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Abstract

This work is at the interface of graph theory and quantum mechan-

ics. Quantum correlations epitomize the usefulness of quantummechanics.

Quantum discord is an interesting facet of bipartite quantum correlations.

Earlier, it was shown that every combinatorial graph corresponds to quan-

tum states whose characteristics are reflected in the structure of the un-

derlined graph. A number of combinatorial relations between quantum

discord and simple graphs were studied. To extend the scope of these

studies, we need to generalise the earlier concepts applicable to simple

graphs to weighted graphs, corresponding to a diverse class of quantum

states. To this effect, we determine the class of quantum states whose den-

sity matrix representation can be derived from graph Laplacian matrices

associated with a weighted directed graph and call them graph Laplacian

quantum states. We find the graph theoretic conditions for zero and non-

zero quantum discord for these states. We apply these results on some

important pure two qubit states, as well as a number of mixed quantum

states, such as the Werner, Isotropic, and X-states. We also consider

graph Laplacian states corresponding to simple graphs as a special case.

Keywords: Density matrix; Mixed state; Weighted Graph; Combinato-

rial and Signless Laplacian Matrices of a graph; Quantum discord.
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1 Introduction

A strong interest has been generated towards applying graphs and networks
in different aspects of quantum mechanics and quantum information in recent
times [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]. Another scenario where this could be envis-
aged would be the discretization of a Hamiltonian, within a tight binding model,
such that the electron lives on the vertices of the graph and the dynamics in-
duces their hopping from one vertex to another. Quantum states defined by
using combinatorial Laplacian and signless Laplacian matrices associated with
a weighted directed graph have recently been introduced and investigated in
[11]. Throughout the paper we call these quantum states as graph Laplacian
states. In this paper we derive certain conditions on structure of weighted di-
rected graphs such that the graph Laplacian quantum states have zero quantum
discord.

Recall that quantum discord D(ρ) of a state ρ is a class of quantum correla-
tions which has been used as a resource in quantum information and communica-
tion [12, 13, 14, 15, 16, 17]. From the perspective of computational complexity,
it is proved that calculating D(ρ) is an NP-complete problem [18, 19]. This
calls for developing alternate measures and techniques to realize quantum dis-
cord [20]. In our earlier work [10], we have constructed a number of criterion for
zero discord in graph Laplacian quantum states corresponding to simple graph.
Also, we have produced a graph theoretic measure of quantum discord. Simple
graphs do not possess directed, weighted edges and loops. As a result we can
express a limited number of useful quantum states as a graph Laplacian quan-
tum state. Therefore, for wider applicability, we need to generalise our earlier
constructions for weighted graphs. This work is related to combinatorial graphs
and their corresponding quantum states. We find out conditions on graphs such
that the corresponding quantum states have non-zero discord. These conditions
shed light into the nature of discord in a number of important quantum states.
Hence just by observing the structural properties of the graph, the quantum
discord can be determined. These properties include existence or non-existence
of some particular edges, and degree of vertices. Therefore, this work devel-
ops a new method of visualization to the problem of discord by exploiting the
connection between graph theory and quantum mechanics.

Consider a bipartite system of order m× n. Then the density matrix corre-
sponding to such a bipartite system is of ordermn×mn and it is a block matrix
having each block of size n. Treating a graph as a clustered graph on m × n
vertices in which each cluster contains n vertices, the combinatorial Laplacian
matrix and the signless Laplacian matrix (defined in Section 2) define block
density matrices corresponding to the graph. The arrangement of edges in the
clustered graph determines the discord in the corresponding quantum states.
This approach can be considered as a combinatorial approach to the realization
of quantum discord. Interpreting the Werner states, isotropic states and some
of the X states as graph Laplacian states, we illuminate their quantum discord
in graph theoretic terms.

The article is organized as follows. We provide a brief overview of graph
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theory which is required for the remaining part of the article. We establish the
condition for a quantum state to be a graph Laplacian state. In Section 3, we
derive a number of results to generate the graph theoretic criterion of discord.
Finally we employ these results on some well known states, both pure and mixed,
for example, two qubit graph Laplacian states, Werner, Isotropic, and X states,
as well as graph Laplacian states corresponding to arbitrary simple graphs. We
then conclude.

2 Preliminaries

A weighted digraph is an ordered pair of sets denoted by G = (V (G), E(G))
where V (G) is called the vertex set and E(G) ⊆ V × V is a set of ordered pair
of vertices called the edge set with a weight function wG : E(G) → C \ {0} [11].
If there is no confusion regarding the underlined digraph G, we simply denote
w for wG. Now, we consider the following assumptions on all weighted digraphs
considered in the article.
Assumptions:

1. Given two vertices i and j, if (i, j) ∈ E(G) then (j, i) ∈ E(G) and w(j, i) =
w(i, j), the complex conjugate of w(i, j).

2. If (i, i) ∈ E(G) then w(i, i) ∈ R+, the set of non-negative real numbers.

Note that if w(i, j) = 1 for all (i, j) ∈ E(G) and (i, i) /∈ E(G) for all i ∈ V (G)
then the digraph G becomes a simple graph. Let G be a weighted digraph on
N vertices. Then the adjacency matrix A(G) = [aij ]N×N associated with a
weighted digraph G is defined by,

aij =

{

w(i, j) if (i, j) ∈ E(G),

0 if (i, j) /∈ E(G)
(1)

and aji = aij = w(i, j). Thus A(G) is a Hermitian matrix. The weighted degree
of a vertex i is defined by

di =
∑

(i,j)∈E(G)

|w(i, j)| =
N
∑

j=1

|ai,j |. (2)

The degree matrix is the diagonal matrix defined byD(G) = diag{d1, d2, . . . dN}.
The Laplacian and the signless Laplacian matrices are defined by L(G) =
D(G) − A(G) and Q(G) = D(G) + A(G), respectively. It is proved in [11]
that L(G) and Q(G) are positive semidefinite Hermitian matrices. Recall that
a density matrix ρ corresponding to a quantum state is a positive semi-definite
Hermitian matrix with unit trace. Consequently the density matrices corre-
sponding to a weighted digraph are defined as

ρl(G) =
1

trace(L(G))
L(G) and ρq(G) =

1

trace(Q(G))
Q(G). (3)
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We denote ρl(G) and ρq(G) together with ρ(G) when no confusion arises. We
call the digraph G as the graph representation of ρ(G). Then we have the fol-
lowing lemma.

