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Abstract

Our aim in this article is two-fold. We use the Charnes-Cooper scalarization technique to
develop KKT type conditions to completely characterize Pareto minimizers of convex vector
optimization problems and further, we use that scalarization technique to develop a simple
and efficient algorithm for convex vector optimization problems. Numerical examples are
presented to illustrate the use of our algorithm.

1 Introduction

In this paper, we shall focus on the well known convex vector optimization problem given below,
which we label as CVOP:

min f(x) := (f1(x), . . . , fm(x)),

subject to x ∈ X,

where each fi : R
n → R is a convex function and X is a closed convex subset of Rn. Let us

denote the set I := {1, 2, . . . ,m} for the sake of convenience. The “min” in the above problem
is taken in the vector sense where a partial order is induced in the image space R

m, by the non-
negative cone R

m
+ . The partial ordering says that x ≥ y, if x− y ∈ R

m
+ , which can equivalently

be written as xi ≥ yi for i ∈ I, where xi and yi represents the i-th component of the vectors x
and y respectively.
Two Types of solution concepts are popular in the literature of vector optimization problems.
These are namely a Pareto minimizer and a weak Pareto minimizer. A vector x∗ ∈ X is called
a Pareto minimizer of CVOP if there exists no x ∈ X such that fi(x) ≤ fi(x

∗) for all i ∈ I, and,
fr(x) ≤ fr(x

∗) for some r ∈ I. More compactly, it means that there exists no x ∈ X such that

f(x)− f(x∗) ∈ −R
m
+ \ {0}.

On the other hand, a vector x∗ ∈ X is called a weak Pareto minimizer if there exists no
x ∈ X such that fi(x) < fi(x

∗) for all i ∈ I, which equivalently be written as f(x) − f(x∗) ∈
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−int(Rm
+ ) \ {0}. Though from a practical point of view, the notion of a Pareto minimizer is

more useful than its weak counterpart. However, the notion of the weak Pareto minimizer is
mathematically more tractable, and thus, one will find a huge literature on these solutions. Note
that every Pareto minimizer is a weak Pareto minimizer of the problem and the converse need
not be true. The image of the set of Pareto minimizers of CVOP is called the efficient frontier,
and it has been shown, for example, in Ehrgott [9] that the efficient frontier lies on the boundary
of the image f(X) of the feasible set X under the objective function f .
One of the key approach to study vector optimization problem is by relating a scalar optimization
problem to the given vector optimization problem. This method is called scalarization and plays
a key role in developing a coherent theory and effective numerical algorithms for the vector
optimization problem (see Chankong and Haimes [4] for more details).
As far as CVOP is concerned, the following result completely characterizes the weak minimizers
through a simple scalarization technique called the weighted sum scalarization.

Proposition 1.1 Consider the problem CVOP and consider weights τ1 ≥ 0,τ2 ≥ 0,. . . , τm ≥ 0,
and x∗ ∈ X such that x∗ solves the problem (CPτ ),

min
x∈X

(τ1f1(x) + . . .+ τmfm(x)), (1.1)

then x∗ is a weak Pareto minimizer of CVOP. Conversely, if x∗ ∈ X is a weak Pareto minimizer
of CVOP, then there exist scalars τ1 ≥ 0,. . . , τm ≥ 0, all of which are not simultaneously zero,
such that x∗ is a minimizer of CPτ .

This result immediately provides us a KKT type necessary and sufficient condition which com-
pletely characterizes a weak minimizer of CVOP. In fact, by using Proposition 1.1, we can con-
clude that a vector x∗ ∈ X is a weak minimizer of CVOP if and only if there exists 0 6= τ ∈ R

m
+

such that
0 ∈

∑

i∈I

τi∂fi(x
∗) +NX(x∗), (1.2)

where ∂fi(x
∗) is the subdifferential at x∗ of f and NX(x∗) denotes the normal cone of X at x∗.

