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Abstract. The paper addresses the problem of finding top k influential nodes in large scale di-

rected social networks. We propose two new centrality measures, Diffusion Degree for independent

cascade model of information diffusion and Maximum Influence Degree. Unlike other existing cen-

trality measures, diffusion degree considers neighbors’ contributions in addition to the degree of a

node. The measure also works flawlessly with non uniform propagation probability distributions.

On the other hand, Maximum Influence Degree provides the maximum theoretically possible influ-

ence (Upper Bound) for a node. Extensive experiments are performed with five different real life

large scale directed social networks. With independent cascade model, we perform experiments for

both uniform and non uniform propagation probabilities. We use Diffusion Degree Heuristic (DiDH)

and Maximum Influence Degree Heuristic (MIDH), to find the top k influential individuals. k seeds

obtained through these for both the setups show superior influence compared to the seeds obtained

by high degree heuristics, degree discount heuristics, different variants of set covering greedy algo-

rithms and Prefix excluding Maximum Influence Arborescence (PMIA) algorithm. The superiority

of the proposed method is also found to be statistically significant as per T-test.
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1. Introduction

A Social Network is made up of social ties among individuals. Friends, family members, colleagues are

connected to each other in the social paradigms. A new product or innovation can touch or influence

thousands of people with the help of social ties. Before buying, people take advice from their friends

and families. So, marketing persons always put their eyes on social happenings. After the introduction

of web, people are enlarging their social boundary by electronic means. Hyperlinks and email commu-

nications show early social ties in the electronic media. Thereby, the formation of online social networks

started.

In recent years, large scale online social networks have become extremely popular. Twitter, Face-

book, Orkut, LinkedIn are a few examples. These social networks have millions of users. Similar to

the social structure found in society, people around the globe are connected with the purpose of common

interest. As a result, these applications are becoming a huge marketing platform of products and services,

specially for spreading of innovations to a large number of people in a short amount of time. Marketing

persons usually target few influential individuals for marketing their products. These individuals, in turn,

influence their friends and families. However, the most important question arises, “How to select the

influential individuals quickly?”. That is, how to select the set of initial influential individuals for which

the influence spread over the network is maximum. This problem is known as influence maximization

problem for social networks. Besides its main application to marketing or spreading innovation, solution

to this problem can also be used in other domains such as in detecting top stories in the news networks

and ranking the top articles in the blog sphere.

The natural solution to the problem will be to select those persons having higher numbers of neigh-

bors. That is, select the persons based on their centrality scores. Domingos and Richardson were the

first to study this as an algorithmic problem and proposed some probabilistic methods [9, 26]. In [18]

Kempe et al. formulated the problem as one of discrete optimization and showed that the problem is NP

hard. They also proposed a greedy hill climbing approach, which provides (1− 1/e− ǫ) approximation

of the optimal solution. Finally, they showed through experiment that their approach provides significant

improvement over those based on the classical degree and centrality based heuristic. However, for large

scale graphs, the greedy approach is time consuming. It may take days to compute even on a moderate

size graph of 30K nodes as reported in [6]. To overcome the drawback, several algorithms were pro-

posed in the last few years. In [21], Leskovec et al. presented a “lazy-forward” optimization method

in selecting the seed nodes and showed experimentally that this method runs 700 times faster than the

greedy algorithm of Kempe et al. They called this algorithm “Cost-Effective Lazy Forward“ (CELF).

However, as reported in [5], this “lazy-forward” method still takes hours to generate 50 seeds. Some

other approaches in this line were reported in [5, 15, 10].

In recent years, several heuristic algorithms ([6], [5], [4]) were proposed to deal with the said prob-

lem for improving the performance. These algorithms, unlike the traditional centrality based heuristics,

consider the underlying principle of information diffusion process in the network. Broadly, there are two

types of diffusion models available in the literature, threshold model of diffusion [16] and cascade model

of diffusion [13, 14]. In [19], Kimura et al. provided a shortest path based influence cascade model

and an efficient algorithm to compute the information spread under this model. In [5], the authors de-

scribed their degree discount heuristic algorithm for independent cascade model. In [24], Narayanam et

al. provided a game theory based approach for linear threshold diffusion model. All these algorithms are

found to suffer from high execution time [6]. Recently, Chen et al. [6] described their LDAG algorithm
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for linear threshold model. This model uses the local structure of the network to make the influence

computation tractable and reduce the computation cost.

From the above mentioned discussion, one may note that the greedy solution to the problem provides

a good estimation. However, these solutions are time consuming for large scale social networks. On the

other hand, centrality based heuristic models run very fast but their solution (set of seeds) may result in

less influence over the network. The reason behind it might be, the traditional centrality measures do

not consider the effect of neighborhood. They also do not incorporate the principle of the information

diffusion among the neighbors. Therefore, judicious integration of the concept of neighborhood and the

principle of information diffusion process with the classical centrality measure seems to be appropriate

for providing an efficient solution in terms of both performance and computation time.

The present paper describes such an attempt where we propose a new centrality measure, called

diffusion degree, for Independent Cascade Model, and we use it to find the top k influential individuals in

large scale directed social networks using Diffusion Degree Heuristic (DiDH). Further more, the existing

centrality measures assume the propagation probability to be uniform throughout the network. That is,

each node influences their neighbors with the same probability. But, in social relations the trust of each

tie may not be the same. Our centrality measure takes care of this accordingly and works flawlessly

for such nonuniform propagation probabilities. Besides these, we have defined mathematically the upper

bound of a node’s influence based on the network structure. Accordingly, a new centrality score of nodes,

called Maximum Influence Degree (MID), is defined. Though it is computationally heavy to determine

MID, yet it provides a good estimation to the upper bound of the influence over the entire network.