Lemma 1. A density matrix ρ = (ρij)N×N has a graph representation if and
only if for all i and j, ρii ≥

∑

i6=j |ρi,j |.

Proof. If ρ has a graph representation, the weighted digraph G has N vertices
since the order of ρ is N . When i 6= j and ρij 6= 0 there is a directed edge
(i, j) with edge weight w(i, j) = ρij . As ρ is a positive semi-definite Hermitian
matrix, ρji = ρij and ρii is a non-negative real number. Thus (i, j) and (j, i)

exists together with w(j, i) = w(i, j). Besides, ρii = di + saii. Here s = −1 for
ρl(G) and s = 1 for ρq(G). Now,

ρii = di + saii =

N
∑

j=1

|w(i, j)|+ sw(i, i) =
∑

j 6=i

|w(i, j)|+ |w(i, i)|+ sw(i, i)

=
∑

j 6=i

|ρij |+ |w(i, i)|+ sw(i, i).

(4)

As ρii is real, w(i, i) must be real in the above expression. Now two cases arise.

• Case-I: Let w(i, i) = 0 or |w(i, i)| = −sw(i, i). In any case, ρii =
∑

j 6=i |ρi,j |.

• Case-II: Let w(i, i) 6= 0 and |w(i, i)|+ sw(i, i) = 2|w(i, i)|. Then, from the
above equation,

|w(i, i)| =
ρii −

∑

i6=j |ρij |

2
≥ 0. (5)

In this case, ρii ≥
∑

i6=j |ρij |.

Matrices with the property ρii ≥
∑

i6=j |ρij | are called diagonally dominant.
Entanglement of the diagonally dominant density matrices were studied in [21].
Now we state the following definition and examples.

Definition 1. Graph Laplacian quantum states: A quantum state ρ is
said to be a graph Laplacian state if there exists a weighted directed graph G
such that ρ = ρ(G).

Note that any graph Laplacian state satisfies Lemma 1 that is every graph
Laplacian quantum state is represented by a diagonally dominant density matrix
and the converse also holds.

Example 1. Consider the quantum state

ρ =
1

5
|0〉 〈0|+

2

5
|0〉 〈1|+

2

5
|1〉 〈0|+

4

5
|1〉 〈1| =

1

5

[

1 2
2 4

]

.

Note that, ρ11 ≤ ρ12. Thus, this quantum state is not a graph Laplacian quantum
state.
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From now onwards we use the word graph for weighted directed graph. The
following describes the framework for interpreting any graph G on mn vertices
as a graph with m clusters each with n vertices. Recall that cluster of a graph
is a subgraph of the graph. Consider a partition of the vertex set V (G) that
produces these clusters as follows.

V = C1 ∪ C2 ∪ · · · ∪ Cm;

Cµ ∩Cν = ∅ for µ 6= ν and µ, ν = 1, 2, . . .m;

Cµ = {vµ1, vµ2, . . . vµn}.

(6)

For any vertex vγi, the Roman index i represents the position of a vertex in γ-th
cluster indexed by a Greek index. A density matrix ρ acting on H(m) ⊗ H(n)

has order m × n, which corresponds to a graph with m × n vertices. Clearly
dimension of H(n) is the number of vertices in the cluster Cµ. Also the number
of clusters in the graph is the dimension of H(m). Then,

A(G) =











A11 A12 . . . A1m

A21 A22 . . . A2m

...
...

. . .
...

Am1 Am2 . . . Amm











m×m

, (7)

where Aµν are blocks of order n× n [22]. Note that, Aµµ contains the weights
of the edges joining two vertices inside the cluster Cµ. Also Aµν contains the
weights of the edges joining vertices of Cµ and Cν . As A(G) is a Hermitian
matrix, we have A†

µµ = Aµµ and A†
µν = Aνµ, for µ 6= ν. Now we recall the

definition of induced subgraph [23].

Definition 2. Induced Subdigraph: A subdigraph H of a digraph G is an
induced subdigraph if u, v ∈ V (H) and (u, v) ∈ E(G) implies (u, v) ∈ E(H).

We denote the induced subdigraph generated by the cluster Cµ by 〈Cµ〉.
Also the subdigraph 〈Cµ, Cν〉 consists of all the vertices in Cµ ∪Cν , and all the
edges (u, v) and (v, u) with u ∈ Cµ, and v ∈ Cν . In the equation (7), the block
Aµµ acts as the adjacency matrix of the cluster Cµ. Further, Aµν represents all
the edges joining two vertices belonging to different clusters Cµ and Cν . Thus,

A(〈Cµ, Cν〉) =

[

0 Aµν

Aνµ 0

]

=

[

0 Aµν

A†
µν 0

]

. (8)

This clustering on V (G) also partitions the degree matrix into blocks, such that,
D = diag{D1, D2, . . .Dm}, where Dµ is a diagonal matrix containing degree of
the vertices in Cµ. If Bµν are blocks of the density matrix ρ(G), then

Bµν =

{

s
Aµν

d
if µ 6= ν

Dµ+sAµµ

d
if µ = ν

, (9)

where s = 1 and −1 for ρ(G) = ρq(G) and ρl(G), respectively.
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A bipartite density matrix acts on the Hilbert space H(A) ⊗ H(B) where
H(A) and H(B) denote the state spaces (Hilbert spaces) corresponding to the
constituent systems A and B respectively, ⊗ denotes the Kronecker (tensor)
product. For any bipartite density matrix ρ, there are two reduced density
matrices ρa and ρb acting on the spaces H(A) and H(B), respectively. The
mutual information in ρ is defined as I(ρ) = S(ρa) + S(ρb) − S(ρ) where
S(X) = − trace(X log(X)) is the von-Neumann entropy of a state X . Let
the set of all possible von Neumann measurements with respect to the system
H(B) be Πb. Thus we obtain an another measure of mutual information in ρ
given by I(ρ|Πb) = S(ρa) − S(ρ|Πb), where S(ρ|Πb) =

∑

k pkS(ρk), and ρk =
1
pk
(Ia⊗Πb

k)ρ(Ia⊗Πb
k) with pk = trace[(Ia⊗Πb

k)ρ(Ia⊗Πb
k)], k = 1, 2, . . .dim(Hb).

