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Abstract. Solutions for choke-free flow in a trapezoidal channel, with rise 

in bed elevation that may occur with partial filling up of the channel bottom, 

are discussed. In this analysis, the side slopes of the channel are assumed to 

be the same before and after the transition. Considering smooth and gradual 

transition zones, equations of energy and continuity are solved for subcritical 

and supercritical upstream flow conditions to determine the maximum limiting 

rise in bed elevation. The ranges of the upstream flow depths are also obtained 

for the choke-free condition, using the continuity equation of the upstream 

flow. 
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1. Introduction 

The upstream flow of a trapezoidal channel is affected when the rise in bed elevation 

(figure 1) downstream of the transition zone exceeds a certain limit for a given approaching 

flow condition. This type of flow situation is said to be choked (Henderson 1966) for which 

no physical solution can be obtained mathematically. For designing a channel transition, it 

is essential to avoid the condition that causes choke. The phenomenon of choke in an open 

channel flow is completely dependent on the conditions of the flow before (upstream) and 

after (downstream) the transition influenced by the change in bed elevation. The critical 

flow in the downstream transition zone, where the Froude number of flow is unity, is the 

limiting condition of choke-free flow. 

A list of symbols is given at the end of the paper 
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Figure 1. Definition sketch and hydraulic aspects. Flow profiles: - - - critical, - .-  super- 
critical, - -  subcritical. 

The solution of choke-free flow with a rise in bed elevation for a one-dimensional case 

was put forward by Allen (1980). Later Allen's method was applied by Liong (1984) 

in rectangular channels to obtain the solutions of choke-free flow due to changes in bed 

elevation and width. Dey et al (1990) gave generalized solutions of choke-free flow in 

triangular and parabolic channels for changes in bed elevation and shapes. Also, Dey 

(1994) presented the solutions for preventing choke in trapezoidal channels with a change 

in bed elevation considering that there was no change in channel sections upstream and 

downstream of the transition zone. 

Considering a critical downstream flow, the equations of energy and continuity, upstream 

and downstream of the transition zone, are solved to determine the maximum permissible 

limits of change in bed elevation of the channel from the point of view of choke-free flow. 

Solutions of choke-free flow in trapezoidal channels are not straightforward and essentially 

involve the numerical solutions of implicit equations. Here, we consider an extension of 

the work of Dey (1994) to a different trapezoidal channel condition where the bed is 

raised owing to partial filling up of the channel bottom. The results are presented for the 

solutions of choke-free flow for such a case. In this analysis, the side slopes of the channel 

are considered to be the same before and after the transition zone which is assumed to be 

smooth and gradual, resulting in negligible loss. 

2. Governing equations 

The definition sketch for one-dimensional steady flow in a horizontally laid trapezoidal 

channel, whose bed is raised downstream of the transition zone, is shown in figure 1. Here, 

the side slopes of the channel are the same before and after the transition zone. The energy 
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heads at sections 1 (before transition) and 2 (after transition) are equated, assuming that 

there is no loss of energy owing to the smooth and gradual transition zone, 

Yl +Otl (V2/2g) = Y2 + ot2(V2/2g) + Az, (1) 

where y = depth of flow, ~ = Coriolis coefficient assumed to be unity, V = mean velocity 

of flow, g = gravitational constant, and Az = bed elevation difference between sections 

1 and 2. Subscripts 1 and 2 indicate sections 1 and 2 respectively. 

In an open channel flow, the Froude number of flow is given by F = V/~/gD (Chow 

1959), where D is the hydraulic mean depth. For trapezoidal channel, the hydraulic mean 

depth D is given by flow area divided by the water surface width, or 

D = y(b + ny)/(b + 2ny) (2) 

where b = bottom width, and n = side slope. The bottom widths in the upstream and 

downstream zones can be related as 

b2 = bl q- 2nAz .  (3) 

Incorporating the Froude number into (1), the following quadratic equation in normal- 

ized form, which is used to determine the maximum allowable rise in bed elevation from 

the information on upstream flow parameters and channel geometry, is obtained: 

(1 +2/~#,) (1 - #l + 0 - 5 F 2 ~ )  #2 + [(2/~#,) ( l  - #l + 0 . 5 F ~ )  

(1 + 2/~#1)(1 + 0.5F2)#1 / #2 -- (2 q- 0.5F2)/9# 2 = 0, (4) 

where #1 = Az/yl;  #2 = AZ/y2; and b = (nyl)/bl. 