In our experiment we consider five different large scale social network e.g., Twitter following-

follower network, Amazon co-purchasing network, Slashdot friendship network and web graph of Berke-

ley and Standford (Web-BerkStan) university and Notre Dame University (Web-NotreDame). First we

determine the top k influential nodes of a network using the proposed DiDH. Then we estimated the

information spread over it by Monte Carlo simulation and compared the results (# of nodes influenced)

with other available solutions extensively. Our solution shows significant improvement over those of

other methods. Additionally, our model is seen to run significantly faster compare to the greedy al-

gorithms even on networks with millions of nodes. Furthermore, we estimated the influence through

simulation for the top k nodes selected based on MID score and the results were found to corroborate to

those obtained by DiDH.

Rest of the paper is organized as follows: Section 2 describes the motivation behind this research

work. Section 3 briefly explains the problem. Preliminaries related to our theory are mentioned in Section

4. The proposed centrality measure Diffusion Degree with its characteristics is defined in Section 5, the

proposed measure of upper bound of influence is illustrated in Section 6 and the proposed Maximum

Influence Degree is reported in Section 7. Experiment and results are listed in Section 8. Finally, in

Section 9 we conclude the research findings.

2. Motivation

Introducing a new product, application or innovation to the people is one of the major jobs of marketing.

In case of direct marketing, the marketer takes the decision of whether or not market to a person, based

on her characteristics and in case of mass marketing the marketer targets a segment of population based

on their common characteristics. This decision may lead to a sub-optimal marketing decision by not
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considering the effect of people on each other’s buying decision. In fact, most products spread more

effectively due to consumer to consumer dialogue. Word-of-Mouth has a greater effect as because this

marketing channel has more trust over mass media marketing. It has been found that, innovation spreads

over the social and geographical networks gradually like a domino effect. That is, in the beginning few

people adopt the product, then their neighbors adopt it, then their neighbors and so on. This is because,

the decision of an individual heavily depends upon their interpersonal ties.

In case of viral marketing, selecting the initial set of users by whom the influence flow will be

maximum is very important. The problem is known as the influence maximization problem. That is,

select the set of initial influential persons for whom the innovation spread is maximum. These motivate

us to research in the topic.

3. Problem Statement

Suppose G(V,E) represents a social network where V is the set of all nodes in the network and E is the

set of all edges in the network. Before we introduce the problem statement, we provide the definition

of the influence of an individual in a network and briefly describe the different diffusion models mostly

used therein.

3.1. Influence of an Individual

In reality, everyone has his/her own opinion about things near to them. However, when it comes about

an unknown, people usually tend to rely on others’ opinions. Ideas, innovations or information do not

always spread at once, but it gradually spreads over social networks. In a social economic structure, few

persons are relatively more influencing compared to others. In their paper [8], Dolecek et. al. describes

influence of an individual under two different information dynamics, namely, short term influence or first

impression and long term influence or equilibrium. In case of short term influence, a node v is considered

to be influential when node u ∈ V \ (Γ(v) ∪ v) shares the same opinion that originally was held by

v. Here Γ(v) denotes the set of neighbors of v. On the other hand, in case of long term influence, an

individual v is said to be influential if after a long time period other agents in the network remain attentive

to the opinion of v.

3.2. Information Diffusion

Information diffusion in the social network is well studied in sociology. There have been extensive

experiments to understand the effect of “word-of-mouth” in spreading innovations. During diffusion in a

social network, at any given time there exist two sets of nodes. Members of one set have already adapted

the innovation (i.e., active nodes), whereas the members of the remaining set have not (i.e., inactive

nodes). In literature, there are two fundamental processes by which nodes adapt the innovations. These

processes are as follows:

3.2.1. Threshold Model

Threshold model of diffusion was first proposed by Granovetter [16]. According to this model, one

inactive node becomes active based on the proportion of neighbors already activated. Typically, node
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v ∈ V chooses a threshold value θv ∈ [0, 1] selected randomly from a probability distribution. Each

edge of v is assigned with a non negative edge weight ωv,u where
∑

u∈Γ(v) ωv,u ≤ 1. A node v is

activated or influenced if and only if θv ≤
∑

active u∈Γ(v) ωv,u.

3.2.2. Cascade Model

Goldenberg et al. in [13, 14] inspected Cascade Model in marketing perspective. In this model a node u
is influenced by its neighbor v with a probability λu,v. This probability is called propagation probability

or diffusion probability.

The simplest and popular form of the cascade model is Independent Cascade (IC) Model of [13]. The

IC model runs in discrete time. In the process, there are two sets of nodes, the active nodes which have

already adapted the behavior and inactive nodes which are prospected to adapt the behavior in future.

Initially, a few nodes are activated. At each successive steps, active nodes will try to activate one of its

inactive neighbors. However, the node will get only one chance to activate it and if it fails there will be

no further chance to activate the same node again. The process terminates when no further activation is

possible. Edge e(u, v) ∈ E is assigned with a non negative probability λu,v. This probability indicates

the probability at which node u is activated by v.

3.3. Problem Statement

For a given social network G(V,E), we are interested to mine a set of top-k influential individuals S
such that α = |∪v∈SIv| is maximized under Independent Cascade Model of diffusion. Here, Iv denotes

the set of nodes influenced by v.

4. Preliminaries

Before we describe the new centrality measure in Section 5, we provide here a few preliminary defini-

tions.

4.1. Centrality

In a social network, centrality is considered to be a measure of relative importance of the nodes in the

network. From the years of research on centrality, it is clear that it is an important structural attribute

[12]. However, there is no defined agreement about what it is. Scientists provided different measures for

finding the most central nodes in a network. Two such measures are as follows:

4.1.1. Degree Centrality

One of the classic measures of centrality is degree centrality. Nieminen [25] provided a simple and

natural measure for centrality based on the count of degree or number of links. The degree of a node v is

mathematically represented as

CD(v) =
n
∑

i=1

σ(ui, v) (1)
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where the function σ(ui, v) is defined as

σ(ui, v) = 1 if and only if ui and v are connected

= 0 otherwise.