Quantum discord is the difference between these two classically equivalent mea-
sures I(ρ) and I(ρ|Πb) [14, 13]. There are quantum states which yield equal
value for both the measures that are known as classical-quantum states [24] or
pointer states.

Definition 3. Quantum discord: The quantum discord of a bipartite state ρ
is

D(ρ) = min
Πb

{I(ρ)− I(ρ|Πb)}. (10)

3 Graph theoretic criterion for quantum discord

Before going to the graph theoretic aspects of quantum discord, below we discuss
a number of definitions and lemmas which will be used for further derivations.
Given a vertex i we call the set nbdG(i) = {j : j ∈ V (G), (i, j) ∈ E(G)} as the
neighborhood of vertex i. Under the basic assumptions outlined above, (i, j)
and (j, i) belong to E(G) together. With respect to the vertex i we describe
(i, j) as the outgoing edge and (j, i) as the incoming edge. We collect the weights
of the edges incident to vertex i in the following sets.

W (nbdG(i)out) = {wG(i, j) : (i, j) ∈ E(G)},

W (nbdG(i)in) = {wG(j, i) : (j, i) ∈ E(G)}.
(11)

Definition 4. Support of a vector: Given a vector a ∈ Cn there is a set
supp(a) defined by,

supp(a) = {i : a(i) 6= 0}

where a(i) denotes the ith entry of a.

Given two vectors a, b ∈ Cn we define their product as,

〈a|b〉 =
∑

k∈supp(a)∩supp(b)

a(k)b(k). (12)

This should not be confused with the inner product between two state vectors.
Given a matrix A = (aij)n×n, ai∗ and a∗j denotes the i-th row and j-th column
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vectors, respectively. Corresponding to every A, there is a weighted bipartite
graph of order 2n, A = (V (A), E(A)) with the adjacency matrix,

A(A) =

[

0 A
A† 0

]

. (13)

AsA is a bipartite graph we can write V (A) = Cµ∪Cν , whereCµ = {vµ1, vµ2, . . . vµn},
Cν = {vν1, vν2, . . . vνn} and Cµ ∩ Cν = ∅ as mentioned in equation (6). There-
fore, A = 〈Cµ, Cν〉, the subgraph generated by the vertex sets Cµ and Cν . The
directed edge (vµi, vνj) ∈ E(A), if and only if aij 6= 0. Also, w(vµi, vνj) = aij .
Moreover, the adjacency matrix A(A) indicates the existence of (vνj , vµi) with
w(vνj , vµi) = aij . Now,

nbdA(vµi) = {vνj : (vµi, vνj) ∈ E(G)} ⊂ Cν . (14)

Similarly, nbdA(vνi) ⊂ Cµ. Let 01,n and 0n,1 are zero row and column vectors.
Note that, the i-th row of A(A), that is (01,n, ai∗) represents weights of outgoing
edges from the vertex vµi. According to the definition 4, supp(01,n, ai∗) =
supp(ai∗) which represents indexes of vertices in nbdA(vµi). Thus we have,

supp(ai∗) = nbdA(vµi), and ai∗ =W (nbdA(vµi)out). (15)

Similarly, the (n + i)-th column of A(A), that is (a∗i, 0n,1) represents edge
weights of the incoming edges to the vertex vνi. Also, supp(a∗i) represents
indexes of vertices in nbdA(vνi). Hence,

supp(a∗i) = nbdA(vνi) and a∗i =W (nbdA(vνi)in). (16)

In particular, any complex Hermitian matrix A of order n can be considered
as an adjacency matrix of a graph Ã, where V (Ã) = Cµ = {vµ,1, vµ,2, . . . vµ,n}.

The edge (vµ,i, vµ,j) ∈ E(Ã) if and only if aij 6= 0. Thus, Ã = 〈Cµ〉, the induced
subgraph generated by the vertex set Cµ. Here, the row vector ai∗ represents
all outgoing edges from the vertex vµi. Thus, supp(ai∗) = nbdÃ(vµi). Similarly,
supp(a∗i) = nbdÃ(viµ). Now, we have the following results. Interested readers
may go through their proofs in the Appendix.

Lemma 2. Let the weighted bipartite digraphs corresponding to complex square
matrices A and B of order n be A = 〈Cµ, Cν〉, and B = 〈Cα, Cβ〉, respectively.
The matrices A and B commute, if and only if for all i, j with 1 ≤ i, j ≤ n,

∑

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vνk)w(vαk, vβj) =
∑

k∈nbd(vαi)∩nbd(vνj)

w(vαi, vβk)w(vµk, vνj).

Note that, if 〈Cµ, Cν〉 = 〈Cα, Cβ〉 then the condition of commutativity holds.
Here, equality between two graphs indicates that they have equal vertex sets,
edge sets, and vertex labellings. Also, if any of the graphs be empty, then the
commutativity condition holds trivially.
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Corollary 1. Let Ã = 〈Cµ〉, and B = 〈Cα, Cβ〉 be graphs corresponding to
a Hermitian matrix A = (aij)n×n, and square matrix B = (bij)n×n. They
commute if and only if for all i, j with 1 ≤ i, j ≤ n,

∑

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vµk)w(vαk , vβj) =
∑

k∈nbd(vαi)∩nbd(vµj)

w(vαi, vβk)w(vµk, vµj).