For the definition of the subdifferential of a convex function and the normal cone to a convex
set at a given point see Rockafellar [19]. Further, if each fi is differentiable, then we can replace
∂fi(x

∗) by ∇fi(x
∗) in (1.2). Moreover, if X is given by convex inequality constraints, i.e.,

X = {x ∈ R
n : gj(x) ≤ 0, for all j = 1, . . . , k}, (1.3)

where each gj : R
n → R is a convex function, for all j = 1, . . . , k, and, the Slater condition holds,

i.e., there exists x̂ ∈ R
n such that gj(x̂) < 0 for all j = 1, . . . , k, then we have (see Rockafellar

[19]),

NX(x∗) = {v ∈ R
n : v =

∑

j∈K

λjξ
j , λj ≥ 0, ξj ∈ ∂gj(x

∗), λjgj(x
∗) = 0, ∀ j ∈ K},

where the set K := {1, 2, . . . , k}. This immediately allows us to state a KKT type optimality
condition for CVOP, which we do through the following theorem.
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Theorem 1.2 Consider the problem CVOP, with X described by (1.3). Let the Slater condition
holds. Then x∗ ∈ X is a weak Pareto minimizer of CVOP if and only if there exists vectors
τ ∈ R

m
+ , τ 6= 0 and λ ∈ R

k
+ such that

(i) 0 ∈
∑

i∈I

τi∂fi(x
∗) +

∑

j∈K

λj∂gj(x
∗),

(ii) λjgj(x
∗) = 0, for all j ∈ K.

For a more detailed analysis of the above results and their proofs, the reader is referred to the
monographs by Jahn [15], Ehrgott [9], Chankong & Haimes [4], Miettinen [18] and the references
therein.
Thus, Theorem 1.2 shows that it is possible to completely characterize a weak Pareto minimizer
of CVOP through KKT conditions. Now we ask ourself a question: Can this type of result is
true for a Pareto minimizer, i.e., can we completely characterize a Pareto minimizer using KKT
type optimality conditions?
Developing a necessary condition for a Pareto minimizer is indeed simple. By observing that a
Pareto minimizer is a weak Pareto minimizer, Theorem 1.2 guarantees the existence of a vector
τ ∈ R

m
+ , τ 6= 0 and λ ∈ R

k
+ such that (i) and (ii) hold. The problem comes when we are

considering the sufficiency of the conditions. Unfortunately, the conditions (i) and (ii) can only
show that x∗ is a weak Pareto minimizer of CVOP and no way, it can guarantee that x∗ is
a Pareto minimizer. However, in (i) if we have τ ∈ int(Rm

+ ), then we can show that x∗ is a
Pareto minimizer. Therefore, in order to completely characterize a Pareto minimizer for CVOP
through optimality condition, we need to develop a necessary optimality condition in which we
must have τ ∈ int(Rm

+ ). For this, one either needs the Pareto minimizer to have some additional
properties or some regularity conditions are needed involving the objective functions and the
constraint functions. When τ ∈ int(Rm

+ ) in the condition (i), the KKT conditions are called
the strong KKT conditions. Historically, it was Kuhn and Tucker in their seminal paper [16]
of 1951 develops a notion of KT- proper Pareto solutions for which the strong KKT holds.
To prove the strong KKT conditions Kuhn-Tucker used a regularity condition called Kuhn-
Tucker constraint qualification [16]. Later in 1994, Maeda [17] showed that under Guignard
type regularity condition a Pareto minimizer becomes a KT-proper Pareto minimizer. However,
the simplest approach to strong KKT conditions can be shown using the notion of Geoffrion
proper minimizers, a notion developed by Geoffrion [14] in 1968.

Definition 1.3 (Geoffrion [14]) A vector x∗ ∈ X is called a Geoffrion proper minimizer of
CVOP if x∗ is a Pareto minimizer and if there exists a number M > 0 such that for all i ∈ I

and x ∈ X satisfying fi(x) < fi(x
∗), there exists a j ∈ I such that fj(x

∗) < fj(x) and

fi(x
∗)− fi(x)

fj(x)− fj(x∗)
≤ M. (1.4)

Geoffrion [14] shows that if x∗ is Geoffrion proper minimizer of CVOP with smooth input data
and the Kuhn-Tucker constraint qualification [16] is satisfied at x∗, then there exists vectors
τ ∈ int(Rm

+ ), and λ ∈ R
k
+ such that
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•
∑

i∈I

τi∇fi(x
∗) +

∑

j∈K

λj∇gj(x
∗) = 0,

• λjgj(x
∗) = 0, for all j ∈ K.