4.1.2. Betweenness Centrality

Another classic centrality measure is betweenness. This measure is based on the frequency at which a

node falls between other nodes [12]. Mathematically, the betweenness score of a node v is

CB(v) =
∑

s 6=v 6=t

σst(v)

σst
(2)

where σst is the number of shortest paths between s and t, and σst(v) is the number of shortest paths

from s to t passing through v.

4.2. Directed Social Network vs Undirected Social Network

Based on the type of ties, we can broadly classify social networks into two categories, namely, directed

social network and undirected social network. In case of an undirected network, a tie defines both way

communications. On the other hand, for directed social networks, each tie defines one way communi-

cation. For example, in case of a blog network supose a person A follows a blog B. Here, the author

of the blog B may not follow back the blog of A. In this type of network a both way communication is

represented by two different edges in the network.

For directed social networks in-degree defines the number of followers and the out-degree means the

number of nodes it follows. Here a node (or a person) gets influenced only by the nodes (or persons)

it is following not by its followers. That means, it is only the in-degree, not the out-degree, that should

be considered as an index for quantifying the significance of an individual, and for characterizing its

influencing channel.

5. A new centrality measure: Diffusion Degree

As we described in Section 3, information in a social network flows through its structural dynamics and

one of the well known models for information diffusion is Independent Cascade (IC) model of diffusion.

In traditional approach, solutions to the problem of influence maximization focused mainly on finding

the most central nodes, i.e., how close they are to the center of action. However, in case of real life social

networks, influential capability of one person is boosted by its neighbors’ contributions. In this section,

we will define a new centrality measure named “Diffusion Degree” for directed social networks with IC

model as the underlying diffusion model.

5.1. Philosophy and Criteria

In a social network, it is found that higher degree nodes (i.e., elite users) are connected with lower degree

nodes, specially in directed networks. On the other hand, nodes with comparatively lower degree than
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elite users might be connected with similar nodes having higher neighborhood size. In degree centrality

approach, those nodes in the latter situation get lower centrality value compared to the former. When

the information diffusion starts propagating in the network, it begins from the seeding nodes and tries

to influence its neighbors. Influenced neighbors, will then try to influence further their neighbors, and

so on. Thus, the effect of a node on the network depends not only on its own degree but also on the

neighbors’ degree.

Nodes In-Degree Out-Degree

1, 2, 4, 5, 11, 12, 15 0 1

8, 13 0 2

3, 6 2 1

9 1 1

14 2 0

7 3 0

10 4 0

Figure 1. A sample network. Nodes are sized as per their in-degree scores. The highest degree node is 10 with 4

in-degree.

Consider the following-follower social network shown in Figure 1. A link directed from a node u
(say, 11) to a node v (say, 10) means node u is following node v. Here node 10 has highest in-degree. For

the time being, consider that one can influence all of its followers. If we select node 10 as the seed node

based on its degree, it can directly influence 4 nodes (nodes 9, 11, 12 and 13) in the network. Then in the

next step node 9 will influence node 8 and no further activation is possible as nodes 8 and 13 do not have

any follower. That is, in total, 5 nodes will be activated by selecting node 10 as the seed. However, if we

consider the node 7 as seed, it can influence 7 nodes (3, 6 and 8 directly and 1, 2, 4 and 5 indirectly) in

total. So, in the above example, a relatively lower degree node can activate more nodes in the network.

The reason behind such a behavior is because node 7 is connected with relatively higher degree nodes

like nodes 3 and 6 as compared to those of the node 10.

Now, in the same example, consider a different situation with IC model of diffusion. Suppose, the

node 6 can influence both of its neighbors with the propagation probability 1, while the other nodes in the

network influence their each neighbor with a probability 0.25. In this scenario selecting node 10 as the

seed, might activate all the four or even none of its followers. However node 6 as a seed will definitely

influence its two follower nodes. That is, accurately determining whether a node would be influenced or

not relies on the diffusion probability in case of IC diffusion model. Accordingly, in the given example,

the highest degree node 10 is not the best as a seed. The above points have been addressed while defining

the centrality measure for influence maximization problem. In the following section, we will define the

proposed centrality measure mathematically.
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5.2. Definitions

Postulate 5.1. Influence of a node gradually decreases with the increased distance and the influence is

maximum when the distance is one, that is, the influenced node is one of its neighbors.

In our social relations, we take advice from our friends and families and it is observed that, usually we

form our opinion on a problem/topic either of our own or we refer to some known persons, mostly friends

and family members. Sometimes, we trust a person if (s)he is a friend of our friends, even though (s)he

is not a direct friend of us. However, as this relation-distance increases, e.g., friend of a friend of friends,

the trust usually decreases, and so the influence. Considering this scenario of social relations we believe,

the Postulate 5.1 is true.

Definition 5.2. (Diffusion Degree of Node)

In IC model, let the propagation probability of a link e(u, v) from node u to v be denoted by λu,v,

that is, node u who follows node v will get activated by v with probability λu,v. Suppose, a node

v has m neighbors denoted by the set Γ(v) = {u1, u2, ..., um} which are connected with the links

ev = {e1(u1, v), e2(u2, v), ..., em(um, v)}. Let us also consider that the corresponding propagation

probabilities of these links are denoted by the set Λv = {λu1,v, λu2,v, ..., λum,v}. In the diffusion process,

the expected number of nodes activated or influenced by v can then be defined as,

Exp(v) =
∑

u∈Γ(v)

λu,v. (3)

When the diffusion propagates further, active neighbors of v will activate their inactive neighbors.