Corollary 2. Two Hermitian matrices A = (aij)n×n, and B = (bij)n×n corre-

sponding to graphs Ã = 〈Cµ〉, and B̃ = 〈Cν〉 commute, if and only if for every
i, j with 1 ≤ i, j ≤ n,

∑

k∈nbd(vµi)∩nbd(vνj)

w(vµi, vµk)w(vνk, vνj) =
∑

k∈nbd(vνi)∩nbd(vµj)

w(vνi, vνk)w(vµk , vµj).

A complex normal matrix A commutes with its conjugate transpose, that is
AA† = A†A. Hermitian matrices are trivially normal matrices. But there are
normal matrices which are not Hermitian.

Lemma 3. Let A = 〈Cµ, Cν〉 be a weighted bipartite digraph corresponding to
a matrix A = (aij)n×n. It is normal, if and only if for every i, and j with
1 ≤ i, j ≤ n,

∑

k∈nbd(vµi)∩nbd(vµj)

w(vµi, vνk)w(vνk , vµj) =
∑

k∈nbd(vνi)∩nbd(vνj)

w(vνi, vµk)w(vµk , vνj).

Now we consider a trivial observation related to the above lemma, which
will be used later. Let there be only one edge of arbitrary non-zero weight,
(vµ,p, vν,q) with p 6= q, between two clusters Cµ and Cν . Now, for i = j = p,

∑

k∈nbd(vµi)∩nbd(vµj)

w(vµi, vνk)w(vνk, vµj) = w(vµp, vνq)w(vνq , vµp). (17)

Also, for i = j = p the set nbd(vνi)∩ nbd(vνj) = ∅, as vνp is an isolated vertex.
Hence, the term

∑

k∈nbd(vνi)∩nbd(vνj)
w(vνi, vµk)w(vµk , vνj) takes no value. In

this case, the graph 〈Cµ, Cν〉 fails to fulfil the normality condition. Note that,
for p = q the graph 〈Cµ, Cν〉 with single edge (vµ,p, vν,q) represents a normal
matrix.

Let us recollect some important facts discussed above. The Lemma 1 pro-
vides conditions on a quantum state ρ acting onH(m)⊗H(n) to have a graph rep-
resentation. In the equation (6), we partition a digraph with N = mn vertices
into clusters. Thus two sets of subgraphs are generated: {〈Cµ〉 : µ = 1, 2, . . .m}
where every graph is of order n, and {〈Cµ, Cν〉 : µ, ν = 1, 2, . . .m;µ 6= ν} where
every graph is bipartite graph with 2n vertices.

Theorem 1. The quantum state corresponding to the density matrix ρ(G) has
zero discord if and only if

8



1. Commutativity condition: Given any two subgraphs 〈Cµ, Cν〉, and
〈Cα, Cβ〉 and for all i, j with 1 ≤ i, j ≤ n,

∑

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vνk)w(vαk , vβj) =
∑

k∈nbd(vαi)∩nbd(vνj)

w(vαi, vβk)w(vµk , vνj).

2. Normality condition: For all subgraph 〈Cµ, Cν〉 and for every i, and j
with 1 ≤ i, j ≤ n,

∑

k∈nbd(vµi)∩nbd(vµj)

w(vµi, vνk)w(vνkvµj) =
∑

k∈nbd(vνi)∩nbd(vνj)

w(vνi, vµk)w(vµkvνj).

3. Degree condition The graph satisfies the following two degree criterion,

(a)

±
[

w(vνi, vνj)(dµi − dµj) + w(vµi, vµj)(dνj − dνi)
]

+
∑

k∈nbd(vµi)∩nbd(vνj)

w(vµi, vµk)w(vνk , vνj)

−
∑

k∈nbd(vνi)∩nbd(vµj)

w(vνi, vνk)w(vµk , vµj) = 0,

(18)

(b)

w(vαi, vβj)(dµi − dµj)±
[

∑

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vµk)w(vαk, vβj)

−
∑

k∈nbd(vαi)∩nbd(vµj)

w(vαi, vβk)w(vµk, vµj)
]

= 0.

(19)

4 Discord of some graph Laplacian states

In this section, we illustrate the discussions in the previous sections by studying
discord of some graph Laplacian states corresponding to well known quantum
states. Before that, we make a list of graph properties that are useful for
determining the quantum discord.

The lemma 2 and 3 as well as their corollaries suggest arrangements of
edge weights in the graph, necessary for zero discord. In addition, the degree
of the vertices should fulfil the degree condition of the theorem 1. If vertices
of Cµ, µ = 1, 2, . . .m have equal degree, then dµi − dµj = 0 independent of
the existence of edge (vαi, vβj). In this case, every pair of subgraph 〈Cµ〉 and
〈Cα, Cβ〉 satisfies the Corollary 1.

Also if the subgraphs 〈Cµ〉 and 〈Cν〉 fulfill the commutativity condition
described in the corollary 2 then the first degree condition takes the following
simpler form:

w(vνi, vνj)(dµi − dµj) + w(vµi, vµj)(dνj − dνi) = 0 for all i, j. (20)

9



Further, if the subgraphs 〈Cα, Cβ〉 and 〈Cµ〉 satisfy the commutativity condition
described in the corollary 1, the equation is simplified to

w(vαi, vβj)(dµi − dµj) = 0 for all i, j. (21)

When the graph is a simple graph, w(u, v) = 1 for all (u, v) ∈ E(G). Then this
condition on weighted graphs is consistent with that of simple graphs [10].

4.1 Two qubit pure states

Two qubit quantum states are the simplest bipartite quantum states. Here,
we consider two examples of 2-qubit pure states: |ψ1〉 = a |00〉 + b |11〉, and
|ψ2〉 = a |00〉 + b |01〉, where |a|2 + |b|2 = 1. Restricting a and b in |ψ1〉 to 1√

2

leads to the well known Bell state. The density matrices corresponding to these
quantum states are

σ1 = |ψ1〉 〈ψ1| =









a2 0 0 ab
0 0 0 0
0 0 0 0
ab 0 0 b2









, and σ2 = |ψ2〉 〈ψ2| =









a2 ab 0 0
ab b2 0 0
0 0 0 0
0 0 0 0









,

(22)
respectively.