If we replace the Kuhn-Tucker Constraint qualification by the Slater condition in the above
result, we will get the same strong KKT condition for Geoffrion proper minimizer. We would
like to mention here that the strong KKT conditions for a Geoffrion proper minimizer also holds
even if some of the objective functions are not differentiable. For such functions, we just have
to replace the gradient with the subdifferential of the functions. Therefore, Geoffrion proper
minimizer gives rise to strong KKT type optimality conditions. It is well known that every
Pareto minimizer is not a Geoffrion proper minimizer (see Example 2.48 of [9]). Hence, we are
now asking whether it is possible to develop a strong KKT type optimality conditions for Pareto
minimizers.
In Section 2, we shall show that this could be achieved by a combination of Charnes and Cooper
scalarization [5] and Abadie type regularity condition which we shall describe at the beginning of
the section. In Section 3, we shall show that Charnes and Cooper scalarization can be efficiently
used to develop an algorithm to solve convex vector optimization problems where we need the
feasible set to be closed and fi’s to be a proper lower semi-continuous function for all i ∈ I. We
shall also illustrate our algorithm through numerical examples.

2 Strong KKT conditions for Pareto minimizers

There two main purposes for which the Charnes-Cooper scalarization is introduced. The first is
to completely characterize Pareto minimizer through KKT conditions. This is what we do in this
section by showing how the Charnes-Cooper scalarization scheme can be used to derive strong
KKT condition. The second purpose is to develop an algorithm to generate Pareto minimizer
of CVOP which is done in the next section.

Consider an arbitrary feasible point x0 ∈ X of CVOP and define the following scalar problem
P (f,X, x0) ([10]):











min
∑

i∈I

fi(x),

subject to fi(x)− fi(x0) ≤ 0, for all i ∈ I,

x ∈ X.

(2.1)

The advantage of the above scalar problem is that it provides a one-one correspondence between
Pareto minimizer of CVOP and optimal solutions of the problem P (f,X, x0).

Theorem 2.1 (Ehrgott[10]) A point x0 ∈ X is a Pareto minimizer of CVOP if and only if
x0 is an optimal solution of the problem P (f,X, x0).

Observe that even if we consider the objective functions to be non-convex, Theorem 2.1 is true,
in other words, the characterization of a Pareto-minimizer through Charnes-Cooper scalariza-
tion still holds. However, computing the global minimizer of a non-convex optimization problem
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is hard, and we can only assure the computation of local Pareto minimizers which are not of
special interest. So, we shall focus only on convex problems.
Note that if x0 is a Pareto minimizer of CVOP, then Slater constraint qualification cannot be
satisfied for the problem P (f,X, x0). Therefore, if we want to use the scalar problem P (f,X, x0)
to figure out the necessary and optimality condition for Pareto minimizer, we need some regu-
larity condition to be satisfied. In this direction, we define the following Abadie type regularity
condition for CVOP which helps us in further investigation.

Definition 2.2 Consider CVOP with feasible set X and for given x0 ∈ X, define the set
X̂(x0) := {x ∈ X : fi(x) ≤ fi(x0), i ∈ I}. Then, we say that the problem satisfies the strong
Abadie type regularity condition at a point x0 ∈ X if the tangent cone T

X̂
(x0) of the set X̂ at

the point x0 equals

V (x0) := {h ∈ R
n : f

′

i (x0, h) ≤ 0, g
′

k(x0, h) ≤ 0, for all i ∈ I and k ∈ R(x0)}. (2.2)

Recall that R(x0) is the active constraint set, i.e., R(x0) = {k ∈ K : gk(x0) = 0} and and the
tangent cone TX(x0) := {d ∈ R

n : ∃ {tk} ⊆ R+, {yk} ⊆ X subject to yk → x0, tk(yk−x0) → d}.
Note that the feasible set of (f,X, x) is X̂(x0). One can observe that the strong Abadie type
regularity condition is same as the Abadie constraint qualification (see [7]) for the scalar problem
P (f,X, x0). Before we derive the KKT conditions for Pareto minimizer, let us establish that
the problem CVOP satisfies the strong Abadie type regularity condition through two examples
in which one is for smooth CVOP and other is for non-smooth CVOP.