The expected number of nodes activated in distance two, i.e., number of nodes activated by active neigh-

bors of v is,

Exp(v(2)) =
∑

u∈Γ(v)

(λu,v ×
∑

i∈Γ(u)

λi,u). (4)

The diffusion degree of a node is defined as the cumulative contribution of the node itself and con-

tributions due to its neighbors. Considering only the effect of its immediate followers (Postulate 5.1) we

can define the diffusion degree CDD of node v as,

CDD(v) = Exp(v) + Exp(v(2)) (5)

=
∑

u∈Γ(v)

(λu,v + λu,v ×
∑

i∈Γ(u)

λi,u) (6)

=
∑

u∈Γ(v)

λu,v × (1 +
∑

i∈Γ(u)

λi,u) (7)

5.3. Algorithm

The pseudo-code for calculating the diffusion degree is shown in Algorithm 1.
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Algorithm 1 Diffusion Degree Calculation

1: function DIFFUSIONDEGREE(v)

2: sum← 0
3: for all u ∈ neighbor(v) do

4: Expu ← 0
5: for all i ∈ neighbor(u) do

6: Expu ← Expu + λi,u

7: end for

8: sum← sum+ λu,v ∗ (1 + Expu)
9: end for

10: return sum
11: end function

5.4. Notes

5.4.1. On Complexity

The diffusion degree measure (Equation 7) of a node depends upon its in-degree, in-degree of its follow-

ers and propagation probabilities of the links between the node itself and its followers. Unlike others,

the computation does not depend on the in-degree of a node already selected before as seeds. Thus the

diffusion degree for every node in a network could be determined in O(E + E) time where E is the

number of edges in the network.

5.4.2. On Overlapping Neighborhood

The IC model is highly stochastic process and in the model, an active node gets chance to activate each

inactive neighbor only once. But the reverse statement is not true, i.e., an inactive node will get at most

one activation tries from all of its neighbors not hold for information diffusion in IC model. So, if one of

the inactive nodes (say u) gets the information from one of its active neighbor (say v) and fail to activate

at that time step. It is possible that it gets activated in the further time steps by any active neighbors

other than v. This property of the model also supported by the sociological findings reported in [27]. In

[27], the author describes that social influence is a complex process which completed over time in phases

and there are agents who accept the changes only when several others adopt the same. To consider the

aforesaid facts of the model and the social system, the diffusion degree measure (Equation 7) did not

discount the overlapping neighbors among a node and its neighbors.

6. Upper Bound of Influence

In this section we formulate a measure to determine theoretically the maximum possible influence by a

node at a distance n. Let us consider the social network is represented by adjacency matrix A and the

elements of the matrix are defined as,

au,v = 1 if there is a link from node u to node v (8)

= 0 otherwise. (9)
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The total number of edges of the network |E|=
∑

u∈V

∑

v∈V au,v, and in-degree of a node v =
∑

u∈V au,v.

To get the upper bound of influence for a node v at distance n we compute An. A positive value at

position (u, v) in Matrix An means, there exists at least a path connecting the node u to node v having

length n and the value itself is the number of such n-length paths in the network. It is obvious that v
can influence u only if there exists a path from u to v. Thus the highest possible influence for a node at

distance n is the number of nodes connected to it with a path having length n. So, the upper bound of

influence at distance n is the number of elements having positive value in the columns of matrix An, and

the nodes influenced are the set of nodes identified by the row indices.

Mathematically, the influence of a node v at distance n is any subset of,

ξ(n)v = {u ∈ V |a(n)u,v > 0, An = ((a(n)u,v))}. (10)

So, the Upper Bound of Influence for node v at distance n is,

α(n)(v) = |ξ(n)v |. (11)

Now, if a node v influences all possible nodes then, the changes of influence at distance n will be any

subset of,

∆ξ(n)v = ξ(n)v \ ∪n−1
i=1 ξ

(i)
v (12)

and

∆α(n)(v) = |∆ξ(n)v |. (13)

7. A new centrality measure: Maximum Influence Degree

Based on the upper bound of influence discussed in Section 6, we now propose a new centrality measure

Maximum Influence Degree of a node. Intuitively, it means the maximum possible influence of a node

in the network.

Definition 7.1. (Maximum Influence Degree of Node)

Maximum Influence Degree (MID) of a node is the sum of the upper bound of influence in each distance.

For a node v it may be theoretically defined as

CMID(v) =

∞
∑

n=1

α(n)(v). (14)

Here, α(n)(v) is calculated as described in Equation 11.

One may note here that computing the MID up to n = ∞ may not be necessary and practical as the

required information on node coverage in a network is almost contained with n = D, the network

diameter. Accordingly, Equation 14 reduces to

CMID(v) =

D
∑

n=1

α(n)(v). (15)
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8. Experiment and Results

We conducted experiments with five different types of live social networks. A block diagram of the

experiment is given in Figure 2(a). We extracted the top k influential individuals using Diffusion De-

gree Heuristics (DiDH). A flow chart corresponding to DiDH algorithm is shown in Figure 2(b). We

computed the information spread (i.e., the number of nodes directly or indirectly influenced by those k
seeding nodes) over the network using Monte Carlo simulation. Similarly, we extracted the top k nodes

using other available algorithms and computed the number of influenced nodes. We then compared their

results with the results obtained by the proposed DiDH. We also verified the significance of the dif-

ference in results statistically using T-Test. Following subsections describe the data sets, experimental

consideration, comparative results and the test of significance.

(a) Block diagram of the experiment (b) Flow chart of DiDH

Figure 2. Block diagram & flow chart

8.1. Description of Data Sets

We have collected different types of directed social network data sets for our experiment. These are

friendship networks of Twitter [7] and Slashdot [22], Amazon co-purchasing network [20], web graph of

Berkeley and Standford (Web-BerkStan) university collected in 2002 [22] and web graph of Notre Dame

University (Web-NotreDame) [17]. Properties of these data sets are listed in Table 1.