From Lemma 1, we can see that these density matrices represent graph
Laplacian quantum states if a2 ≥ ab and b2 ≥ ab. If a 6= 0 and b 6= 0 then these
two inequalities together imply a = b. A density matrix of order 4 corresponds
to a graph with four vertices. Also, the graphs representing 2-qubit bipartite
states must have two clusters. Let σ1 = ρq(G1), and σ2 = ρq(G2). Then,

G1 ≡ •00

❊❊
❊❊

❊❊
❊❊

•01

•10 •11

and G2 = •00 •01

•10 •11

(23)

From the conditions in Theorem 1, we can visualize that the graph G1 vio-
lates the normality condition. But, the graph G2 satisfies all of them. Hence,
the state σ2 has zero discord, but σ1 has non-zero discord. This example clearly
indicates that quantum discord of states depend on the distribution of edges in
the graph.

4.2 Werner state

The Werner state is a well-known bipartite mixed quantum state. A Werner
state [25] is represented by,

ρx,d =
d− x

d3 − d
I +

xd− 1

d3 − d
F, (24)

10



•1,1 •1,2 •1,3

•2,1 •2,2 •2,3

•3,1 •3,2 •3,3

a

a

a

b

b

b

b

b

b

c

c
c

Figure 1: Graph for ρx,3. Here a = 2 + 2x, b = 3− x, and c = 3x− 1.

where F =
∑d

i,j |i〉 〈j|⊗ |j〉 〈i|, x ∈ [0, 1] and d is the dimension of the individual

subsystems. Note that, ρx,d is a real symmetric matrix of order d2. These are
separable Werner states with non-zero quantum discord [26].

We show that all the Werner states are graph Laplacian states. As ρx,d acts
on the space H(d) ⊗ H(d), we partition the vertex set into d clusters Cµ, µ =
1, 2, . . . d, each having d vertices. The corresponding digraph has three types of
edges:

1. Loops at diagonal vertices v11, v22, . . . vdd having loop weights w(vµ,µ, vµ,µ) =
(d− 1) + (d− 1)x.

2. Loops at non-diagonal vertices {vµ,i : µ 6= i} having loop weightsw(vµ,i, vµ,i) =
d− x.

3. Non-loop edges with weight w(vµ,i, vi,µ) = dx−1. Note that, there is only
one edge between two different clusters. All such edges are diagonal and
parallel to each-other.

The following example would help to illustrate this structure.

Example 2. We may represent ρx,3, and ρx,4 as a graph with 9 and 16 vertices
depicted in figure 1 and 2. The edge weights a, b, and c represents weights of
different classes of edges discussed above.

Theorem 2. Graph Laplacian Werner states have non-zero quantum discord
except for certain discrete values of x.

Proof. Note that, for all x there is only an edge (vµ,i, vi,µ) in the subgraph
〈Cµ, Ci〉 where µ 6= i. After the lemma 3 we have shown such type of graphs
cannot fulfill normality condition.

As an example, consider the subdigraph 〈C1, C2〉 of ρx,3 depicted in fig-
ure 3. There is only one edge (v1,2, v2,1) with weight (3x − 1) between two
clusters C1 and C2. The edge weight is non-zero when x 6= 1

3 . Note that,
w(v12, v21)w(v21, v12) = (3x − 1)2 but w(v22, v12)w(v12, v12) = 0 as v22 is an

11



•1,1 •1,2 •1,3 •1,4

•2,1 •2,2 •2,3 •2,4

•3,1 •3,2 •3,3 •1,4

•4,1 •4,2 •4,3 •4,4

a

a

a

a

b

b

b

b

b

b b

b

b

b

bb

c

c
c

c
c

c

Figure 2: Graph for ρx,4. Here, a = 3x+ 3, b = 4− x, and c = 4x− 1.

•1,1 •1,2 •1,3

•2,1 •2,2 •2,3

(3x− 1)

Figure 3: Subgraph 〈C1, C2〉 of the graph ρx,3 drawn in figure 1
.

isolated vertex. In this case, the graph 〈C1, C2〉 fulfills the normality condition
if and only if x = 1

3 .
Thus the normality condition of the theorem 1 is violated except for some pa-

rameter values. Hence, graph Laplacian Werner states have non-zero quantum
discord except for some specific values of x.

4.3 Isotropic state

An isotropic state ρd,x acting on H(d) ⊗H(d) is defined by,

ρd,x =
d2

d2 − 1

[

(1− F )

d2
I +

(

F −
1

d2

)

P

]

, (25)

where F ∈ [0, 1] is the fidelity of the quantum state and P = |ψ〉 〈ψ| where
|ψ〉 = 1√

d

∑

i |ia〉 |ib〉, the maximally entangled state in dimension d. Discord

of isotropic state is studied in [27, 28]. Considering diagonal and off-diagonal
terms we may conclude that an isotropic quantum state is a graph Laplacian
state provided

(d− 1)

∣

∣

∣

∣

F −
1

d2

∣

∣

∣

∣

≤
d2 − 1

d2
F. (26)

Putting d = 2, 3, 4 in the above equation we get, 1
7 ≤ F ≤ 1, 1

13 ≤ F ≤ 1
5 ,

1
11 ≤ F ≤ 1

21 , respectively.

12



•2,1

•2,2

•1,1

•2,2

Figure 4: Isotropic state ρ2,x.

•31 •32 •33

•21 •22 •23

•11 •12 •1,3

Figure 5: Isotropic state ρ3,x

As ρd,x acts on H(d) ⊗ H(d), we represent the vertex set into d clusters
Cµ : µ = 1, 2, . . . d with Cµ = {vµ1, vµ2, . . . vµn}. We observe that a graph
representing an isotropic state has the following properties.

1. The diagonal vertices v1,1, v22, . . . vdd form a complete graph which consists
of all non-loop edges of the graph. Weight of these edges are F − 1

d2 .

2. The loop weight of the non-diagonal vertices is 1−F
d2 .

3. The loop weight of the diagonal vertices are given by d2−1
d2 F .

Example 3. Graph representations of the isotropic state ρd,x for d = 2, 3, 4 are
depicted in the figure 4, 5, and 6. In the picture, all the edges and loops are
weighted as described above.