The continuity equation between sections 1 and 2 is 

Vl(bl + nyl)Yl = V2(b2 + ny2)Y2. (5) 

Introducing the Froude number in (5) and normalizing it leads to 

F1 [ = i+2/~ ]°s [1+ fi(1+ 2k)(#i/#2)l'" "#,-"5 ( , )  
i + 2b(l + #2)(#,/#2) I ~  j \~2/ 

@ 

(6) 

#1 is solved from (4), ignoring the negative value, as 

#1 = [--~2 +- (~2 _ 4~1~3)0.5]/(2~1), (7) 

where 

( ~1 = (1 + 2/~#1) 1 - #1 + 0.5F , (8a) 

~2=(2/~#t) ( 1 -  # 1 + 0"5F12 1 +/~ ~ - ~ /  - (1 + 2/~#1)(1 + 0.5F#)#1, (8b) 

~3 = - ( 2  + 0.5Fff)/~# 2. (8c) 
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For choke-free flow, the limiting value of the downstream Froude number of flow is unity. 

Hence, for F2 = 1, (7) is expressed as 

Yl -- [-g2 + (g2 _ 4glg3)o.5]/(2gl), 

where 

y=:9;  for F 2 = l ,  

gl = (1 + 2/~yl) 1 -- Yt + 0.5F 

~2 = ( 2 l ; ~ )  1 - h + o . s e ~  - 1.5y~ (1 + 2 t ; ~ ) ,  

~3 = -2-5/~yl 2- 

(9) 

(10a) 

(lOb) 

(10c) 

(10d) 

The equation for choke-free flow in a trapezoidal channel with rise in bed elevation 

(figure 1), derived from (6), is 

F ] = [  1+2/~ ]0.5 

1 + 2/~(1 + Y2)(Yl/Y2) 

1 +/~(1 +- 2y2)(Yl/Y2) ] 1"5 ( y l ' l ' 5 1  -k-/~ ~22) " 

(11) 

The above equation is an implicit equation for Yl- Muller's method (Conte & de Boor 

1987) can be used, as was done by Dey (1994), for solving the values of Yl. Hence, the 

maximum permissible limit of Az can be determined. 

Again, to determine the allowable ranges of the upstream flow depth for an existing 

channel of the present type from the information on upstream channel geometry, rise in 

bed elevation and discharge, the Froude number is incorporated into (1) and (5) as before, 

and they are rearranged to obtain the following equations in normalized form: 

(1 + 2Z)( 1 - ~1 + 0"5F? ~1 + ~ ~ ^ 2 ~ 1  -~ ~ , ]  Y2 + [(2~) (1 - Yl + 0 5F2 Yl q- z " ~ "  1Yl + 2~) 

- (1 + 2~,)(1 + 0.5F2)~1] .v2 - (2 + 0.5F 2) zYl = 0, (12) 

F1 V y I + 2 ~  10"5F~2(1+22)+3]  1"5( ~'~1 -2"5 
(13) 

where ~ = (nAz)/bl. 

Again, for the case of choke-free flow (F2 = 1), Yl is solved from (12), ignoring the 

negative value, as 

Yl -~-- [ - -~2 -I- (~2 _ 4 ~ i ~ 3 ) 0 . 5 ] / ( 2 ( i ) ,  (14) 

where  

0 5 F  2 Yl + z  "~ ~I = (1 q- 2~) I - Yl + • I ~I + - - ~ , ]  ' (15a) 
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( Yl + 2 ) - 1.5~1(1 + 2~), (15b) ~2=(2~) 1 - . ~ l + 0 . 5 F  2 y 1 + 2 ~  

~3 = 2.5~1. (15c) 

Therefore, the equation for choke-free flow, for the present case, obtained from (13) is 

[ ~ ] + 2 2  - ° ' S I y 2 ( l + 2 z ) + z  1 5 ( y 1 ~ 2 5 ' ' 1  ] 
FI (16) 

The equation of continuity at section 1 is 

Q : Vl(bl +nyl)y], (17) 

where Q = discharge. 

Incorporating the Froude number and normalizing (17) yields 

0 = [(~ + 2~)°5~5]/[(.~ + ~)~sr~], (18) 

where () : (b I g~/-~z)Az/Q. 

Using (14), (16) and (18), the allowable ranges of yl for a given 0 can be estimated by 

Muller's method (Conte & de Boor 1987) as before. 

3. Results and discussion 

Solutions for the limiting condition of choke-free flow in a trapezoidal channel with a 

rise in bed elevation are obtained numerically, using Muller's method (Conte & de Boor 

1987), from the derived equations in the preceding section. The effect of the standing 

wave becomes pertinent when supercritical flow is deflected by the sides of the channel 

due to contraction (Henderson 1966). Here, this effect is not considered because rise in 

bed elevation does not produce a standing wave in supercritical upstream flow conditions. 
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Figure 2. Curves for Yl versus FI for different/~ in subcritical upstream flow conditions. 
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Figure 3. Curves for yl versus Fl for different/~ in supercritical upstream flow conditions. 