8.2. Consideration

In social networks, it is observed that the propagation probability of each tie is different. Each individual

node gets influenced by its neighbors with different probabilities. Unlike other previous investigations,

where the propagation probability was considered to be the same for all the ties, we additionally ex-

perimented on networks considering that the propagation probabilities are different for different ties.

Moreover, only with the knowledge of the network structure it is not possible to provide a solution to

the problem of predicting the propagation probabilities. The reason behind this is that the propagation

probability of a tie also depends on the communication dynamics of the nodes. In the absence of such
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Table 1. Features of Data Sets

Property Twitter Amazon Slashdot Web-BerkStan Web-NotreDame

Nodes 455818 400727 82168 685230 325729

Edges 822487 3200440 948464 7600595 1497134

Nodes in Largest WCC1 455818 400727 82168 654782 325729

Edges in Largest WCC 822487 3200440 948464 7499425 1497134

Nodes in Largest SCC 2 2208 380167 71307 334857 53968

Edges in Largest SCC 10401 3069889 912381 4523232 304685

Avg. Clustering Coefficient 0.0175 0.4113 0.0617 0.6149 0.454

Number of Triangles 57769 3686467 602592 64690980 8910005

Fraction of Closed Triangles 0.0002781 0.1605 0.02411 0.08769 0.08767

Diameter 7 18 12 669 46

90-Percentile Effective Diameter 4 7.7 4.7 10 9.3

1 Weakly Connected Component
2 Strongly Connected Component

knowledge, we have assumed different distributions for the propagation probabilities of the network in

our experiment. Two different setups used are as follows

8.2.1. Propagation Probability Setups

Uniform Propagation Probability (UPP) We assign uniform propagation probabilities for all edges

in the network i.e., λu,v is considered to be the same ∀u, v. The assigned values ∀λu,v are reported with

corresponding results in Section 8.5. As mentioned before, this setup is very unlikely to be true for a real

life social network, yet we consider it in our experiment to make an unbiased comparison of the results.

Non-Uniform Propagation Probability (NUPP) In this setup we assign non-uniform propagation

probabilities for all edges of the network, i.e., λu,v values are different for different ties. We use three

different methods to generate the non-uniform values of propagation probabilities. These are,

i) Random with Uniform Distribution: We assign the propagation probabilities for all edges of the

network randomly, generated from an uniform distribution. The range of the distribution is varied

to generate more than one such propagation probability. Corresponding ranges have been reported

in Section 8.5 along with the distribution graph.

ii) Random with Normal Distribution: In this method the propagation probabilities are generated ran-

domly from a Normal or Gaussian distribution. The mean of the distribution is varied to generate

more than one such setting for the same network. Graphs mentioning the distribution along with

the parameters of the distribution are shown in Section 8.5.

iii) Random with Power Law Distribution: The propagation probabilities in this method have been

generated randomly from a Power Law distribution. The parameters of the distribution are var-
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ied to generate more than one such propagation probability. The parameters of the Power Law

distribution are reported along with the graphs in Section 8.5.

8.3. Baseline Algorithms for Comparison

In the experiment, we used Monte-Carlo simulation technique for estimating the number of influenced

nodes in a information diffusion. We simulated for 20000 runs and took the average to get the accurate

estimation. Number of seeds, i.e., k is varied from 0 to 100 depending upon the data set.

We have compared results of the proposed DiDH and MIDH with those of the following two heuristic

methods and two greedy algorithms.

• High Degree Heuristics (HDH): Nodes are ranked according to their degrees. We ranked the

influential nodes based on their in-degree and computed the influential capabilities of the seeds.

This method is a special case of DiDH where the neighborhood and the diffusion model are not

considered in the centrality measure.

• Degree Discount Heuristics (DDH): We implemented the degree discount algorithm as described

in [5]. The influential nodes are ranked according to the degree discount score.

• Prefix excluding Maximum Influence Arborescence Model (PMIA): We implemented PMIA algo-

rithm as described in [4]. Best possible value of the threshold (θ) had been experimentally decided

as noted in the original paper.

• Set Covering Greedy (SGA): We considered SGA to compare with the proposed algorithm as it

uses the neighborhood concept with greedy approach. We implemented the basic set covering

greedy algorithm proposed in [11]. We used three different values for the neighborhood size m

(m ∈ {1, 2, 3}) as mentioned in [11].

8.4. Baseline Parameters for Comparison

We compared the algorithms in terms of the following three parameters:

• No. of Active Nodes (α): With the help of Monte Carlo simulation we estimated the total number

of nodes (α) influenced by k seeds. In influence maximization, for a given k, higher value of α
signifies that the algorithm provides better seeds as compared to those having lower α-values.

• Execution Time: Execution time is one of the vital parameters to check when working with the

large scale social networks. We measured the execution time for all the algorithms and made a

comparative analysis.

• No. of Active Nodes with Distance: We estimated the total number of influenced nodes by an

individual with increased distance. This enables to make a comparison in terms of information

spreading.

8.5. Results

The experiment has been conducted intensively on five data sets (Table 1). The salient features of the

observations with UPP and NUPP setups are described here:
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8.5.1. Results for Twitter Data

In Twitter following-follower network, each node (u) represents a Twitter user. If a user v is followed by

a user u there is a connected link from node u to v in the graph. Here, α denotes how many people of the

network have the knowledge or the idea originally started propagating through the seed nodes. That is, if

an information is given to k persons in the network, at the end, how many persons got to know the same

information. So, in this type of network, higher value of α defines the higher quality of selected seeds.