Theorem 3. Graph Laplacian isotropic states have non-zero quantum discord
except for certain discrete values of F .

•41 •42 •43 •44

•31 •32 •33 •34

•21 •22 •23 •24

•11 •12 •13 •14

Figure 6: Isotropic state ρ4,x
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•1,1 •1,2 •1,3

•2,1 •2,2 •2,3

(F − 1
d2 )

Figure 7: Subgraph 〈C1, C2〉 of ρ3,x depicted in the figure 5

Proof. From the graph structure of the state ρ, Eq. (25), we see that the
family of subgraphs {〈Cµ, Cν〉} do not satisfy the commutativity and normality
criterion, except some specific edge weights.

As an example consider the subgraph 〈C1, C2〉 of the graph ρ3,x depicted in
the figure 7. The subgraph 〈C1, C2〉 also breaks the normality condition for all
non-zero edge weights due to reasons similar to those stated in theorem 2.

Thus, we may conclude that graph Laplacian isotropic states have non-zero
quantum discord except for some specific values of F .

4.4 X state

The X-state is well known in quantum information theory due to the specific
structure of its density matrix. Discord of some classes of 2-qubit X-states
have been studied in the literature [29, 30]. Here, we consider graph Laplacian
(definition 1) X-states acting on H(m) ⊗H(n). Hence, as before the vertex set
of the corresponding digraph has m clusters Cµ, µ = 1, 2, . . .m, each containing
n vertices. The distribution of the non-zero elements in the density matrices
suggest that the edge set has the following combinatorial characteristics:

1. If the bipartite subgraph 〈Cµ, Cν〉 is non-empty then all the edges are of
the form (vµk, vν(n+1−k)) for k = 1, 2, . . . n.

2. There is only one non-empty subgraph 〈Cα〉 with edges of the form (vαk, vα(n+1−k))
for k = 1, 2, . . . n.

Conversely if the edge set of any graph follows the above two properties the
corresponding quantum states will be classified as an X state.

Example 4. Some of the graphs of X states without edge weights and directions
are depicted in the figures 8 and 9.

Theorem 4. A graph Laplacian X state acting on H(m) ⊗H(n) has zero quan-
tum discord if and only if the following conditions are satisfied:

1. Any two non-empty subdigraphs of the form 〈Cµ, Cν〉 are equal.

2. Degree of the vertices of Cµ will fulfil dµi = dµ(n+1−i) for i = 1, 2, . . . n.

Proof. Recall that if two subdigraphs 〈Cµ, Cν〉 and 〈Cα, Cβ〉 are equal, then
the commutativity condition is satisfied. Also, if any one of them is empty,
the commutativity condition is again satisfied. Now we consider the subgraphs

14



•1,1

•2,1

•3,1

•1,2

•2,2

•3,2

•1,3

•2,3

•3,3

Figure 8: X state acting on H3 ⊗H3.

•1,1

•2,1

•3,1

•1,2

•2,2

•3,2

•1,3

•2,3

•3,3

•1,4

•2,4

•3,4

Figure 9: X state acting on H3 ⊗H4.

〈Cµ, Cν〉 and 〈Cα〉. When any one of them is an empty graph the commutativity
condition is satisfied trivially. There is only one non-empty subgraph of the form
〈Cα〉. Using corollary 1 we may verify that the non-empty graphs 〈Cµ, Cν〉 and
〈Cα〉 are commutative. Also using lemma 3 we can show that subgraphs 〈Cµ, Cν〉
and 〈Cα〉 satisfy the conditions for being normal. Last, we shall check the degree
condition,

w(vµi, vνj)(dαi − dαj) = 0. (27)

As 〈Cµ, Cν〉 is non-empty, we have w(vµi, vµ(n+1−i)) 6= 0 for some i = 1, 2, . . . n.
For those specific values of i we have,

w(vµi, vν(n+1−i))(dαi − dα(n+1−i)) = 0. (28)

As w(vµi, vν(n+1−i)) 6= 0, we have dαi = dα(n+1−i) for i = 1, 2, . . . n.

Example 5. Consider the following graph:

•11

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘ •12 •13

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

•21 •22 •23

Edge weight w(v11, v13) = 2 and for the other two edges, weight is 1. Here
number of clusters m = 2 and number of vertices in each cluster n = 3. The
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corresponding quantum state is given by the density matrix,

ρ(G) =
1

8

















2 0 0 0 0 2
0 1 0 0 1 0
0 0 1 1 0 0
0 0 1 1 0 0
0 1 0 0 1 0
2 0 0 0 0 2

















, (29)

which lies in H(2) ⊗ H(3). Degree of the vertices are: d(v11) = 2, d(v12) =
1, d(v13) = 1, d(v11) = 1, d(v22) = 1, d(v23) = 2. According to the second condi-
tion of the above theorem, for zero discord d(v11) = d(v13) which is not fulfilled
in this case. Hence, the corresponding quantum state has non-zero discord.

In general the density matrix of a two-qubit X state is given by,

ρ =









ρ11 0 0 ρ14
0 ρ22 ρ23 0
0 ρ32 ρ33 0
ρ41 0 0 ρ44









. (30)

It must be a Hermitian, positive semidefinite, trace one matrix. To satisfy
Hermiticity, ρ41 = ρ14, ρ32 = ρ23 and ρii are real for all i. The positivity
condition requires that ρ22ρ33 ≥ |ρ23|2 and ρ11ρ44 ≥ |ρ14|2. Also, for unit trace
∑4

i=1 ρii = 1. Lemma 1 implies that ρ represents a graph Laplacian state if and
only if

ρ11 ≥ |ρ14|, ρ22 ≥ |ρ23|, ρ33 ≥ |ρ32| and ρ44 ≥ |ρ41|. (31)

A graph with four vertices distributed into two clusters, each containing two
vertices represent ρ as a graph Laplacian state. Discord of the state depends on
the edge distribution in the graph. For simplicity, let the graph have no loops.
Then the equation (31) simplifies to