3.1 Determination of  Az 

The variations of Yl with Fl for different/~ in subcritical and supercritical upstream flow 

conditions, obtained from the solution of (11), are shown in figures 2 and 3, respectively. 

In figure 3, the upper limit of F1 is restricted to three because Fl > 3 is usually not a 

practical proposition in flow through an open channel. To determine the maximum limits 

of Az for avoiding choke flow, these curves can be used for design purposes. Hence, the 

designers should confine their chosen data to the choke-free regions which are the regions 

at the lower side of the curves in figures 2 and 3. 
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Figure 4. Curves for Yl versus Q for different ~ in subcritical upstream flow conditions. 



Choke-free flow in trapezoidal channels with change in bed elevation 265 

XI 

2 5  - -  

2.0- -  

1 . 5 -  

1 .0 -  

0 . 5 -  

0 -  

0 

I I I I I ~ I 

0.~ 0.2 0.3 0.4 0.5 0.6 0.7 

Figure 5. Curves for y l versus 0 for different ~ in supercritical upstream flow conditions. 

3.2 Determination of Yl 

The dependency of Yl on ~) for different £ in subcritical and supercritical upstream flow 

conditions, obtained from the solution of (14), (16) and (18), are shown in figures 4 and 

5, respectively. The upper ranges of Yl and ~), in figure 5, are restricted to 2.5 and 0.7 

respectively, as the corresponding value of F1 is greater than three. To determine the 

allowable ranges of Yl to prevent choke, these curves can be utilized for the purpose of 

upstream flow operation. The choke-free regions, where the engineers should adjust the 

upstream flow depths, are the regions at the lower and upper sides of the curves in figures 

4 and 5 respectively. 

4. Applications of the solution curves 

The present approach could be utilized, as a tool, to confirm the choke-free flow in a 

trapezoidal channel with rise in bed elevation. Hence, the proposed simple and convenient 

curves (figures 2-5) for choke-free flow are quite attractive. The use of the solution curves 

is illustrated by the following examples. 

• The maximum permissible limit of Az is to be determined for choke-free conditions 

using the data Q = 3.068 m3/s, yl = 1 m, bl = 2m, and n = 2. 

Using the above data, one obtains/~ = 1, Vl = 0.767 m/s,  and F1 = 0.30, which 

refers to a subcritical upstream flow condition. Using figure 2, the value of  Yl is found 

to be 0.51. Hence, Az is to be selected as less than 0.51 m in order to prevent choke. 

Similarly the maximum limit of Az in case of a supercritical upstream flow condition 

can be obtained using figure 3. 

• The ranges of Yl are to be determined for choke-free conditions using the data Q = 3.69 

m3/s, bl = 2m, n = 2, and Az = 0.50m. 
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Using the given data, one gets ~ = 0.50, and Q = 0.60. From figures 4 and 5, the 

values of Yl are 0.48 and 1.39 for subcritical and supercritical upstream flow conditions 

respectively. Thus, to avoid choke the ranges of Yl should be either greater than 1.042 m 

or less than 0.36 m. 

In the above, the data of the two problems are considered as is given in Dey (1994). It 

is shown that, in the present case, the results are significantly different from that obtained 

by Dey (1994). 

5. Concluding remarks 

One-dimensional steady flow in trapezoidal channels with rise in bed elevation has been 

analysed for choke-free conditions. Considering critical flow downstream of the transition 

zone, energy and continuity equations have been solved numerically to prepare the curves 

for determination of maximum permissible limits of rise in bed elevation (figures 2 and 3) 

and allowable ranges of upstream flow depths (figures 4 and 5). The curves can be utilized 

to design the change in bed elevation and to choose the operating ranges of upstream flow 

depths for choke-free flow in subcritical and supercritical upstream flow conditions. 

The authors are grateful to Bimalundu Dey for his helpful suggestions during the prepa- 

ration of this paper. 

List of symbols 

b Bottom width; 

[~ (nyl)/bl; 
D hydraulic mean depth; 

F Froude number of flow; 

g gravitational constant; 

n side slope; 

Q discharge; 

0 ( b l ~ )  Az/a;  
V mean velocity of flow; 

y depth of flow; 

~ for F2 = 1; 

Az/y; 

(nAz)/bl; 
ot Coriolis coefficient; 

Az rise in bed elevation. 

Subscripts 

1 upstream section; 

2 downstream section. 
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