λu,v = 0.05∀u, vλu,v = 0.08∀u, v

No. of Seeds (k) No. of Seeds (k)

N
o
.

o
f

A
ct

iv
e

N
o
d
es

(α
)

Figure 3. Plot of α with k for Twitter network on UPP setup

UPP Setup In UPP setup different values of λu,v are taken from the interval [0.01, 0.10] with 0.01

step. Figure 3 shows two such results graphically. The graph shows the variation of the number of

nodes influenced (α) with different values of k using the proposed methods (DiDH and MIDH) and two

other heuristics algorithms (High Degree Heuristics (HDH) and Degree Discount Heuristics (DDH)). The

graph also shows the comparative results with different variants (viz., SGA1, SGA2 and SGA3) of the

Set Covering Greedy algorithm (SGA) and Prefix excluding Maximum Influence Arborescence Model

(PMIA). Each entry shown here corresponds to an average value of α computed over 20000 runs. As

expected, α increases consistently with k for all methods and for different values of λu,v. Interestingly,

the difference in α values between the proposed methods and other algorithms is seen to increase with

k. HDH, being a special case of the proposed DiDH, improvement in α of the latter can be viewed as the

effect of including the neighborhood nodes in the centrality measure. It is also visible from the graphs

that with the higher value of λu,v, α increases. Performance-wise the proposed methods are significantly

higher compared to other methods in all the cases, and the ordering may be made as follows:

αSGA1 ≅ αPMIA < αSGA3 ≅ αHDH ≅ αDDH

< αSGA2

< αDiDH ≅ αMIDH .

NUPP Setup: In this setup we used non uniform values of propagation probabilities. As discussed

in Section 8.2.1, we used three different methods (distributions) to generate it. In the experiment with

Twitter network, 10 different sets of values for λu,v∀u, v have been generated for each of the three
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Figure 4. Assigned Propagation Probability Distribution (PPD) and corresponding results for Twitter

different methods. We observed similar outcome for all the simulations. In this section we have reported

the outcome of three such simulations for each of the three different methods.

Figures 4, 5 and 6 show the histograms of assigned propagation probabilities for NUPP setup along

with corresponding comparative results. The assigned propagation probabilities are generated randomly

from uniform distribution, normal distribution and power law distribution respectively. Parameter values

of the distributions are labeled in the diagram.

The plots of Figures 4, 5 and 6 show the variation of the number of nodes influenced (α) with

different values of k for DiDH, HDH, DDH, SGA1, SGA2, SGA3 and PMIA. As expected, the value of

α increases with k. As in the UPP setup, for each setup of NUPP we found that the proposed method

significantly outperforms other comparing methods and the difference increases as k increase. In contrast

to the UPP, the improvement with DiDH here is not only due to the consideration of the neighborhood

but also for inclusion of the propagation probabilities of the links. We explained this phenomenon earlier

with an example in Section 5.1. For each case discussed above, we also included the results found when
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Figure 5. Assigned PPD and corresponding results for Twitter

using the top k nodes selected using MIDH. Interestingly, similar to the UPP setup, the results of DiDH

are equivalent to the outcome of MIDH.

For a typical NUPP setup, the variation of the number of nodes (α) influenced by an individual seed

with increasing distance for different heuristic algorithms is shown in Figure 7. We have shown some

selected seed nodes, as example, from the 50 seeds to generate the graphs. It is clear from the graphs that

the influence of an individual seed decreases with the distance. Interestingly, we can see an increased

influence at distances 2 and 3 for the proposed DiDH algorithm compare to the HDH algorithm where

the influence is either flat or it decreases after distance 1. On the other hand, DDH had a mixed behavior

i.e., some of the seeds show increased influence at distances 2 and 3, while the others show the reverse.

We found similar behavior for most of the top 100 seeds in our experiment. The said increased influence

at distances 2 and 3 for the proposed method is due to the effect of the neighbors’ contribution in the

centrality measure. The results of Figure 7 also support the proposed Postulate 5.1, that is, “influence of

an individual gradually decreases as distance increases”.
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Figure 7. Plot of α for seven nodes with distance on Twitter data for different heuristic algorithms
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Table 2. Maximum possible influence by selected seeds of different algorithm for Twitter

Algorithm
∑

v∈S
I
1

v

∑
v∈S

I
2

v

∑
v∈S

∆I
2

v

∑
v∈S

I
3

v

∑
v∈S

∆I
3

v

∑
v∈S

I
4

v

∑
v∈S

∆I
4

v
Total (% of Total Network)

HDH 27355 83550 70581 200737 124853 337713 129158 351947 (77.16%)

DDH 27407 80501 69942 194024 122716 327274 125445 345510 (75.75%)

DiDH 23241 149602 129317 292760 155583 398177 99746 407887 (89.42%)

SGA 1 29470 52623 45938 143527 96959 278322 132387 304754 (66.81%)

SGA 2 25370 167004 152959 287835 156120 414010 95716 430165 (94.31%)

SGA 3 19089 100775 94414 257362 176696 379550 127505 417704 (91.58%)

We computed the maximum possible influence to compare the quality of the seeds selected by differ-

ent algorithms. We computed it upto the degree 4 because 90 percentile effective diameter of the network

is 4 i.e., effectively to cover 90% of the network, distance 4 is sufficient. Table 2 shows the observed

results. From the results it is clear that the theoretically possible maximum influence resulting by the

seeds obtained from the proposed DiDH is highest among those of the other heuristic methods. However

it is marginally lower than that of the SGA 2 and SGA 3.