ρ11 = |ρ14|, ρ22 = |ρ23|, ρ33 = |ρ32| and ρ44 = |ρ41|. (32)

Combining this with the positivity conditions we get,

ρ11 = |ρ14| = |ρ41| = ρ44 = a

ρ22 = |ρ23| = |ρ32| = ρ33 = b
(33)

for some real numbers a and b. A graph satisfying the above condition is

•11

❊❊
❊❊

❊❊
❊❊

•12

②②
②②
②②
②②

•21 •22

Here, weights of (v11, v22) and (v12, v21) are a and b, respectively. Degree of the
vertices are given by d(v11) = a, d(v12) = b, d(v21) = b and d(v22) = a. Now
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by theorem 4, the corresponding quantum state has zero discord if and only if
a = b. In all other cases ρ has non-zero discord. Further, we know that a two
qubit X-state is entangled if and only if either ρ22ρ33 < |ρ14|2 or ρ11ρ44 < |ρ23|2.
From this we can conclude that if a = b then entanglement is also zero. This
coincides with the results in [29].

As an important example of the above considered general two qubit X state,
we take up the two qubit Werner state, given by

ρ = a |ψ−〉 〈ψ−|+
1− a

4
I, (34)

where |ψ−〉 = 1√
2
(|01〉 − |10〉) and 0 ≤ a ≤ 1. The density matrix in expanded

from is,

ρ =









1−a
4 0 0 0
0 1+a

4
−a
2 0

0 −a
2

1+a
4 0

0 0 0 1−a
4









. (35)

As a ≤ 1, clearly 1−a
4 ≥ 0 and 1+a

4 ≥ a
2 . Therefore, ρ represents a graph

Laplacian quantum state for all values of a. The graph representing a two qubit
Werner state is

•11
44

•12
jj

②②
②②
②②
②②

•21
44

•22
jj

including loop weight 1−a
8 , and edge weight a

2 . Therefore, degree of the vertices
are d(v11) = 1−a

8 , d(v12) = 1−3a
8 , d(v21) = 1−3a

8 and d(v22) = 1−a
8 . For zero

discord, we need 1−a
8 = 1−3a

8 , which implies that a = 0. This is consistent with
the results in [29].

4.5 Graph Laplacian quantum states corresponding to sim-

ple graphs

A simple graph G satisfies the basis assumptions stated in section 2. Given
any edge (i, j) of a simple graph, the edge weight w(i, j) = w(j, i) = 1. Also,
a simple graph has no loop, that is, (i, i) /∈ E(G) for all vertices i. These
assumptions simplify the conditions of theorem 1. A detailed description on
quantum discord of graph Laplacian quantum states arising from simple graphs
is available in [10]. Here we present a specific example. Consider the following
graph:

•00

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱

❱❱❱
❱❱❱ •01

❊❊
❊❊

❊❊
❊❊

❘❘
❘❘

❘❘
❘❘

❘❘
❘❘

❘❘
❘ •02

②②
②②
②②
②②

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

•03

❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧❧
❧

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

❤❤❤
❤❤❤

•10 •11 •12 •13

It has two clusters C0 and C1, each containing 4 vertices. Note that, there is
only one bipartite subgraph 〈C0, C1〉 in the above graph. Also, degree of every
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vertex is three. The density matrices corresponding to this graph are:

ρl(G) =
1

24

























3 0 0 0 −1 0 −1 −1
0 3 0 0 0 −1 −1 −1
0 0 3 0 −1 −1 −1 0
0 0 0 3 −1 −1 0 −1
−1 0 −1 −1 3 0 0 0
0 −1 −1 −1 0 3 0 0
−1 −1 −1 0 0 0 3 0
−1 −1 0 −1 0 0 0 3

























,

and ρq(G) =
1

24

























3 0 0 0 1 0 1 1
0 3 0 0 0 1 1 1
0 0 3 0 1 1 1 0
0 0 0 3 1 1 0 1
1 0 1 1 3 0 0 0
0 1 1 1 0 3 0 0
1 1 1 0 0 0 3 0
1 1 0 1 0 0 0 3

























.

(36)

This graph satisfies all the conditions of theorem 1. Therefore, the mixed quan-
tum states corresponding to this graph have zero discord.

5 Conclusions

This work extends the study of quantum discord of graph Laplacian states aris-
ing from simple graphs to that of graph Laplacian states arising from weighted
digraphs. This covers a wider set of quantum states, including mixed states,
represented by graphs. We establish that a quantum state is a graph Laplacian
state if and only if its density matrix is diagonally dominant. We study the
nature of discord in a number of well known quantum states, for example, two
qubit graph Laplacian states including Bell states, Werner, Isotropic, and X
states. It emerges that the nature of quantum discord can be visualized graphi-
cally. All Werner and isotropic states are seen to have nonzero quantum discord,
except for certain discrete values of their parameters. Also, an X state has zero
discord if and only if the underlined graph follows a particular degree sequence
which has been used for analysing discord of two qubit X-states. The following
problems may be attempted in future:

1. We have shown that there are Isotropic states that are not graph Lapla-
cian states and hence it would be worthwhile to develop graph theoretic
representation of these states.

2. Very recently a discord based quantum cryptography has been discussed
[31]. Also, there is a lot of interest in applying mixed quantum states to
different tasks in quantum information [32]. These two possibilities open
up the scope to design quantum cryptographic protocols based on graph
Laplacian quantum states.
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3. In Nuclear magnetic resonance (NMR) based quantum computation use
is made of pseudo-pure quantum states [33]. These are mixed states.
Graph Laplacian states are also mixed in general. Constructing pseudo-
pure states with Graph Laplacian states will be a worthwhile task in this
direction.

4. The idea of quantum discord is further generalized when the von-Neumann
entropy is replaced by Sharma-Mittal, Rényi, and Tsallis entropy [34].
Constructing a combinatorial aspect of these new discords will also be a
fascinating task.

This work, which relies on the interface between graph theory and quan-
tum mechanics would be useful for investigation of discord of a bigger class of
quantum states with a corresponding pictorial description.

