shared state between Alice and Bob is p} 5
and Alice’s measurement outcome is %, then
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(iii) If the shared state between Alice and Bob is p, 5

and Alice’s measurement outcome is %, then
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(iv) If the shared state between Alice and Bob is p 5
0y —[1)

and Alice’s measurement outcome is EVoR then
pE = Tr {<|O>\;§|1> <O|\;§<1| ®12) v
10) — 1) {0 — (1
(Pt 8sen)]
= 1B+ QU0 + 1)) (22

where Iy denotes the identity operator in 2 x 2-
dimensional Hilbert space. Similarly, one can find
the state obtained by Alice, if Bob chose to perform
measurement on his qubit. The equations (19) - (22)



clearly explain that it is neither possible for Alice nor
for Bob alone to decode Charlie’s encoded informa-
tion. They would only be able to decode Charlie’s in-
formation if they both agree to collaborate with each
other. If they agree to collaborate, then our protocol
proceeds further to step-III.

Step-III: Alice declares her measurement
outcome

Once Alice and Bob agree to cooperate with each
other, Alice sends her measurement outcome to Bob.

(i) If the measurement outcome is % then she
sends Bob a classical bit “0” and

(ii) If the measurement outcome is % then she
sends classical bit “1” to Bob.

Step-1V: Positive operator valued measure-
ment (POVM) performed by Bob

Here, we introduce the positive operators to unam-
biguously discriminate between Bob’s mixed states
pEO and pgo (or pgl and pgl) corresponding to Al-
ice’s measurement outcome |+) (or |—)). For this, we
define three-element positive operator valued mea-
surement (POVM), denoted by E;, Fs and E3 such

that
B — (

e
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where @ € [0,1/2]. If Bob receives the classical bit
“0” then Alice’s measurement outcome would be |+)
and correspondingly Bob will receive either pEO or
p’. Using the operators defined in (23), Bob can
successfully discriminate between the two states pJBCO

and pgo as

Tr(Ewpp’) = Tr(Ezpf’) =0
+0 o (24)

Tr(Evpg ) =Tr(Ewpg) =Q

Similarly, if Bob receives the classical bit “1” then

also he can discriminate the single qubit states pgl

and pp' using POVM operators defined in (23).

Thus, the success probability of the protocol can
be expressed as

1 1
Psye = §TT[P+OE1] + §TT[070E2]- (25)
The above equation can be re-expressed as
Psuc = Q = 402d2, (26)

where @ € [0, %] Clearly, the success probability de-
pends on the cloning circuit parameters ¢ and d such
that Pg,. < 1/2. Therefore, the success probability of
the protocol can be controlled by Cliff and would lie
between @ € [0,3]. For universal quantum cloning
machine where the cloning parameters ¢ and d as-
sume the values % and %, respectively Py, = 0.45
which is very close to the maximum success proba-
bility (1/2) that can be achieved using this protocol.
However, if Cliff wants to stop Charlie from commu-
nicating the secret information to Alice and Bob, he
will use Wootters-Zurek [24] cloning machine where
the cloning parameters ¢ and d take values 1 and 0,
respectively and hence the success probability of the
protocol would be zero. In this way, Cliff can control
the success probability of the protocol and can stop
Charlie from leaking the secret information.

4 Conclusion

Our study provides a different insight to the secret
sharing protocol in a scenario where an honest secret
agent wants to stop a dishonest agent from leaking
certain information using secret sharing protocol. We
have shown that by using a cloning circuit the hon-
est agent can control the success probability of secret
sharing protocol and in a specific case can even stop
the dishonest agent with certainty from communicat-
ing the secret information. It would be interesting to
see how CIliff can control the success probability of
the protocol by using a more generic cloning trans-
formation in comparison to (2). Another question of
particular interest would be to analyze the protocol
for transmission of a quantum information instead of
a classical one.
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