Table 3. Centrality scores and 2nd level neighborhood size for each node, and α by the top k nodes for

Twitter network

k
HDHa DiDHb

Node Id In-Degree # 2
nd Level

Neighbors

# Influenced

Nodes Upto k

Node Id Diffusion

Degree

In-Degree # 2
nd Level

Neighbors

# Influenced

Nodes Upto k

1 0 5345 22570 1115 0 2422 5345 22570 1097

5 324342 500 5730 2026 228787 1251 496 13526 2933

10 424125 499 7216 2988 15298 1082 479 12383 4919

15 65180 499 5345 3736 399698 1012 462 11971 6566

20 297131 498 6499 4332 175776 990 433 12329 7837

25 119285 498 6421 5202 140201 963 480 10812 9021

28 106958 498 6278 5608 277261 959 322 10929 9562

30 102641 498 7867 6051 382965 949 488 10406 10036

35 2069 498 6793 6590 46373 938 496 10348 11116

37 391906 497 7596 6743 124854 937 382 10583 11516

40 286074 497 8994 7277 281580 931 488 9515 12087

45 142473 497 7661 8051 420556 922 493 10954 13065

50 55849 497 5345 8593 216476 917 478 11192 13908

a
HDH Stat: Avg. In-Degree = 595, Avg. Neighborhood size in 2

nd level = 7337

b
DiDH Stat: Avg. Diffusion Degree = 1036, Avg. In-Degree = 566, Avg. Neighborhood size in 2

nd level = 11625

In order to determine the effect of the neighborhood in the centrality measure, let us consider the

results comparing DiDH and its spacial case HDH as shown in Table 3. Here we list the centrality scores

and 2nd level neighborhood size for each node, and the number of influence nodes by the top k nodes for

Twitter data. For HDH, the top k nodes are selected based on their in-degree score and in DiDH, top k
nodes are selected based on their diffusion degree score. Number of influenced nodes is estimated using

Monte Carlo simulation. The number of nodes influenced by k nodes clearly shows that the proposed

model outperforms the HDH model. The list also shows that the top k nodes selected by the proposed

algorithm have higher 2nd level neighbors. Even though the seed nodes in HDH have higher in-degree,

the DiDH outperforms it due to the higher number of followers in 2nd level. That is, the proposed

measure is able to identify correctly those nodes having more influence ( direct plus indirect).
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Figure 8. Comparing execution time of different algorithms for different networks

Execution Time Figure 8 shows the comparative plot of execution time for all the algorithms in sec

(log scale). Being a special case of DiDH, HDH takes less time than DiDH and lowest time compare to

all other methods. The DiDH takes the second lowest time. The PMIA, takes the longest time when we

use an optimal threshold as per the authors guideline. Though DDH method is a heuristic model, it takes

comparably longer time to execute with respect to the proposed algorithm. The reason behind it may be

that the discounted degree need to be recalculated for every node after selection of each seed node i.e.,

selection of a node as seed is dependent on nodes already selected before. Ordering of the algorithms in

terms of execution time is

tPMIA > tSGA3

> tSGA2

> tSGA1

> tDDH

> tDiDH

> tHDH .

Test of Significance We verified the significance of the difference in number of influenced nodes for

each value of k using T-test. Here we perform the T-test only for DiDH vs HDH and DiDH vs DDH as

these are seen to perform very close in Figures 4, 5 and 6. It is found that for k ≤ 10 the differences

among three heuristic algorithms are not significant. That is, the resulting influence by three different

heuristics is very close. However, as k increases, the differences are seen to be statistically significant.

The p-value and t-score for different values of k in a particular experiment, as an example, are listed in

Table 4. We used Apache Commons Math library to obtain the results listed in Table 4. Each p-value

returned by the procedure is the smallest significance level at which one can reject the null hypothesis

that the two means are different [1] for a two-tailed T-test. That is, (1 − p) signifies the probability

at which one can accept that the means are different. The test does not assume that the underlying

population variances are equal, and it uses Welch-Satterthwaite approximation for degrees of freedom.
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Corresponding t-scores were calculated as

t =
(m1 −m2)

√

(var1
n1

+ var2
n2

)

where n1, n2 are the sizes, m1, m2 are the means and var1, var2 are the variances of the samples.

The minimum observed significance level (p-value) of the proposed DiDH compared to HDH is

found to be 0.022 for k = 10. For higher value of k, this increases further. Similar is the case for DiDH

compared to DDH. Thus the results of the proposed method are statistically found to be significantly

higher than those of the other two.

Table 4. T-test Results for Twitter Data Set

DiDH vs HDH DiDH vs DDH

k (Seed#) p-Value t-Score p-Value t-Score

1 8.31× 10−03 −2.64 7.90× 10−02 −1.76

5 6.03× 10−02 1.88 1.60× 10−03 3.16

10 2.23× 10−02 2.29 1.55× 10−02 2.42

20 6.76× 10−08 5.42 8.10× 10−09 5.79

30 1.38× 10−20 9.41 3.52× 10−19 9.05

40 1.26× 10−28 11.30 1.73× 10−29 11.50

50 2.86× 10−58 16.70 4.89× 10−48 15.00

8.5.2. Results for Amazon Data

The Amazon product co-purchasing network is based on Who Bought This Item Also Bought feature of

Amazon web site. If a product u is frequently purchased with product v the graph contains a directed link

from node u to node v. Here α denotes the number of products sold through Amazon website. So, higher

values of α for given k seeds mean the number of additional products sold is higher for those k products,

and the performance of the corresponding algorithm is better in terms of the number of products sold.

UPP Setup Figure 9(a) shows the variation of the number of influenced nodes (α) with k for Amazon

co-purchasing network. The graphs show the comparative results among DiDH, HDH, DDH, different

variants of SGA and PMIA for different values of λu,v. Similar to Twitter, α values for DiDH are found

to be higher than the other comparing methods, and the difference is more apparent for propagation

probabilities λu,v > 0.05 ∀u, v as well as for higher k-value.