Appendix

Proof of Lemma 2

Proof. Commutativity AB = BA holds if and only if (AB)ij = (BA)ij for all
i, j with 1 ≤ i, j ≤ n. Note that, aik = w(vµi, vνk) and bkj = w(vαk, vβj). Now
applying equation (12) we get,

(AB)ij =

n
∑

k=1

aikbkj = 〈ai∗|b∗j〉 =
∑

k

w(vµi, vνk)w(vαk , vβj) : k ∈ nbd(vµi) ∩ nbd(vβj),

(BA)ij =

n
∑

k=1

bikakj = 〈bi∗|a∗j〉 =
∑

k

w(vαi, vβk)w(vµk, vνj) : k ∈ nbd(vαi) ∩ nbd(vνj).

(37)

Proof of corollary 1

Proof. We have already justified that, supp(ai∗) = nbdÃ(vµi) and supp(a∗i) =
nbdÃ(vµi), for all i = 1, 2, . . . n. The matrix A commutes with B, if and only if
the product 〈ai∗, b∗j〉 = 〈bi∗, a∗j〉 for all i, and j. Applying the symmetry of A,
we get, 〈ai∗, b∗j〉 = 〈aj∗, bi∗〉. Using the graph theoretic convention, we get the
desired result.

Proof of corollary 2

Proof. The proof follows from the above Corollary by choosing α = β = ν.

Proof of corollary 3
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Proof. Let B = (bij)n×n = (aji)n×n = A†. Clearly, bi∗ = a†∗i and b∗i = a†i∗ for
all i. Note that,

(AA†)ij =
n
∑

k=1

aikbkj = 〈ai∗|b∗j〉 = 〈ai∗|aj∗〉

=
∑

k

w(vµi, vνk)w(vνk, vµj) : k ∈ nbd(vµi) ∩ nbd(vµj).

(38)

Similarly, (A†A)ij =
∑

k w(vνi, vµk)w(vµk , vνj) : k ∈ nbd(vνi) ∩ nbd(vνj).
Hence, we get the equality as stated for normality.

Proof of theorem 1

Proof. The commutativity and normality conditions follow from the lemma 2
and 3 for all non-diagonal blocks. Note that, diagonal blocks are adjacency
matrices of 〈Cµ〉 which are Hermitian, hence normal. The degree condition
includes all diagonal blocks in this family.

First we consider commutativity of two diagonal blocks,

1

d
(Dµ ±Aµµ)

1

d
(Dν ±Aνν) =

1

d
(Dν ±Aνν)

1

d
(Dµ ±Aµµ)

⇒DµDν ±DµAνν ±AµµDν +AµµAνν = DνDµ ±DνAµµ ±AννDµ +AννAµµ

⇒(AµµAνν −AννAµµ)± (DµAνν −AννDµ)± (AµµDν −DνAµµ) = 0

⇒(AµµAνν −AννAµµ)ij ± (DµAνν −AννDµ)ij ± (AµµDν −DνAµµ)ij = 0.

(39)

In terms of graphical parameters we may write,

(DµAνν −AννDµ)ij = dµi(Aνν)ij − (Aνν)ijdµj = w(vνi, vνj)(dµi − dµj), (40)

(AµµDν −DνAµµ)ij = (Aµµ)ijdνj − dνi(Aνν)ij = w(vµi, vµj)(dνj − dνi). (41)

Also from the corollary 2,

(AµµAνν −AννAµµ)ij =
∑

k∈nbd(vµi)∩nbd(vνj)

w(vµi, vµk)w(vνk, vνj)

−
∑

k∈nbd(vνi)∩nbd(vµj)

w(vνi, vνk)w(vµk , vµj).
(42)

Thus for commutativity of diagonal blocks the following degree condition need
to be satisfied,

∑

k∈nbd(vµi)∩nbd(vνj)

w(vµi, vµk)w(vνk, vνj)−
∑

k∈nbd(vνi)∩nbd(vµj)

w(vνi, vνk)w(vµk, vµj)

±
[

w(vνi, vνj)(dµi − dµj) + w(vµi, vµj)(dνj − dνi)
]

= 0.

(43)
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We consider + for ρq(G) and − for ρl(G) in the above equation.
Now we consider commutativity of a diagonal and a non-diagonal block.

1

d
(Dµ ±Aµµ)

±1

d
Aαβ =

±1

d
Aαβ

1

d
(Dµ ±Aµµ)

⇒DµAαβ ±AµµAαβ = AαβDµ ±AαβAµµ.
(44)

Rearranging the terms we get the equation,

(DµAαβ −AαβDµ)± (AµµAαβ −AαβAµµ) = 0. (45)

The above equation holds if for all i, j with 1 ≤ i, j ≤ n,

(DµAαβ)ij − (AαβDµ)ij ± {(AµµAαβ)ij − (AαβAµµ)ij} = 0

⇒ dµi(Aαβ)ij − (Aαβ)ijdµj ± {(AµµAαβ)ij − (AαβAµµ)ij} = 0.
(46)

Graph theoretic counterpart of (AµµAαβ −AαβAµµ) follows from the corollary
1. Thus,

(AµµAαβ)ij − (AαβAµµ)ij =
∑

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vµk)w(vαk, vβj)

−
∑

k∈nbd(vαi)∩nbd(vµj)

w(vαi, vβk)w(vµk , vµj).
(47)

Also,
dµi(Aαβ)ij − (Aαβ)ijdµj = w(vαi, vβj)(dµi − dµj). (48)

Combining the above two equations we get,

w(vαi, vβj)(dµi − dµj)±
[

∑

k∈nbd(vµi)∩nbd(vβj)

w(vµi, vµk)w(vαk , vβj)

−
∑

k∈nbd(vαi)∩nbd(vµj)

w(vαi, vβk)w(vµk, vµj)
]

= 0.
(49)

The density matrix ρ(G) represents a zero discord quantum state if its blocks
Bµν form a family of commuting normal matrices [35]. In the graph theoretic
context, ρ(G) meets the criterion provided the above three conditions are satis-
fied.
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