Example 2.3 (Chandra et al.[3]) Consider the bi-objective optimization problem, where f =
(f1, f2) with f1(x) = x2, f2(x) = x and X = {x ∈ R : g(x) ≤ 0}, where g(x) = −x. It is clear
that x0 = 0 is a Pareto minimizer of the problem. Here, the set X̂(x0) = {x ∈ R : x2 ≤ 0, x ≤
0,−x ≤ 0} = {0} and it is clear that T

X̂(x0)
(0) = {0}. Further, since the constraint function g

is active at x0 = 0 and f
′

1(x0, h) = 0, the set

V (x0) = {h ∈ R : h ≤ 0,−h ≤ 0} = {0}.

Hence, T
X̂(x0)

= V (x0), which implies that considered problem satisfies the strong Abadie type
regularity condition at the point x0 = 0.

Example 2.4 Consider the bi-objective optimization problem with f = (f1, f2) where f1(x) =
x, f2(x) = |x| and X = R. It is clear that x0 = 0 is a Pareto minimizer of the problem. Here,
the set X̂(x0) = {x ∈ R : x ≤ 0, |x| ≤ 0} = {0} and hence, T

X̂(x0)
(0) = {0}. Now form (2.2),

the set V (x0) = {h ∈ R : h ≤ 0, |h| ≤ 0} = {0}, which implies that T
X̂(x0)

= V (x0). Hence,the
strong Abadie type regularity condition holds at the point x0 = 0.

The idea of using the term strong Abadie type regularity is motivated by the fact that all the
objective functions of CVOP appear in the formulation of the Abadie type regularity condition.
For a weaker version of the Abadie type regularity condition for a multiobjective optimization
problem see [3].
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Theorem 2.5 Consider CVOP in which all objective functions fi’s and constraint functions
gr’s are smooth. Let x0 be a Pareto minimizer of CVOP and the strong Abadie type regularity
condition be satisfied at x0. Then there exists λ∗ ∈ R

m
+ and µ∗ ∈ R

k
+ such that

∑

i∈I

λ∗
i∇fi(x0) +

∑

j∈K

µ∗
j∇gj(x0) = 0, (2.3)

µ∗
jgj(x0) = 0, for all j ∈ K, (2.4)

λ∗
i > 0, for all i ∈ I. (2.5)

Conversely, if there exists λ∗ ∈ R
m
+ and µ∗ ∈ R

k
+ satisfying (2.3)-(2.5). Then x0 is a Pareto

minimizer of CVOP.

Proof: Let x0 be a Pareto minimizer of CVOP. Then, using Theorem 2.1, x0 is an optimal
solution of the problem P (f,X, x0). Hence, from the standard necessary optimiality conditions,
we know that

〈

∑

i∈I

∇fi(x0), d

〉

≥ 0, for all d ∈ T
X̂(x0)

(x0). (2.6)

Since, X̂(x0) is a convex set, the tangent cone T
X̂(x0)

(x0) is a closed convex cone. Using the fact

that the strong Abadie type regularity condition satisfies at x0, (2.6) becomes,

−
∑

i∈I

∇fi(x0) ∈ (T
X̂(x0)

(x0))
◦ = (V (x0))

◦ (2.7)

Using (2.2) and the definition of polar cone, we have

(V (x0))
◦ = {

∑

i∈I

λi∇fi(x0) +
∑

r∈K

µr∇gr(x0) : λ ∈ R
m
+ , µ ∈ R

k
+, µrgr(x0) = 0, for all r ∈ K}.

(2.8)
Therefore, (2.7) says that there exists λ ∈ R

m
+ , µ ∈ R

k
+ such that µrgr(x0) = 0 for all r ∈ K and

0 =
∑

i∈I

∇fi(x0) +
∑

i∈I

λi∇fi(x0) +
∑

r∈K

µr∇gr(x0).