NUPP Setup We assigned propagation probabilities using the aforesaid distributions in the network

and conducted experiments. Here we have reported few of the results as examples. Comparative plots

of α with k are given in Figures 9(b). Results shows that the seeds selected by the proposed DiDH has

the highest possible influence in the network. Unlike Twitter, here the other heuristic methods HDH
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Figure 9. Plot of α with k for Amazon network

and DDH provides comparatively closer results, however, the greedy algorithms SGA and PMIA are

significantly lower.

Figure 10 shows the variation of α for different seed nodes with distance for an experiment with

NUPP setup. Here we considered seven seed nodes from the top 50 seeds to generate the graph. Variation

in α is seen to be similar for the three heuristics. Decreasing nature of α with distance supports the

Postulate 5.1.
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Figure 10. Plot for α for seven nodes with distance on Amazon data for different heuristic algorithms

Similar to Twitter, Table 5 lists the centrality scores and 2nd level neighborhood size for each node,

and the number of influence nodes by the top k nodes for Amazon network resulting from an experiment

with the NUPP setup for DiDH and its spacial case HDH. Here also, we found that the selected nodes by

the proposed DiDH method have higher average 2nd level neighborhood. It is also notable that among

the top 50 nodes, few low in-degree nodes are identified by the proposed DiDH as influencing, due to

their relatively higher 2nd level neighbors. Those nodes are ignored in the special case HDH. As a result

the proposed algorithm is seen to have more influence than HDH.

Table 5. Centrality scores and 2nd level neighborhood size for each node, and α by the top k nodes for Amazon

network

k
HDHa DiDHb

Node Id In-Degree # 2
nd Level

Neighbors

# Influenced

Nodes Upto k

Node Id Diffusion

Degree

In-Degree # 2
nd Level

Neighbors

# Influenced

Nodes Upto k

1 32 2747 19703 627 32 1847 2747 19703 621

5 12588 1282 10663 2139 335 1068 2247 10795 2178

10 21020 875 6328 3433 2886 754 773 9104 3503

15 19878 575 5710 4409 21020 584 875 6328 4507

20 6847 530 6654 5180 11 519 413 5892 5304

25 30921 474 4582 5809 12030 499 583 5608 6225

30 159 450 4823 6351 19878 470 575 5710 6947

35 10903 426 4763 7120 1573 456 531 5377 7481

40 95401 412 3402 7765 7790 430 475 4901 8339

45 4537 388 5979 8326 7890 420 349 4886 9172

50 46024 372 3125 9184 2689 392 423 4452 9824

a
HDH Stat: Avg. In-Degree = 673.08, Avg. Neighborhood size in 2

nd level = 6390.22

b
DiDH Stat: Avg. Diffusion Degree = 620.68, Avg. In-Degree = 643.48, Avg. Neighborhood size in 2

nd level = 7052.10

Execution Time Figure 8 shows the chart of execution time in sec (log scale). Similar to Twitter data,

we found DiDH taking comparatively less time than DDH and SGA algorithms. Being a special case,

HDH takes less time than DiDH. Ordering of the algorithms in terms of execution time is similar to that

found in the Twitter (Eq. 8.5.1) except PMIA taking comparatively less amount of time.
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8.5.3. Other Data

We have run the same experiments over the remaining three networks (Table 1). Superiority of the

proposed DiDH compared to HDH, DDH, PMIA and SGA is also seen to be valid for Web-NotreDame

and Web-BerkStan web networks. In the Shashdot friendship network, the performance of DiDH is

higher than DDH, SGA and PIMA, but it is comparable to the HDH. Figure 11 shows graphs comparing

the performance for those networks.
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Figure 11. Plot of α with k for different networks

9. Conclusion & Discussions

In this paper, we proposed two centrality measures namely Diffusion Degree and Maximum Influence

Degree (MID) which are then used in centrality based heuristic models DiDH and MIDH respectively

for influence maximization in social networks. The measure diffusion degree, which takes in account

the neighbors’ contribution, is designed to work with nonuniform values of propagation probabilities.

On the other hand, maximum influence degree provides a theoretical upper bound of influence by inte-

grating all possible contributions from both direct and indirect neighbors. We showed through extensive

experiments and statistical tests that using these measures in heuristics algorithms provides a significant

improvement over the existing centrality based heuristics and different greedy algorithms like PMIA and

SGAs for large scale directed social networks.
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The distribution of the propagation probability is not well studied in the literature and is also depen-

dent upon the network, relations and context. In our experiment we tried to find out the performance

of our algorithm with few well known distributions characterizing non-uniform propagation probabil-

ity. Improvement in performance with them demonstrates the significance of incorporating neighbors’

contribution in the proposed centrality measures. One may also interested in context based analysis to

acquire propagation probabilities of social networks. Readers may be refer [2, 3, 23] for more on context

applied in AI, Machine Learning, Natural Language Processing and other domains.

Although our methodology has been formulated keeping the problem of influence maximization

for viral marketing (i.e., applicable to friendship networks like Twitter and Slashdot) in mind, we have

additionally done the experiment with other types of networks (like web graph of Web-BerkStan and

Web-NotreDame, and co-purchasing network of Amazon) where we think the proposed investigation

has significance too. For example, in case of web graphs, it can provide an answer to the questions like

“Which web pages should we chose to advertise so that the impression maximizes?” or “Which web

pages can be used for spreading social awareness?”. For product co-purchasing network, the method-

ology can be fitted to check “Which product needs to be promoted for an increase in sell?” or it can

be easily modified to figure out “Which product provides the maximum percent of revenue for an e-

commerce company?”.

The computation of the upper bound is time consuming, it is seen experimentally that the similar

influence can be achieved by using Diffusion Degree in very less time. The running time of our DiDH

algorithm matches that of the classical degree centrality based heuristic algorithm, and it is significantly

faster than the PMIA and SGAs.
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