Further, the above conditions can be rewritten as

1. 0 =
∑

i∈I

λ∗
i∇fi(x0) +

∑

r∈K

µ∗
r∇gr(x0),

2. µ∗
rgr(x0) for all r ∈ K,

3. λ∗
i > 0, for all i ∈ I.

where λ∗
i = λi + 1 for all i ∈ I and µ∗

r = µr for all r ∈ K, which completes the necessary part.
For sufficient part, let there exists λ∗ ∈ R

m
+ and µ∗ ∈ R

k
+ satisfying (2.3)-(2.5). Then from the

Theorem 3.26 of [9], x0 is a Geoffrion proper minimizer of CVOP. Hence x0 is a Pareto minimizer
of CVOP which completes the proof. ✷
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Remark 2.6 When input data is non-smooth, then we only get necessary optimality condition
which is not same (2.3)-(2.5). Since, for non-smooth case, (2.8) turns out to be

(V (x0))
◦ = cl{

∑

i∈I

λiui +
∑

r∈K

µrvr : λ ∈ R
m
+ , µ ∈ R

k
+, ui ∈ ∂fi(x0),

vr ∈ ∂gr(x0), µrgr(x0) = 0, for all i ∈ I and r ∈ K}, (2.9)

Hence, the necessary condition for x0 to be a Pareto minimizer under the strong Abadie type
regularity condition is given by

0 ∈
∑

i∈I

∂fi(x0) + (V (x0))
◦,

where V (x0) is given by (2.9). The verification of the strong Abadie type regularity condition is
not easy which makes Pareto minimizer less algorithm friendly and, almost all algorithms focus
on computing weak Pareto minimizer.

3 An Algorithm for computing Pareto minimizers

It is well known that there are lots of scalarization technique to solve CVOP consider for example,
weighted sum scalarization, ǫ-constraint method, Benson method and many more. The way by
which Charnes and Cooper scalarization is different form others is that there is no need of any
parameters (e.g. weighted sum scalarization needs weights and ǫ ∈ R

m
+ -constraint method needs

ǫ etc.) when we use this scalarization to compute Pareto minimizers in the algorithm. Hence,
using Charnes and Cooper scalarization for computing Pareto minimizers is more suitable rather
than using other scalarization techniques. Let us discuss the algorithm to find Pareto minimizers
using Charnes and Cooper scalarization and we shall call the proposed algorithm as CC1. In
the algorithm below, the set Sol(Pk), denotes the solution set of the scalar program Pk.

Step 1. (Initialization) Choose x0 ∈ X, set k := 0 and N̂ = N ∪ {0}.

Step 2. (Iterations)

(i) If for k ∈ N̂, yk be a solution of Pk : =

{

min
∑

i∈I

fi(x),

s. t. Xk := {x ∈ X : fi(x) ≤ fi(xk), i ∈ I}
i.e., yk ∈ Sol(Pk) and yk = xk, then stop.

(ii) Else, set xk+1 := yk and k := k + 1. Go to step 2(i),

The idea of the algorithm can be implemented in the following way. Consider a tolerance factor
ǫk ≥ 0 for k ≥ 1 associated with the problem Pk. If yk solves Pk and yk 6= xk but ‖yk−xk‖ ≤ ǫk,
then accept xk as the solution, otherwise set xk+1 = yk and solve Pk+1. As k increases, we can
keep on decreasing the tolerance limit ǫk, i.e., ǫk ↓ 0 as k → ∞.

Theorem 3.1 Let us consider the problem CVOP with each fi be a convex function and the
feasible set X be a compact set. Then,
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• the iterates of the algorithm CC1 is well-defined.

• If {xk} is a sequence generated by the above algorithm. Then any limit point of the sequence
{xk} is a Pareto minimizer of the problem CVOP.

Proof: As xk ∈ Xk, each fi is convex and the set Xk is non empty, closed, convex and bounded,
the set Sol(Pk) is non-empty which proves the first part of the theorem.
If for some k, the solution yk of Pk is equal to xk, then one stops since by the Theorem 2.1, xk
is a Pareto minimizer of the problem CVOP.
Now suppose for all k ∈ N, the solution yk of Pk is such that yk 6= xk. We shall now generate
a sequence {xk}k∈N, by defining xk+1 = yk for k = 0, 1, . . .. Now since Xk’s are non-empty
compact sets which are non-increasing,i.e., Xk+1 ⊂ Xk, for all k ∈ N, then by using Cantor’s

Intersection Theorem, we have
∞
⋂

k=1

Xk 6= ∅. Further, as xk ∈ Xk for all k ∈ N, {xk} is bounded

and thus has a limit point, say x∗. Thus, there exists a subsequence {xkj}j∈N such that xkj → x∗.

Further x∗ ∈
∞
⋂

k=1

Xkj , using the fact that
∞
⋂

k=1

Xkj 6= ∅ as Xkj+1
⊂ Xkj for all j ∈ N. Hence,

x∗ ∈ Xkj for all j ∈ N. Now let us assume on the contrary that x∗ is not a Pareto minimizer,
i.e., there exists x̂ ∈ X such that

fi(x̂) ≤ fi(x
∗), for all i ∈ I and fr(x̂) < fr(x

∗), for some r ∈ I. (3.1)

Hence,
∑

i∈I

fi(x̂) <
∑

i∈I

fi(x
∗). (3.2)

Now as x∗ ∈ Xkj for all j ∈ N, fi(x
∗) ≤ fi(xkj ) for all j. Thus, (3.1) implies that fi(x̂) ≤ fi(xkj )

for all j ≥ 0 and i ∈ I. Hence x̂ ∈ Xk for all k ∈ N. Further, xkj ∈ Sol(Pkj−1
), for j ∈ N which

shows that
∑

i∈I

fi(xkj ) ≤
∑

i∈I

fi(x) for all x ∈ Xkj−1
. (3.3)

As we have argued that x̂ ∈ Xk for all k ∈ N, from (3.3) we have

∑

i∈I

fi(xkj ) ≤
∑

i∈I

fi(x̂). (3.4)

As j → ∞ in (3.4) and using the continuity of the functions fi for all i ∈ I, we get

∑

i∈I

fi(x
∗) ≤

∑

i∈I

fi(x̂),

which contradicts the inequality (3.2). Hence x∗ is a Pareto minimizer of the problem CVOP
which completes the proof of the second part of the theorem. ✷
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Remark 3.2 We can generalize the Theorem 3.1 by replacing the assumption of convexity
of each function fi by proper, lower semicontinuous and R

m
+ -convex objective function f and

compactness of the feasible set X by R
m
+ -completeness of the set (f(x0) − R

m
+ ) ∩ f(X) which

means that for all sequences {an} ⊂ X with a0 = x0 such that f(an+1) ≤ f(an) for all n ∈ N,
there exists a ∈ X such that f(a) ≤ f(an) for all n ∈ N (see [2]).

Let us again take a careful look at the algorithm CC1. We don not build any separate subroutine
for solving Pk but use the CVX tool box in MATLAB. Given the problem Pk , one of the key
ideas here is to see how near the solution of Pk is to xk. What may happen that one might have
xk ∈ Sol(Pk) and CVX provides a solution yk 6= xk. Then we have missed the Pareto minimizer
xk and the run time of the algorithm gets increased. How does one address this particular issue?
An intuitive idea that comes into mind is that for each k ∈ N̂, one can try to see what will
happen if we choose xk as the starting solution for Pk? Will the algorithm CVX return xk as
the solution if xk is indeed a member of Sol(Pk) or at least it gives us an yk with ‖yk−xk‖ ≤ ǫk,
where ǫk > 0 is a threshold value for rejecting xk as the solution of Pk. We did some numerical
experiments and found that at least in those cases when xk ∈ Sol(Pk) and we consider xk as
our starting solution, the algorithm CVX indeed returned xk as the solution.

Another route often suggested under such circumstances is to convert Pk into a strongly
convex program so that CVX will give us just a unique solution for each k ∈ N̂. In fact let us
consider the following scalar problem P̂ (f,X, x∗) given as











min
∑

i∈I

(fi(x) +
1
2‖x− x∗‖2),

subject to fi(x)− fi(x0) ≤ 0, for all i ∈ I,

x ∈ X.

It can be easily proved that x∗ is a Pareto minimizer of CVOP if and only if x∗ is a solution of
the scalar strongly convex program P̂ (f,X, x∗). In fact in the algorithm CC1, we can replace
Pk with P̂k given as

{

min
∑

i∈I

(fi(x) +
1
2‖x− x∗‖2),

x ∈ Xk.

However, having a strongly convex problem Pk does not completely alleviate the issue at hand.
If we are looking for a solution with very high accuracy, then for each k, our threshold limit is
very small and even for the problem P̂k, the routine CVX might return yk as the solution where
‖yk − xk‖ > ǫk. Thus, we believe that we can just work with Pk and the numerical experiments
given below showed us that the algorithm CC1 is working efficiently. The use of scalar problems
similar to P̂ (f,X, x∗) does not appear to be new. In the study of proximal point method for
vector optimization problem, Bonnel et al. [2] use the following scalar problem at k-th step of
their algorithm denoted by ALG1:







min 〈f(x) + αk

2 ‖x− xk‖
2ek, zk〉,

subject to fi(x)− fi(xk) ≤ 0, for all i ∈ I,

x ∈ X,
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where {zk}, {ek} and {αk} are some sequences in the considered ordering cone C ⊂ R
m and in our

case C = R
m
+ . There are two major differences between our algorithms CC1 and the algorithm

AGL1 of [2]. Firstly, ALG1 needs a new set of parameters such as zk, ek and αk at every step of
the algorithm whereas CC1 does not need any such parameters. Secondly, the stopping criteria
of ALG1 involve solving the multiobjective problem which is not a practical approach when it
comes to implementing the algorithm. On the other hand, stopping criteria of CC1 is fairly
simple which only involve checking the error is within the considered threshold limit. Further,
Bonnel et al. [2] admitted that it is not easy to implement their algorithm to numerical test
problems whereas the algorithm CC1 is easily applicable to the test problems using MATLAB
software. Similar to Bonnel et al. [2], there are several point-by-point algorithms to solve vector
optimization problems. Some algorithms can only guarantee that the resultant solution is a
weak Pareto minimizer or critical point, for example, [8], [13], whereas some algorithms need
lots of assumption on objective functions which narrows down the applicability of the algorithm
for applications, for example, [11], [12].

4 Numerical Computations

In this section, we consider some convex vector optimization test problems to show the efficiency
of the proposed algorithm CC1. The design of the algorithm CC1 has a advantage which makes
it more useful than evolutionary algorithms, for example, NSGA-II [6] used to solve CVOP.
Firstly, algorithm CC1 has a convergence analysis which assures that the solution will be a
Pareto solution. On the other hand, NSGA-II does not have any convergence analysis. Sec-
ondly, we can trace Pareto solution corresponding to the efficient frontier of the problem in the
algorithm CC1 while NSGA-II only gives the information of the efficient frontier. But we need
to admit that the run time of algorithm CC1 is higher than NSGA-II.

In each of the examples considered below, we consider convex bi-objective test problems where
the objective functions f1 and f2 and the feasible set X are separately defined. All problems are
solved for 200 randomly generated starting points between the lower bound and upper bound
of the decision variables of the considered problem. At each step, we use CVX software on the
MATLAB platform to solve the scalar problem Pk of the algorithm CC1. In figures,“+” denotes
the image of starting point and “o” denotes the image of the resultant point of the algorithm
CC1 under the objective function f = (f1, f2). We tested algorithm CC1 on convex vector opti-
mization problems with smooth as well as non-smooth input data to check the efficiency of this
algorithm. First three examples deals with convex vector optimization with smooth objective
functions and the objective functions of the last example is non-smooth. For simplicity, we con-
sider only two dimensional problems but the algorithm CC1 is applicable for higher dimensional
problems as well.

Example 4.1 Let f1, f2 : R → R be defined by f1(x) = x2, f2(x) = (x− 2)2 and let X = {x ∈
R : −10 ≤ x ≤ 10} (Schaffer problem [20]).

10



Figure 1: Efficient frontier of Example 4.1

Example 4.2 Let f1, f2 : R
2 → R be defined by f1(x1, x2) = x1, f2(x1, x2) = x2 and let

X = {(x1, x2) ∈ R
2 : x21 + x22 ≤ 1} (Jahn problem [15]).

Figure 2: Efficient frontier of Example 4.2

Example 4.3 Let f1, f2 : R
2 → R be defined by f1(x1, x2) = 4x21+4x22, f2(x1, x2) = (x1−5)2+

(x2 − 5)2 and X = {(x1, x2) ∈ R
2 : −5 ≤ x1 ≤ 10,−5 ≤ x2 ≤ 10} (Binh problem [1]).

11



Figure 3: Efficient frontier of Example 4.3

Example 4.4 Let f1, f2 : R2 → R be defined by f1(x1, x2) = max{x1, x2}, f2(x1, x2) = |x1| +
|x2| and X = {(x1, x2) ∈ R

2 : −2 ≤ x1 ≤ 2,−2 ≤ x2 ≤ 2}.

Figure 4: Efficient frontier of Example 4.4
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